Spherical m-stiff configurations and related combinatorial structures

Hiroshi Nozaki Joint work with Eiichi Bannai and Hirotake Kurihara

Aichi University of Education

TerwilligerFest – Combinatorics around the q-Onsager Algebra at Ramada Resort

June 25, 2025

Summary

E. Bannai, H. Kurihara, and H. Nozaki, On the existence and non-existence of spherical *m*-stiff configurations, arXiv:2504.17184.

- Spherical m-stiff configurations are spherical (2m-1)-designs that lie on m parallel hyperplanes.
- Non-existence results:
 - **1** For each fixed integer m > 5, there exists no m-stiff configuration in S^{d-1} for sufficiently large d.
 - 2 For each fixed integer d > 10, there exists no m-stiff configuration in S^{d-1} for sufficiently large m.
- Existence results:
 - 1 We provide a complete classification of the dimensions where m-stiff configurations exist for m=2,3,4,5

Spherical *t*-design

Definition 1 (Delsarte–Goethals–Seidel (1977))

A finite subset $X \subset S^{d-1}$ is a spherical t-design if

$$\frac{1}{|S^{d-1}|} \int_{S^{d-1}} f(x) d\mu(x) = \frac{1}{|X|} \sum_{x \in X} f(x)$$

for each polynomial $f(x_1, \ldots, x_d)$ of degree at most t.

Absolute bound [Delsarte-Goethals-Seidel (1977)]

- If $X \subset S^{d-1}$ is a spherical 2s-design then $|X| \geq {d+s-1 \choose s} + {d+s-2 \choose s-1}.$
- $\begin{array}{c} \bullet \ \ \text{If} \ X \subset S^{d-1} \ \text{is a spherical} \ (2s+1) \text{-design then} \\ |X| \geq 2 {d+s-1 \choose s}. \qquad \qquad X \ \text{is tight if equality holds}. \end{array}$

Spherical designs with only few distances

For a finite subset X of S^{d-1} ,

$$D(X) = \{ \langle x, y \rangle \mid x, y \in X, x \neq y \}.$$

X is an s-distance set, if |D(X)| = s.

Suppose X is a spherical s-distance t-design.

- $t \le 2s$ (equality \Leftrightarrow tight 2s-design)
- If $t \ge s-1$ holds, then X is distance invariant [DGS (1977)] $(|\{y \in X \mid \langle x, y \rangle = a\}|$ is independent of $x \in X$).
- If $t \ge 2s 2$ holds, then X has the sturucture of a Q-polynomial association scheme [DGS (1977)].
- If $t \ge 2s 1$ holds, then X is a universally optimal code [Cohn–Kumar (2007)].

Classification of tight spherical designs

Theorem 2 (Bannai-Damerell (1979, 1980))

If a tight t-design on \mathbb{S}^{d-1} for $d \geq 3$ exists, then $t \leq 5$ or t = 7, 11.

- t = 2, 3, 11: classified
- t = 4, 5, 7: open

dim.	size	t	D(X)	name
\overline{n}	n+1	2	-1/n	simplex
n	2n	3	-1, 0	cross polytope
8	240	7	$-1,\pm\frac{1}{2},0$	E_8 root
7	56	5	$-1,\pm\frac{1}{3}$	kissing
6	27	4	-1/2, 1/4	kissing
24	196560	11	$-1,\pm\frac{1}{2},\pm\frac{1}{4},0$	Leech lattice
23	4600	7	$-1, \pm \frac{1}{3}, 0$	kissing
23	552	5	$-1\pm\frac{1}{5}$	equiangular lines
22	275	4	-1/4, 1/6	kissing

Spherical m-stiff configurations

For a given point $z \in S^{d-1}$,

$$D(z,X) = \{ \langle x, z \rangle \colon x \in X \}.$$

$$D_m(X) = \{ z \in S^{d-1} : |D(z, X)| \le m \}$$

Definition 3 (*m*-stiff configurations [Borodachov (2024)])

 $X \subset S^{d-1}$ is an m-stiff if

- **1** X is a spherical (2m-1)-design.
- $D_m(X)$ is non-empty.

An m-stiff minimizes f-potential energy

Let $f:[0,4] \to (-\infty,\infty]$ be a function that is continuous on (0,4] with $f(0)=\lim_{t\to 0^+}f(t)$, differentiable on (0,4), and whose (2m-2)-th derivative $f^{(2m-2)}$ is convex on (0,4).

For a given m-stiff configuration X, the f-potential

$$\sum_{x \in X} f(|z - x|^2)$$

attains its global minimum over S^{d-1} at every point z of $D_m(X)$ [Borodachov (2024)].

Known examples of m-stiff configurations

- d=2: the regular 2m-gon is the m-stiff.
- 1-stiff (t = 1): spherical 1-designs in S^{d-1} on a hyper plane
- 2-stiff (t=3): regular cross polytopes and cubes in $S^{d-1}(d \geq 2)$, demicubes in S^{d-1} $(d \geq 5)$, other examples (embedding of orthogonal array of strength 3 with 2 levels)

Name	X	d	m	t
24-cell	24	4	3	5
Symmetrized Schläfli	54	6	3	5
E_{6} lattice	72	6	3	5
*Kissing (from E_8)	56	7	3	5
E_7 lattice	126	7	3	5
*Kissing (from Leech)	4600	23	4	7

^{*:} tight spherical design

Existence theorem of m-stiff configurations

 $P_m^{(\alpha,\alpha)}(x)$: Jacobi polynomial (Gegenbauer poly.), $\alpha=(d-3)/2$.

Theorem 4 (Borodachov (2024))

Suppose $m \geq 1$, $d \geq 2$. Let x_1, \ldots, x_m be the zeros of $P_m^{(\alpha,\alpha)}(x)$. Let $\varphi_k(x) = \prod_{i \neq k} (x-x_i)/(x_k-x_i)$, which satisfies $\varphi_k(x_\ell) = \delta_{k\ell}$. Let

$$a_0(\varphi_k) = \frac{1}{\int_{-1}^{1} (1 - x^2)^{\alpha} dx} \int_{-1}^{1} \varphi_k(x) (1 - x^2)^{\alpha} dx.$$

There exists an m-stiff configuration of S^{d-1} if and only if $a_0(\varphi_k)$ is a positive rational number for each $k \in \{1, ..., m\}$.

- This theorem depends on the existence theorem of spherical designs, like Seymour and Zaslavsky (1984).
- $a_0(\varphi_k)$ coinsides with the Christoffel number λ_k of $P_m^{(\alpha,\alpha)}(x)$.

Layer structure in m-stiff Configurations

 x_i is a zero of $P_m(x)$ and λ_i is its Christoffel number.

Suppose $X = X_1 \sqcup \cdots \sqcup X_m$ is an m-stiff (X_i is on a hyperplane).

- $|X_i| = \lambda_i |X|$. In particular, $|X_i|$ is independent of $z \in D_m(X)$.
- For any $x \in X_i$ and $z \in D_m(X)$, one has $\langle z, x \rangle = x_i$.

Example: Let $X=(\pm 1/\sqrt{2},\pm 1/\sqrt{2},0,0)^P$ be the 24-cell in S^3 .

$$x_1 = -\frac{1}{\sqrt{2}},$$
 $x_2 = 0,$ $x_3 = \frac{1}{\sqrt{2}}$
 $\lambda_1 = \frac{6}{24},$ $\lambda_2 = \frac{12}{24},$ $\lambda_3 = \frac{6}{24}$
 $|X_1| = 6,$ $|X_2| = 12,$ $|X_3| = 6$

$$z = (1, 0, 0, 0) \in D_3(X)$$

Non-exsitence theorem (Main results)

Lemma 5

If all Christoffel numbers λ_i are rational numbers, then the squared zeros x_i^2 are rational.

Theorem 6 (Bannai–Kurihara–Nozaki (2025+))

- **1** For each fixed integer m > 5, there exists no m-stiff configuration in S^{d-1} for $d > C_m$ with some C_m .
- 2 For each fixed integer d > 10, there exists no m-stiff configuration in S^{d-1} for $m > C_d$ with some C_d .

Both results are established by analyzing the zeros of Gegenbauer polynomials $P_n^{(\alpha,\alpha)}(x)$.

Key polynomials [Bannai–Damerell (1980)]

Define $S_m(x)$ as the monic polynomial whose zeros are the reciprocals of the non-zero zeros of $P_m^{(\alpha+1,\alpha+1)}(x)$. (We give a sketch of proof only for d=2k and m=2n.) For $X=x^2$,

$$S_m(X) = X^n + \sum_{r=1}^n (-1)^r u_r X^{n-r},$$

where

$$u_r = \binom{n}{r} \frac{h(h+2)(h+4)\cdots(h+2r-2)}{1\cdot 3\cdot 5\cdots (2r-1)}, \qquad h = d+2n$$

Lemma 7

Suppose m=2n with $n \geq 1$. If a zero of $S_m(X)$ is rational, then the zero is an integer. $\to u_r$ should be integer.

Key idea

Lemma 8

For d=2k with $k \geq 2$, it holds that

$$u_n = 2^{2n + \lfloor (k-1)/2 \rfloor} \prod_{i=1}^{\lfloor k/2 \rfloor} \frac{2n + 2i - 1}{n + \lfloor (k-1)/2 \rfloor + i}$$

for each $n \in \mathbb{N}$.

Key idea for the non-integrality of u_n (given $d=2k, m=2n\to\infty$):

For k=5 and n odd, we have $n+\lfloor (k-1)/2\rfloor+1=n+3$ is odd.

$$\prod_{i=1}^{\lfloor k/2 \rfloor} (2n+2i-1) = (2n+1)(2n+2)$$

$$\equiv (-5)(-4)(\text{depends only } k) \pmod{n+3}$$

For large odd n, this is not 0.

The complete list of the dimensions for $m \leq 5$

Let d be an integer greater than 2.

- **1** There exist m-stiff configurations in S^{d-1} for any d when m=1,2,3.
- 2 There exist 4-stiff configurations in S^{d-1} if and only if

$$d = \frac{(5 + 2\sqrt{6})^{\ell} + (5 - 2\sqrt{6})^{\ell} - 6}{4}$$

 $\text{for } \ell \in \mathbb{N} \text{ with } \ell > 1. \qquad d = 23, 241, 2399, 23761\dots$

There exist 5-stiff configurations in
$$S^{d-1}$$
 if and only if
$$d_5 = \frac{3((19+6\sqrt{10})^{\ell_1}+(19-6\sqrt{10})^{\ell_1})-10}{4},$$

$$d_{5} = \frac{3((19+6\sqrt{10})^{\ell_{1}}+(19-6\sqrt{10})^{\ell_{1}})-10}{4},$$

$$\frac{(7+2\sqrt{10})(19+6\sqrt{10})^{\ell_{2}}+(7-2\sqrt{10})(19-6\sqrt{10})^{\ell_{2}}-10}{4},$$

$$\frac{(7-2\sqrt{10})(19+6\sqrt{10})^{\ell_{3}}+(7+2\sqrt{10})(19-6\sqrt{10})^{\ell_{3}}-10}{4},$$

for $\ell_1 \in \mathbb{N}$ and $\ell_2, \ell_3 \in \mathbb{N} \cup \{0\}$. d = 4, 26, 124, 241, 1079...

Concluding

Results:

- **1** For each fixed integer m > 5, there exists no m-stiff configuration in S^{d-1} for sufficiently large d.
- 2 For each fixed integer d>10, there exists no m-stiff configuration in S^{d-1} for sufficiently large m.
- 3 We obtained the complete lists of the dimensions where m-stiff configurations exist for $m \leq 5$.

Conjecture: there is no m-stiff configuration in S^{d-1} for (d,m) with $d \geq 3$ and $m \geq 6$. (Newton polygon methods?)

Problem:

- 1 Find explicit examples of m-stiff configurations for m=4,5.
- 2 Investigate under what conditions tight spherical (2m-1)-designs become m-stiff.

Thank you for your attention.

Concluding

Results:

- I For each fixed integer m>5, there exists no m-stiff configuration in S^{d-1} for sufficiently large d.
- 2 For each fixed integer d > 10, there exists no m-stiff configuration in S^{d-1} for sufficiently large m.
- 3 We obtained the complete lists of the dimensions where m-stiff configurations exist for $m \leq 5$.

Conjecture: there is no m-stiff configuration in S^{d-1} for (d,m) with $d \geq 3$ and $m \geq 6$. (Newton polygon methods?)

Problem:

- 1 Find explicit examples of m-stiff configurations for m=4,5.
- 2 Investigate under what conditions tight spherical (2m-1)-designs become m-stiff.

Thank you for your attention.