2-Homogeneous bipartite distance-regular graphs and the quantum group $U'_q(\mathfrak{so}_6)$

Paul Terwilliger

University of Wisconsin-Madison

Contents

- Warmup: the Lie algebra \mathfrak{so}_n
- The nonstandard quantum group $U_q'(\mathfrak{so}_n)$
- The case $U'_q(\mathfrak{so}_6)$
- A 2-homogeneous bipartite distance-regular graph Γ
- The strongly balanced condition on Γ
- Using Γ to obtain an irreducible $U_q'(\mathfrak{so}_6)$ -module

Preliminaries

Throughout this talk, all vector spaces and tensor products that we encounter are understood to be over \mathbb{C} .

Fix an integer $n \ge 3$.

let $\operatorname{Mat}_n(\mathbb{C})$ denote the algebra of $n \times n$ matrices that have all entries in \mathbb{C} .

Preliminaries

For $1 \leq i, j \leq n$ define $E_{i,j} \in \operatorname{Mat}_n(\mathbb{C})$ that has (i,j)-entry 1 and all other entries 0.

The Lie algebra $\mathfrak{gl}_n = \mathfrak{gl}_n(\mathbb{C})$ consists of the vector space $\mathrm{Mat}_n(\mathbb{C})$ together with the Lie bracket [X,Y] = XY - YX.

The dimension of \mathfrak{gl}_n is n^2 .

Preliminaries, cont.

For $R \in \mathfrak{gl}_n$ consider the transpose R^t .

We say that R is **antisymmetric** whenever $R^t = -R$.

For $R, S \in \mathfrak{gl}_n$, if each of R, S is antisymmetric then so is [R, S].

The Lie algebra \mathfrak{so}_n

Definition

Let $\mathfrak{so}_n = \mathfrak{so}_n(\mathbb{C})$ denote the Lie subalgebra of \mathfrak{gl}_n consisting of the antisymmetric matrices. We call \mathfrak{so}_n a **special orthogonal** Lie algebra.

The dimension of \mathfrak{so}_n is $\binom{n}{2}$.

The Lie algebra \mathfrak{so}_3

Example

The Lie algebra \mathfrak{so}_3 consists of the matrices

$$\begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} \qquad a, b, c \in \mathbb{C}.$$

$$a,b,c\in\mathbb{C}$$

Comments on \mathfrak{so}_n

Recall the simple Lie algebras over $\mathbb C$ that have finite dimension at least 2:

$$A_{\ell} \ (\ell \geq 1), \quad B_{\ell} \ (\ell \geq 2), \quad C_{\ell} \ (\ell \geq 3), \quad D_{\ell} \ (\ell \geq 4),$$
 $E_{6}, \quad E_{7}, \quad E_{8}, \quad F_{4}, \quad G_{2}.$

Some Isomorphisms

Lemma (Fulton and Harris, Section 21.2)

We give some isomorphisms that involve \mathfrak{so}_n :

- (i) \mathfrak{so}_3 is isomorphic to A_1 ;
- (ii) \mathfrak{so}_4 is isomorphic to $A_1 \oplus A_1$;
- (iii) \mathfrak{so}_5 is isomorphic to B_2 ;
- (iv) \mathfrak{so}_6 is isomorphic to A_3 ;
- (v) For odd $n = 2r + 1 \ge 7$, \mathfrak{so}_n is isomorphic to B_r ;
- (vi) For even $n = 2r \ge 8$, \mathfrak{so}_n is isomorphic to D_r .

A basis for \mathfrak{so}_n

Our next goal is to describe a basis for \mathfrak{so}_n .

Definition

For distinct $i, j \in \{1, 2, ..., n\}$ define

$$I_{i,j} = E_{i,j} - E_{i,i}.$$

A basis for \mathfrak{so}_n , cont.

Lemma

The elements

$$I_{i,j} \qquad (1 \le i < j \le n)$$

form a basis for \mathfrak{so}_n . Moreover:

(i) For distinct $i, j \in \{1, 2, \dots n\}$,

$$I_{i,j}=-I_{j,i}.$$

(ii) For mutually distinct $h, i, j \in \{1, 2, ..., n\}$,

$$[I_{h,i},I_{i,j}]=-I_{j,h}.$$

(iii) For mutually distinct $h, i, j, k \in \{1, 2, ..., n\}$,

$$[I_{h,i}, I_{i,k}] = 0.$$

A basis for \mathfrak{so}_3

Example

The Lie algebra \mathfrak{so}_3 has a basis

$$I_{1,2} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad I_{2,3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix},$$

$$I_{1,3} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$

Relations for \mathfrak{so}_3

Example

For \mathfrak{so}_3 we have

$$[I_{1,2}, I_{2,3}] = -I_{3,1},$$

 $[I_{2,3}, I_{3,1}] = -I_{1,2},$
 $[I_{3,1}, I_{1,2}] = -I_{2,3}.$

Next, we give a presentation of \mathfrak{so}_n by generators and relations.

Generators and relations for \mathfrak{so}_n , cont.

Definition

Define a Lie algebra \mathbb{L}_n by generators

$$B_i$$
 $(1 \le i \le n-1)$

and the following relations.

(i) For
$$1 \le i, j \le n - 1$$
 with $|i - j| = 1$,

$$[B_i, [B_i, B_j]] = -B_j,$$
 $[B_j, [B_j, B_i]] = -B_i.$

(ii) For
$$1 \le i, j \le n-1$$
 with $|i-j| \ge 2$,

$$[B_i,B_j]=0.$$

Generators and relations for \mathfrak{so}_n , cont.

Lemma

There exists a Lie algebra isomorphism $\mathbb{L}_n \to \mathfrak{so}_n$ that sends

$$B_i \mapsto I_{i,i+1}$$

$$(1 \le i \le n-1)$$
.

Generators and relations for \mathfrak{so}_3

Example

The Lie algebra \mathfrak{so}_3 is defined by generators B_1, B_2 and relations

$$[B_1, [B_1, B_2]] = -B_2,$$

$$[B_2, [B_2, B_1]] = -B_1.$$

The nonstandard quantum group $U'_{a}(\mathfrak{so}_{n})$

Motivated by \mathfrak{so}_n , we now define $U'_q(\mathfrak{so}_n)$.

From now on, we fix a nonzero $q \in \mathbb{C}$ that is not a root of unity.

Recall the q-commutator

$$[X,Y]_q = qXY - q^{-1}YX.$$

Note that

$$[X, [X, Y]_q]_{q^{-1}} = X^2Y - (q^2 + q^{-2})XYX + YX^2.$$

The definition of $U'_a(\mathfrak{so}_n)$

Definition (Gavrilik and Klimyk 1991)

Define the algebra $U'_{a}(\mathfrak{so}_{n})$ by generators

$$B_i$$
 $(1 \le i \le n-1)$

and the following relations.

(i) For
$$1 \le i, j \le n-1$$
 with $|i-j|=1$,
$$B_i^2 B_j - (q^2 + q^{-2}) B_i B_j B_i + B_j B_i^2 = -B_j,$$

$$B_j^2 B_i - (q^2 + q^{-2}) B_j B_i B_j + B_i B_j^2 = -B_i.$$

(ii) For
$$1 \le i, j \le n - 1$$
 with $|i - j| \ge 2$,

$$[B_i, B_i] = 0.$$

Generators and relations for $U'_a(\mathfrak{so}_3)$

Example

The algebra $U_q'(\mathfrak{so}_3)$ is defined by generators B_1, B_2 and relations

$$\begin{split} B_1^2 B_2 - (q^2 + q^{-2}) B_1 B_2 B_1 + B_2 B_1^2 &= -B_2, \\ B_2^2 B_1 - (q^2 + q^{-2}) B_2 B_1 B_2 + B_1 B_2^2 &= -B_1. \end{split}$$

The above relations are a special case of the **Askey-Wilson** relations.

A PBW basis for $U'_q(\mathfrak{so}_n)$

Our next goal is to describe a PBW basis for $U'_a(\mathfrak{so}_n)$.

The definition of a PBW basis

Definition

Let $\mathcal A$ denote an algebra. A **Poincaré-Birkoff-Witt basis** (or **PBW basis**) for $\mathcal A$ is a subset Ω of $\mathcal A$ together with a linear order \leq on Ω such that the following is a linear basis for the vector space $\mathcal A$:

$$a_1 a_2 \cdots a_r$$
 $r \in \mathbb{N}$, $a_1, a_2, \ldots, a_r \in \Omega$,
 $a_1 \leq a_2 \leq \cdots \leq a_r$.

A PBW basis for $U'_{a}(\mathfrak{so}_{n})$

Definition

For distinct $i, j \in \{1, 2, ..., n\}$ we define $I_{i,j} \in U'_{\sigma}(\mathfrak{so}_n)$ as follows.

(i) For
$$i = i + 1$$
,

$$I_{i,i+1}=B_i.$$

(ii) For
$$j \ge i + 2$$
,

$$I_{i,j}=[B_i,I_{i+1,j}]_q.$$

(iii) For
$$j < i$$
,

$$I_{i,j} = -I_{j,i}$$
.

A PBW basis for $U'_a(\mathfrak{so}_n)$

Lemma (Gavrilik and Klimyk 1991)

A PBW basis for $U'_{a}(\mathfrak{so}_{n})$ is obtained by the elements

$$I_{i,j} \qquad (1 \le i < j \le n)$$

in the following order:

$$I_{1,2} < I_{1,3} < \dots < I_{1,n} < I_{2,3} < I_{2,4} < \dots < I_{2,n} < \dots < I_{n-1,n}.$$

Relations for $U'_a(\mathfrak{so}_n)$

Our next goal is to describe some relations for the elements $I_{i,j}$ of $U'_a(\mathfrak{so}_n)$.

To facilitate this description, we give a definition.

Clockwise and counter-clockwise paths

Definition

Consider a regular n-gon P_n with vertices labeled clockwise $1, 2, \ldots, n$. We orient the edges $1 \rightarrow 2 \rightarrow 3 \rightarrow \cdots \rightarrow n \rightarrow 1$. Consider a sequence of at least 3 mutually distinct vertices of P_n , written v_1, v_2, \ldots, v_t (3 $\leq t \leq n$). Let p denote the directed path of length n-1 that starts at v_1 and runs clockwise around P_n . The sequence v_1, v_2, \dots, v_t is said to **run clockwise** whenever the path p encounters v_1, v_2, \ldots, v_t in that order. The sequence v_1, v_2, \dots, v_t is said to run **counter-clockwise** whenever the inverted sequence v_t, \ldots, v_2, v_1 is runs clockwise. For distinct vertices i, j in P_n , by the **diagonal** \overline{ij} we mean the line segment with endpoints i, j.

Relations in $U'_a(\mathfrak{so}_n)$

Lemma (Gavrilik and Klimyk 1991)

The following relations are satisfied by the elements $I_{i,j} \in U'_q(\mathfrak{so}_n)$.

- (i) For distinct $i, j \in \{1, 2, ..., n\}$, $I_{i,j} = -I_{j,i}$.
- (ii) For mutually distinct $h, i, j \in \{1, 2, \dots n\}$,

$$[I_{h,i}, I_{i,j}]_q = -I_{j,h}$$
 if the sequence h, i, j runs clockwise; $[I_{h,i}, I_{i,j}]_{q-1} = -I_{j,h}$ if the sequence h, i, j runs c-clockwise.

(iii) For mutually distinct $h, i, j, k \in \{1, 2, ..., n\}$,

$$[I_{h,i}, I_{j,k}] = 0$$
 if the diagonals \overline{hi} and \overline{jk} do not overlap;
 $[I_{h,i}, I_{j,k}] = (q^{-2} - q^2)(I_{h,j}I_{i,k} + I_{j,i}I_{k,h})$ if h, j, i, k runs cl ;
 $[I_{h,i}, I_{j,k}] = (q^2 - q^{-2})(I_{h,j}I_{i,k} + I_{j,i}I_{k,h})$ if h, j, i, k runs c - cl .

Cyclic symmetry for $U'_q(\mathfrak{so}_n)$

In the previous lemma we see \mathbb{Z}_n -cyclic symmetry in the relations.

We now make this symmetry more explicit.

The generator B_n for $U'_q(\mathfrak{so}_n)$

Definition

For notational convenience, define $B_n\in U_q'(\mathfrak{so}_n)$ by

$$B_n = I_{n,1}$$
.

Cyclic symmetry for $U'_q(\mathfrak{so}_n)$

Lemma

There exists an automorphism ρ of $U_q'(\mathfrak{so}_n)$ that sends $B_i \mapsto B_{i+1}$ for $1 \le i \le n-1$ and $B_n \mapsto B_1$. For distinct $i,j \in \{1,2,\ldots,n\}$ this automorphism sends $I_{i,j} \mapsto I_{i+1,j+1}$ where we understand $I_{i,n+1} = I_{i,1}$ and $I_{n+1,j} = I_{1,j}$.

The example $U'_a(\mathfrak{so}_3)$

To illustrate, we highlight the cyclic symmetry for $U'_a(\mathfrak{so}_3)$.

Example (Odesskii 1986, Fairlie 1990)

The algebra $U'_q(\mathfrak{so}_3)$ is defined by generators B_1, B_2, B_3 and relations

$$[B_1, B_2]_q = -B_3,$$

$$[B_2, B_3]_q = -B_1,$$

$$[B_3, B_1]_q = -B_2.$$

The representation theory of $U'_q(\mathfrak{so}_n)$

The representation theory of $U'_q(\mathfrak{so}_n)$ was carefully studied by Gavrilik, lorgov, Klimyk during 1990–2005.

We now summarize their results.

On each finite-dimensional $U'_q(\mathfrak{so}_n)$ -module the generators $\{B_i|1\leq i\leq n-1,\ i\ \mathrm{odd}\}$ are simultaneously diagonalizable.

Each finite-dimensional $U_q'(\mathfrak{so}_n)$ -module is a direct sum of irreducible $U_q'(\mathfrak{so}_n)$ -submodules.

The representation theory of $U'_{\sigma}(\mathfrak{so}_n)$, cont.

The finite-dimensional irreducible $U'_q(\mathfrak{so}_n)$ -modules are classified up to isomorphism.

According to the classification, there are two types of finite-dimensional irreducible $U_q'(\mathfrak{so}_n)$ -modules, called **classical type** and **nonclassical type**.

The type is determined by the form of the eigenvalues for the generators $\{B_i|1 \le i \le n-1,\ i \text{ odd}\}$ acting on the module.

The finite-dimensional irreducible $U'_q(\mathfrak{so}_6)$ -modules

We now consider n = 6.

The isomorphism classes of finite-dimensional irreducible $U_q'(\mathfrak{so}_6)$ -modules of classical type are in bijection with the 3-tuples (n_1, n_2, n_3) such that:

- (i) $2n_i \in \mathbb{Z}$ for $i \in \{1, 2, 3\}$;
- (ii) $n_i n_j \in \mathbb{Z}$ for $i, j \in \{1, 2, 3\}$;
- (iii) $n_1 \geq n_2 \geq |n_3|$.

The finite-dimensional irreducible $U'_q(\mathfrak{so}_6)$ -modules, cont.

Given a 3-tuple (n_1, n_2, n_3) that satisfies (i)–(iii) above, the corresponding finite-dimensional irreducible $U'_q(\mathfrak{so}_6)$ -module of classical type was constructed by Klimyk by giving a Gelfand-Tsetlin basis for the module and the action of the generators $\{B_i\}_{i=1}^5$ on the basis.

For a finite-dimensional irreducible $U_q'(\mathfrak{so}_6)$ -module of classical type, the corresponding 3-tuple (n_1, n_2, n_3) is called the **highest** weight of the module.

Constructing an irreducible $U'_a(\mathfrak{so}_6)$ -module

Our next goal is to use a 2-homogeneous bipartite distance-regular graph of diameter D to obtain an irreducible $U_a'(\mathfrak{so}_6)$ -module.

The resulting module has classical type and highest weight (D/2, D/2, D/2).

2-homogeneous bipartite distance-regular graphs

From now on, Γ denotes a distance-regular graph with vertex set X and diameter $D \geq 3$.

Definition (Nomura, Curtin)

Assume that Γ is bipartite. Then Γ is said to be 2-homogeneous whenever both:

- (i) Γ is an antipodal 2-cover;
- (ii) Γ is Q-polynomial.

A characterization of 2-homogeneous bipartite

A *Q*-polynomial structure $\{E_i\}_{i=0}^D$ is called **dual bipartite** whenever $a_i^* = 0$ for $0 \le i \le D$.

Lemma (Curtin 1998)

Assume that Γ is bipartite. Then the following are equivalent:

- (i) Γ is 2-homogeneous;
- (ii) Γ has at least one Q-polynomial ordering of the primitive idempotents that is dual bipartite.

Assume that (i), (ii) hold. Then every Q-polynomial ordering of the primitive idempotents is dual bipartite.

Our assumption

From now on, we assume that Γ is 2-homogeneous bipartite, but not a hypercube nor a cycle.

We fix a Q-polynomial ordering $\{E_i\}_{i=0}^D$ of the primitive idempotents of Γ .

The corresponding eigenvalue (resp. dual eigenvalue) sequence is denoted $\{\theta_i\}_{i=0}^D$ (resp. $\{\theta_i^*\}_{i=0}^D$).

Some formulas

Lemma (Curtin 1998)

There exists a nonzero $q \in \mathbb{C}$ that is not a root of unity such that:

$$\theta_i = \theta_i^* = H\sqrt{-1}(q^{D-2i} - q^{2i-D})$$
 $(0 \le i \le D),$

$$c_i = c_i^* = H\sqrt{-1} \frac{q^{2i} - q^{-2i}}{q^{D-2i} + q^{2i-D}},$$
 $(0 \le i \le D),$

$$b_i = b_i^* = H\sqrt{-1} \frac{q^{2D-2i} - q^{2i-2D}}{q^{D-2i} + q^{2i-D}}$$
 $(0 \le i \le D)$

where

$$H = \sqrt{-1} \frac{q^{D-2} + q^{2-D}}{q^{-2} - q^2}.$$

Some notation

Let ∂ denote the path-length distance function for Γ .

For $x \in X$ and $0 \le i \le D$ define

$$\Gamma_i(x) = \{ y \in X | \partial(x, y) = i \}.$$

We abbreviate $\Gamma(x) = \Gamma_1(x)$.

The strongly balanced condition

Abbreviate $E = E_1$. The following dependency is called the **strongly balanced** condition.

Lemma (Ter 1987)

For $x, y \in X$ and $0 \le i, j \le D$,

$$\sum_{\xi\in\Gamma_i(x)\cap\Gamma_j(y)}E\xi\in\operatorname{Span}\{Ex,Ey\}.$$

We will use the strongly balanced condition to obtain our main results.

The standard module V

Let V denote the vector space with basis X.

We call V the **standard module**.

Definition

Define the vector space $V^{\otimes 3} = V \otimes V \otimes V$ and the set

$$X^{\otimes 3} = \{x \otimes y \otimes z | x, y, z \in X\}.$$

Note that $X^{\otimes 3}$ is a basis for $V^{\otimes 3}$.

Some maps on $V^{\otimes 3}$

Definition

We define $A^{(1)}, A^{(2)}, A^{(3)} \in \operatorname{End}(V^{\otimes 3})$ as follows. For $x \otimes y \otimes z \in X^{\otimes 3}$,

$$A^{(1)}(x \otimes y \otimes z) = \sum_{\xi \in \Gamma(x)} \xi \otimes y \otimes z,$$

$$A^{(2)}(x \otimes y \otimes z) = \sum_{\xi \in \Gamma(y)} x \otimes \xi \otimes z,$$

$$A^{(3)}(x \otimes y \otimes z) = \sum_{\xi \in \Gamma(z)} x \otimes y \otimes \xi.$$

Some maps on $V^{\otimes 3}$

Definition

We define $A^{*(1)}, A^{*(2)}, A^{*(3)} \in \operatorname{End}(V^{\otimes 3})$ as follows. For $x \otimes y \otimes z \in X^{\otimes 3}$,

$$A^{*(1)}(x \otimes y \otimes z) = \theta^*_{\partial(y,z)} x \otimes y \otimes z,$$

$$A^{*(2)}(x \otimes y \otimes z) = \theta_{\partial(z,x)}^* x \otimes y \otimes z,$$

$$A^{*(3)}(x \otimes y \otimes z) = \theta^*_{\partial(x,y)} x \otimes y \otimes z.$$

The vectors $P_{h,i,j}$

Definition

For $0 \le h, i, j \le D$ define a vector

$$P_{h,i,j} = \sum x \otimes y \otimes z,$$

where the sum is over the 3-tuples of vertices x, y, z such that

$$h = \partial(y, z),$$
 $i = \partial(z, x),$ $j = \partial(x, y).$

The vector space Λ

Definition

Let Λ denote the subspace of $V^{\otimes 3}$ spanned by

$$P_{h,i,j} \qquad (0 \le h, i, j \le D).$$

The dimension of Λ is $\binom{D+3}{3}$.

The vector space Λ , cont.

Lemma

The subspace Λ is invariant under $A^{(i)}$ and $A^{*(i)}$ for $i \in \{1, 2, 3\}$.

Some relations

Theorem (Ter 2025)

The following relations hold on Λ :

 $(i) \ \textit{For distinct } i,j \in \{1,2,3\} \textit{,}$

$$[A^{(i)}, A^{(j)}] = 0,$$
 $[A^{*(i)}, A^{*(j)}] = 0.$

(ii) For $i \in \{1, 2, 3\}$,

$$[A^{(i)}, A^{*(i)}] = 0.$$

(iii) For distinct $i, j \in \{1, 2, 3\}$,

$$\begin{split} A^{(i)2}A^{*(j)} - (q^2 + q^{-2})A^{(i)}A^{*(j)}A^{(i)} + A^{*(j)}A^{(i)2} \\ &= -H^2(q^2 - q^{-2})^2A^{*(j)}, \\ A^{*(j)2}A^{(i)} - (q^2 + q^{-2})A^{*(j)}A^{(i)}A^{*(j)} + A^{(i)}A^{*(j)2} \\ &= -H^2(q^2 - q^{-2})^2A^{(i)}. \end{split}$$

Theorem

(Continued...)

(iv) For mutually distinct $h, i, j \in \{1, 2, 3\}$,

$$[A^{(h)}, [A^{*(i)}, A^{(j)}]_q]_q = [A^{*(h)}, [A^{(i)}, A^{*(j)}]_q]_q.$$

The main result

Theorem (Ter 2025)

The vector space Λ becomes a $U_a'(\mathfrak{so}_6)$ -module on which

$$\begin{split} B_1 &= \frac{A^{(1)}}{H(q^2-q^{-2})}, \quad B_3 = \frac{A^{(2)}}{H(q^2-q^{-2})}, \quad B_5 = \frac{A^{(3)}}{H(q^2-q^{-2})}, \\ B_2 &= \frac{A^{*(3)}}{H(q^{-2}-q^2)}, \quad B_4 = \frac{A^{*(1)}}{H(q^{-2}-q^2)}, \quad B_6 = \frac{A^{*(2)}}{H(q^{-2}-q^2)}. \end{split}$$

This module is irreducible, with classical type and highest weight (D/2, D/2, D/2).

Conclusion

In this talk, we discussed the nonstandard quantum group $U'_{\sigma}(\mathfrak{so}_n)$.

We then considered a 2-homogeneous bipartite distance-regular graph Γ .

In our main result, we used Γ to construct a finite-dimensional irreducible module for $U_q'(\mathfrak{so}_6)$.

THANK YOU FOR YOUR ATTENTION!