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Summary

E. Bannai, H. Kurihara, and H. Nozaki, On the existence and
non-existence of spherical m-stiff configurations, arXiv:2504.17184.

Spherical m-stiff configurations are spherical (2m− 1)-designs
that lie on m parallel hyperplanes.
Non-existence results:

1 For each fixed integer m > 5, there exists no m-stiff
configuration in Sd−1 for sufficiently large d.

2 For each fixed integer d > 10, there exists no m-stiff
configuration in Sd−1 for sufficiently large m.

Existence results:
1 We provide a complete classification of the dimensions where

m-stiff configurations exist for m = 2, 3, 4, 5
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Spherical t-design

Definition 1 (Delsarte–Goethals–Seidel (1977))
A finite subset X ⊂ Sd−1 is a spherical t-design if

1

|Sd−1|

∫
Sd−1

f(x)dµ(x) =
1

|X|
∑
x∈X

f(x)

for each polynomial f(x1, . . . , xd) of degree at most t.

Absolute bound [Delsarte–Goethals–Seidel (1977)]
If X ⊂ Sd−1 is a spherical 2s-design then
|X| ≥

(
d+s−1

s

)
+

(
d+s−2
s−1

)
.

If X ⊂ Sd−1 is a spherical (2s+ 1)-design then
|X| ≥ 2

(
d+s−1

s

)
. X is tight if equality holds.
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Spherical designs with only few distances

For a finite subset X of Sd−1,

D(X) = {⟨x, y⟩ | x, y ∈ X,x ̸= y}.

X is an s-distance set, if |D(X)| = s.

Suppose X is a spherical s-distance t-design.
t ≤ 2s (equality ⇔ tight 2s-design)
If t ≥ s− 1 holds, then X is distance invariant [DGS (1977)]
(|{y ∈ X | ⟨x, y⟩ = a}| is independent of x ∈ X).
If t ≥ 2s− 2 holds, then X has the sturucture of a
Q-polynomial association scheme [DGS (1977)].
If t ≥ 2s− 1 holds, then X is a universally optimal code
[Cohn–Kumar (2007)].
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Classification of tight spherical designs

Theorem 2 (Bannai–Damerell (1979, 1980))
If a tight t-design on Sd−1 for d ≥ 3 exists, then t ≤ 5 or t = 7, 11.

t = 2, 3, 11: classified
t = 4, 5, 7: open
dim. size t D(X) name
n n+ 1 2 −1/n simplex
n 2n 3 −1, 0 cross polytope
8 240 7 −1,±1

2 , 0 E8 root
7 56 5 −1,±1

3 kissing
6 27 4 −1/2, 1/4 kissing
24 196560 11 −1,±1

2 ,±
1
4 , 0 Leech lattice

23 4600 7 −1,±1
3 , 0 kissing

23 552 5 −1± 1
5 equiangular lines

22 275 4 −1/4, 1/6 kissing
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Spherical m-stiff configurations

For a given point z ∈ Sd−1,

D(z,X) = {⟨x, z⟩ : x ∈ X}.

Dm(X) = {z ∈ Sd−1 : |D(z,X)| ≤ m}

Definition 3 (m-stiff configurations [Borodachov (2024)])
X ⊂ Sd−1 is an m-stiff if

1 X is a spherical (2m− 1)-design.
2 Dm(X) is non-empty.
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An m-stiff minimizes f -potential energy

Let f : [0, 4] → (−∞,∞] be a function that is continuous on (0, 4]
with f(0) = limt→0+ f(t), differentiable on (0, 4), and whose
(2m− 2)-th derivative f (2m−2) is convex on (0, 4).

For a given m-stiff configuration X, the f -potential∑
x∈X

f(|z − x|2)

attains its global minimum over Sd−1 at every point z of Dm(X)
[Borodachov (2024)].
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Known examples of m-stiff configurations

d = 2: the regular 2m-gon is the m-stiff.
1-stiff (t = 1): spherical 1-designs in Sd−1 on a hyper plane
2-stiff (t = 3): regular cross polytopes and cubes in
Sd−1(d ≥ 2), demicubes in Sd−1 (d ≥ 5), other examples
(embedding of orthogonal array of strength 3 with 2 levels)

Name |X| d m t

24-cell 24 4 3 5
Symmetrized Schläfli 54 6 3 5
E6 lattice 72 6 3 5
*Kissing (from E8) 56 7 3 5
E7 lattice 126 7 3 5
*Kissing (from Leech) 4600 23 4 7

*: tight spherical design
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Existence theorem of m-stiff configurations

P
(α,α)
m (x): Jacobi polynomial (Gegenbauer poly.), α = (d− 3)/2.

Theorem 4 (Borodachov (2024))
Suppose m ≥ 1, d ≥ 2. Let x1, . . . , xm be the zeros of P (α,α)

m (x).
Let φk(x) =

∏
i ̸=k(x− xi)/(xk − xi), which satisfies φk(xℓ) = δkℓ.

Let
a0(φk) =

1∫ 1
−1(1− x2)αdx

∫ 1

−1
φk(x)(1− x2)αdx.

There exists an m-stiff configuration of Sd−1 if and only if a0(φk)
is a positive rational number for each k ∈ {1, . . . ,m}.

This theorem depends on the existence theorem of spherical
designs, like Seymour and Zaslavsky (1984).
a0(φk) coinsides with the Christoffel number λk of P (α,α)

m (x).
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Layer structure in m-stiff Configurations

xi is a zero of Pm(x) and λi is its Christoffel number.

Suppose X = X1 ⊔ · · · ⊔Xm is an m-stiff (Xi is on a hyperplane).
|Xi| = λi|X|. In particular, |Xi| is independent of
z ∈ Dm(X).
For any x ∈ Xi and z ∈ Dm(X), one has ⟨z, x⟩ = xi.

Example: Let X = (±1/
√
2,±1/

√
2, 0, 0)P be the 24-cell in S3.

x1 = − 1√
2
, x2 = 0, x3 =

1√
2

λ1 =
6

24
, λ2 =

12

24
, λ3 =

6

24

|X1| = 6, |X2| = 12, |X3| = 6

z = (1, 0, 0, 0) ∈ D3(X)
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Non-exsitence theorem (Main results)

Lemma 5
If all Christoffel numbers λi are rational numbers, then the squared
zeros x2i are rational.

Theorem 6 (Bannai–Kurihara–Nozaki (2025+))

1 For each fixed integer m > 5, there exists no m-stiff
configuration in Sd−1 for d > Cm with some Cm.

2 For each fixed integer d > 10, there exists no m-stiff
configuration in Sd−1 for m > Cd with some Cd.

Both results are established by analyzing the zeros of Gegenbauer
polynomials P (α,α)

n (x).
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Key polynomials [Bannai–Damerell (1980)]

Define Sm(x) as the monic polynomial whose zeros are the
reciprocals of the non-zero zeros of P (α+1,α+1)

m (x).
(We give a sketch of proof only for d = 2k and m = 2n.)
For X = x2,

Sm(X) = Xn +

n∑
r=1

(−1)rurX
n−r,

where

ur =

(
n

r

)
h(h+ 2)(h+ 4) · · · (h+ 2r − 2)

1 · 3 · 5 · · · (2r − 1)
, h = d+ 2n

Lemma 7
Suppose m = 2n with n ≥ 1. If a zero of Sm(X) is rational, then
the zero is an integer. → ur should be integer.
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Key idea

Lemma 8
For d = 2k with k ≥ 2, it holds that

un = 22n+⌊(k−1)/2⌋
⌊k/2⌋∏
i=1

2n+ 2i− 1

n+ ⌊(k − 1)/2⌋+ i

for each n ∈ N.
Key idea for the non-integrality of un (given d = 2k, m = 2n → ∞):
For k = 5 and n odd, we have n+ ⌊(k − 1)/2⌋+ 1 = n+ 3 is odd.

⌊k/2⌋∏
i=1

(2n+ 2i− 1) = (2n+ 1)(2n+ 2)

≡ (−5)(−4)(depends only k) (mod n+ 3)

For large odd n, this is not 0.
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The complete list of the dimensions for m ≤ 5

Let d be an integer greater than 2.
1 There exist m-stiff configurations in Sd−1 for any d when

m = 1, 2, 3.
2 There exist 4-stiff configurations in Sd−1 if and only if

d =
(5 + 2

√
6)ℓ + (5− 2

√
6)ℓ − 6

4

for ℓ ∈ N with ℓ > 1. d = 23, 241, 2399, 23761 . . .
3 There exist 5-stiff configurations in Sd−1 if and only if

d5 =
3((19 + 6

√
10)ℓ1 + (19− 6

√
10)ℓ1)− 10

4
,

(7 + 2
√
10)(19 + 6

√
10)ℓ2 + (7− 2

√
10)(19− 6

√
10)ℓ2 − 10

4
,

(7− 2
√
10)(19 + 6

√
10)ℓ3 + (7 + 2

√
10)(19− 6

√
10)ℓ3 − 10

4

for ℓ1 ∈ N and ℓ2, ℓ3 ∈ N ∪ {0}. d = 4, 26, 124, 241, 1079 . . . 14 / 15



Concluding

Results:
1 For each fixed integer m > 5, there exists no m-stiff

configuration in Sd−1 for sufficiently large d.
2 For each fixed integer d > 10, there exists no m-stiff

configuration in Sd−1 for sufficiently large m.
3 We obtained the complete lists of the dimensions where

m-stiff configurations exist for m ≤ 5.

Conjecture: there is no m-stiff configuration in Sd−1 for (d,m)
with d ≥ 3 and m ≥ 6. (Newton polygon methods?)

Problem:
1 Find explicit examples of m-stiff configurations for m = 4, 5.
2 Investigate under what conditions tight spherical

(2m− 1)-designs become m-stiff.
Thank you for your attention. 15 / 15
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