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Summary

E. Bannai, H. Kurihara, and H. Nozaki, On the existence and
non-existence of spherical m-stiff configurations, arXiv:2504.17184.

m Spherical m-stiff configurations are spherical (2m — 1)-designs
that lie on m parallel hyperplanes.
m Non-existence results:
For each fixed integer m > 5, there exists no m-stiff
configuration in S9! for sufficiently large d.
For each fixed integer d > 10, there exists no m-stiff
configuration in S9! for sufficiently large m.
m Existence results:

We provide a complete classification of the dimensions where
m-stiff configurations exist for m =2,3,4,5
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Spherical t-design

Definition 1 (Delsarte-Goethals—Seidel (1977))
A finite subset X C S9! is a spherical t-design if

e 1\/ i |X\Zf

zeX
for each polynomial f(z1,...,x4) of degree at most ¢.

Absolute bound [Delsarte—Goethals—Seidel (1977)]

m If X € S9! is a spherical 2s-design then
d+s—1 d+s—2
X7 = () + (0.
m If X € S9!is a spherical (25 + 1)-design then
X | > 2(4 ). X is tight if equality holds.
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Spherical designs with only few distances

For a finite subset X of S41,

D(X) = {{z,y) | v,y € X,z # y}.

X is an s-distance set, if |D(X)| = s.

Suppose X is a spherical s-distance t-design.
m ¢ < 2s (equality < tight 2s-design)
m If t > s — 1 holds, then X is distance invariant [DGS (1977)]
(Hy € X | (z,y) = a}| is independent of = € X).
m If £ > 25 — 2 holds, then X has the sturucture of a
Q-polynomial association scheme [DGS (1977)].

m If t > 25— 1 holds, then X is a universally optimal code
[Cohn—Kumar (2007)].
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Classification of tight spherical designs

Theorem 2 (Bannai—-Damerell (1979, 1980))
If a tight t-design on S~ for d > 3 exists, thent < 5 ort = 7,11.

mt=23,11: classified
mt=4,57 open

dim. | size t D(X) name
n n+1l | 2 —1/n simplex
n 2n 3 —-1,0 cross polytope
8 240 | 7| -1,£5,0 | Egroot
7 5 | 5 —1,+3 kissing
6 27 4 —1/2,1/4 | kissing
24 | 196560 | 11 | —1,£3,+1 0 | Leech lattice
23 | 4600 | 7 —1,+1,0 kissing
23 552 5 -1+ % equiangular lines
22 275 4 —1/4,1/6 kissing
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Spherical m-stiff configurations

For a given point z € 91,
D(z,X)={(z,2): v € X}.

Dp(X)={ze€ 8% |D(z,X)| <m}

Definition 3 (m-stiff configurations [Borodachov (2024)])

X c 891 is an m-stiff if
X is a spherical (2m — 1)-design.
D,,,(X) is non-empty.
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An m-stiff minimizes f-potential energy

Let f:[0,4] — (—o0, 0] be a function that is continuous on (0, 4]
with f(0) = lim;_,o+ f(t), differentiable on (0,4), and whose
(2m — 2)-th derivative f(*™~2) is convex on (0, 4).

For a given m-stiff configuration X, the f-potential

> fllz—=f)

zeX

attains its global minimum over S9! at every point z of D,,(X)
[Borodachov (2024)].
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Known examples of m-stiff configurations

m d = 2: the regular 2m-gon is the m-stiff.
m 1-stiff (t = 1): spherical 1-designs in S9! on a hyper plane

m 2-stiff (¢ = 3): regular cross polytopes and cubes in
S9=1(d > 2), demicubes in S9! (d > 5), other examples
(embedding of orthogonal array of strength 3 with 2 levels)

Name |.X| d m t
24-cell 24 4 3 5
Symmetrized Schlafli 54 6 3 5
FE lattice 72 6 3 5
*Kissing (from Ejg) 56 7 3 5
FEr lattice 126 7T 3 5
*Kissing (from Leech) 4600 23 4 7

*. tight spherical design
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Existence theorem of m-stiff configurations

pie) (x): Jacobi polynomial (Gegenbauer poly.), o = (d —3)/2.

Theorem 4 (Borodachov (2024))

Supposem >1,d > 2. Let z1,...,x, be the zeros ofPT(na’o‘)(x).
Let ox(z) = [ ;21 (z — 2:)/(z1 — 2i), which satisfies py(x¢) = e

Let

— 1 ! —£L‘2 oy
() = | @ -at)d

There exists an m-stiff configuration of S4=' if and only if ao(y)
is a positive rational number for each k € {1,...,m}.
m This theorem depends on the existence theorem of spherical
designs, like Seymour and Zaslavsky (1984).
m ag(ip),) coinsides with the Christoffel number Ay of P (z).
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Layer structure in m-stiff Configurations

x; is a zero of Py, (x) and \; is its Christoffel number.

Suppose X = X U---U X, is an m-stiff (X; is on a hyperplane).
m | X;| = N\|X]|. In particular, | X;| is independent of
z € D (X).
m For any z € X; and z € D,,(X), one has (z,z) = ;.

Example: Let X = (£1/v/2,41/v/2,0,0)" be the 24-cell in S3.

1 1
Tl = ——=, z2 =0, T3 = —=
1 \/§ 2 3 \/§
6 12 6
Al_ﬂa )\2_ﬂ7 )\3_ﬁ
|X1| = 67 |X2| = 12? ’X3’ =06

2 =(1,0,0,0) € D3(X)
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Non-exsitence theorem (Main results)

If all Christoffel numbers \; are rational numbers, then the squared

ZEeros 1622 are rational.

Theorem 6 (Bannai—Kurihara—Nozaki (2025+))

For each fixed integer m > 5, there exists no m-stiff
configuration in S for d > C,, with some C,,.

For each fixed integer d > 10, there exists no m-stiff
configuration in S*1 for m > Cy with some Cj.

Both results are established by analyzing the zeros of Gegenbauer
; (0r,)
polynomials P, " ().
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Key polynomials [Bannai-Damerell (1980)]

Define S,,,(x) as the monic polynomial whose zeros are the
reciprocals of the non-zero zeros of P{* 1D (1),
(We give a sketch of proof only for d = 2k and m = 2n.)

For X = a2,
Sm(X) = X"+ Z(—l)ruan_r,
r=1

where

" - <n>h(h+2)(h+4)---(h+27"—2)
" 1-3-5---(2r—1)

, h=d+2n
r

Lemma 7

Suppose m = 2n with n > 1. If a zero of Sy, (X) is rational, then
the zero is an integer. — w, should be integer.
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Key idea

For d = 2k with k > 2, it holds that

Lk/2]

u, = 92n+L(E=1)/2] H 2n+2i — 1
1

n+|(k—1)/2] +i

for each n € N.
Key idea for the non-integrality of u,, (given d = 2k, m = 2n — oo):
For k=5 and n odd, we have n+ | (k—1)/2] +1 =n+ 3 is odd.

Lk/2]
[T @n+2i-1)=@2n+1)(2n+2)
=1

= (—5)(—4)(depends only k) (mod n + 3)

For large odd n, this is not 0.
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The complete list of the dimensions for m <5

Let d be an integer greater than 2.
There exist m-stiff configurations in S9! for any d when
m=1,23.
There exist 4-stiff configurations in S?~1 if and only if
(5+2v6)" + (5 —2V6)" —
4

for £ € N with £ > 1. d = 23,241,2399,23761 ...
There exist 5-stiff configurations in S?~1 if and only if

3((19 + 6v10) + (19 6v/10)4) — 10
(7 +2v/10)(19 + ﬁf)b + (7 - 2\/@(19 — 61/10)%2 —
4
(7 — 2¢/10)(19 + 6/10)% + (7 4+ 2/10)(19 — 64/10)% — 10

4
for /, € Nand l5,03 € NU{0}. d =4,26,124,241,1079... 115

d:

ds =

)




Concluding

Results:
For each fixed integer m > 5, there exists no m-stiff
configuration in S~ for sufficiently large d.
For each fixed integer d > 10, there exists no m-stiff
configuration in S~ for sufficiently large m.
We obtained the complete lists of the dimensions where
m-stiff configurations exist for m < 5.

Conjecture: there is no m-stiff configuration in S~ for (d, m)
with d > 3 and m > 6. (Newton polygon methods?)

Problem:
Find explicit examples of m-stiff configurations for m = 4, 5.
Investigate under what conditions tight spherical
(2m — 1)-designs become m-stiff.
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