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Definitions Bounds on SRG Proof

Notations

Definition

Graph: Γ = (V ,E) with vertex set V and edge set E ⊆
(V

2

)
.

All graphs in the talk are undirected and simple (no loops or
multiple edges).

The adjacency matrix A of Γ is the matrix whose rows and
columns are indexed by its vertices, such that Axy = 1 if xy
is an edge and 0 otherwise.
The eigenvalues of Γ are the eigenvalues of its adjacency
matrix.
d(x , y):the distance between x and y .
A graph is regular if there exists an integer k such each
vertex has exactly k neighbours.
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Strongly regular graphs

A strongly regular graph (SRG) is a regular graph with dia-
meter 2, such that each pair of distinct vertices have either λ
or µ common neighbors, depending on whether or not they
are adjacent.

A strongly regular graph with given parameters will be re-
ferred to as srg(v , k , λ, µ), where v ≥ 2 is the number of
vertices and the graph is regular with valency k .
To dispense with trivialities, we will be concerned only with
primitive strongly regular graphs, which are connected stron-
gly regular graphs whose complement is also connected.
Examples of strongly regular graphs: The Petersen graph,
(t × t)-grid, etc.
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Strongly regular graphs with parameters (v , k , λ, µ) = (4t +
1,2t , t − 1, t) are known as conference graphs.

A strongly regular graph is either a conference graph or has
all eigenvalues being integers.
In this talk, we always assume that Γ is not a conference
graph.
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Now we will concentrate on primitive SRG with fixed smallest
eigenvalue. For this we need to introduce two families of SRG.

Steiner graphs

A Steiner system S(2,m, v) is a 2-(v ,m,1) design, that is,
a collection of m-sets taken from a set of size v , satisfying
the property that every pair of elements from the v -set is
contained in exactly one m-set.
The block graph of a Steiner system S(2,m,nm + m − n)
is defined as the graph whose vertices correspond to the
blocks of the system and two blocks are adjacent in this
graph if and only if they intersect at exactly one point.
We refer to this block graph as the Steiner graph Sm(n),
and this graph is an SRG with smallest eigenvalue −m and
µ = m2.
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Now we introduce the Latin Square graphs.

Latin Square graphs

An orthogonal array, denoted as OA(m,n), is a m×n2 array
with entries chosen from the set {1, . . . ,n} with the property
that the columns of any 2× n2 subarray contain all possible
n2 pairs exactly once.

Note that a Latin square of order n gives rise to an OA(3,n)
and an OA(3,n) gives you at least one Latin square of order
n.
The block graph of an orthogonal array, denoted as
ΓOA(m,n), is a graph whose vertices are the columns of
OA(m,n) and two columns are adjacent if and only if there
exists a row where they share the same entry.
The block graph of an OA(m,n) is called a Latin square
graph LSm(n) and this graph is an SRG with smallest ei-
genvalue −m and µ = m(m − 1).
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Sims (unpublished) showed that for fixed integer m ≥ 2,
there are only finitely many primitive SRG besides the Stei-
ner graphs and Latin Square graphs.
Neumaier (1979) gave an explicit bound for this by showing
the following two results.

Theorem
Let Γ be a primitive strongly regular graph with smallest eigen-
value −m, where m is a positive integer. Then µ ≤ m3(2m − 3).

We only know of two examples where equality holds, name-
ly for m = 2 and m = 3.
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The second result of Neumaier is as follows.

Theorem
Let Γ be a primitive strongly regular graph with smallest ei-
genvalue −m, where m is a positive integer. Let f (m, µ) =
1
2m(m − 1)(µ+ 1) + µ−m − 1.Then the following hold:
(i) (Bruck (1963)) If µ = m(m − 1) and λ > f (m, µ), then Γ is a

Latin square graph LSm(λ−m(m − 3)).
(ii) (Bose (1963)) If µ = m2 and λ > f (m, µ), then Γ is the block

graph of a 2-(λ(m−1)−m(m−1)(m−2) +m,m,1) design,
i.e. a Steiner graph.

(iii) (Neumaier (1979)) If µ 6= m(m − 1) and µ 6= m2, then λ ≤
f (m, µ).
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We improve the second result by Neumaier as follows:

Theorem
Let Γ be a primitive strongly regular graph with smallest ei-

genvalue −m, where m is a positive integer. Let f (m, µ) =
8
3m(µ− 1)− 2

3µ+ 3m − 10
3 . Then the following hold:

(i) If µ = m(m − 1) and λ > f (m, µ), then Γ is a Latin square
graph LSm(λ−m(m − 3)).

(ii) If µ = m2 and λ > f (m, µ), then Γ is the the block graph of
a 2-(λ(m − 1)−m(m − 1)(m − 2) + m,m,1) design.
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The bound of Neumaier is λ = O(m2µ) and our bound is
λ = O(mµ), but for small m, the bound by Neumaier is bet-
ter.

The Cameron graph, a srg(231,30,9,3) with smallest ei-
genvalue −3, gives an example where λ > m2 and µ = m
both holds. Note that the GQ(t2, t) has m = t + 1 and
λ = m(m − 2) and there exists infinitely many m for which
such a GQ exists.
Metsch (1991) showed this result for µ = m(m − 1).
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In this section I will explain the proof.

First we need some definitions.
A partial linear space is an incidence structure such that
each pair of distinct points are both incident with at most
one line, and a linear space is a partial linear space such
that every pair of points is contained in a unique line.
The point graph Γ of an incidence structure (P,L, I) is the
graph with vertex set P, and two distinct points are adjacent
if and only if they are on a common line.
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A partial geometry pg(K ,R,T ) is a partial linear space with
the property that every line contains exactly K points, every
point lies on exactly R lines, and given a line L and point
x /∈ L there are exactly T lines containing x and intersecting
L (in the literature, one also meets the notation pg(s, t , α),
where K = s + 1,R = t + 1,T = α).

The point graph of a partial geometry pg(K ,R,T ) is a srg(K +
K (K − 1)(R− 1)/T ,R(K − 1), (R− 1)(T − 1) + K − 2,RT ).
A geometric SRG is just the point graph of a partial linear
space.
We say a SRG has geometric parameters (K ,R,T ) if it has
parameters (K + K (K −1)(R−1)/T ,R(K −1), (R−1)(T −
1) + K − 2,RT ) where K ,R are positive integers and T a
non-negative integer.



Definitions Bounds on SRG Proof

A partial geometry pg(K ,R,T ) is a partial linear space with
the property that every line contains exactly K points, every
point lies on exactly R lines, and given a line L and point
x /∈ L there are exactly T lines containing x and intersecting
L (in the literature, one also meets the notation pg(s, t , α),
where K = s + 1,R = t + 1,T = α).
The point graph of a partial geometry pg(K ,R,T ) is a srg(K +
K (K − 1)(R− 1)/T ,R(K − 1), (R− 1)(T − 1) + K − 2,RT ).

A geometric SRG is just the point graph of a partial linear
space.
We say a SRG has geometric parameters (K ,R,T ) if it has
parameters (K + K (K −1)(R−1)/T ,R(K −1), (R−1)(T −
1) + K − 2,RT ) where K ,R are positive integers and T a
non-negative integer.



Definitions Bounds on SRG Proof

A partial geometry pg(K ,R,T ) is a partial linear space with
the property that every line contains exactly K points, every
point lies on exactly R lines, and given a line L and point
x /∈ L there are exactly T lines containing x and intersecting
L (in the literature, one also meets the notation pg(s, t , α),
where K = s + 1,R = t + 1,T = α).
The point graph of a partial geometry pg(K ,R,T ) is a srg(K +
K (K − 1)(R− 1)/T ,R(K − 1), (R− 1)(T − 1) + K − 2,RT ).
A geometric SRG is just the point graph of a partial linear
space.

We say a SRG has geometric parameters (K ,R,T ) if it has
parameters (K + K (K −1)(R−1)/T ,R(K −1), (R−1)(T −
1) + K − 2,RT ) where K ,R are positive integers and T a
non-negative integer.



Definitions Bounds on SRG Proof

A partial geometry pg(K ,R,T ) is a partial linear space with
the property that every line contains exactly K points, every
point lies on exactly R lines, and given a line L and point
x /∈ L there are exactly T lines containing x and intersecting
L (in the literature, one also meets the notation pg(s, t , α),
where K = s + 1,R = t + 1,T = α).
The point graph of a partial geometry pg(K ,R,T ) is a srg(K +
K (K − 1)(R− 1)/T ,R(K − 1), (R− 1)(T − 1) + K − 2,RT ).
A geometric SRG is just the point graph of a partial linear
space.
We say a SRG has geometric parameters (K ,R,T ) if it has
parameters (K + K (K −1)(R−1)/T ,R(K −1), (R−1)(T −
1) + K − 2,RT ) where K ,R are positive integers and T a
non-negative integer.



Definitions Bounds on SRG Proof

Let Γ be a SRG with valency k and smallest eigenvalue−m.

Let C be a clique in Γ with order c.
(Delsarte) Then c ≤ 1 + k

m .

A Delsarte clique is a clique of order c = 1 + k
m .

Let Γ be the point graph of a partial linear space.
Then Γ is geometric if and only if all lines are Delsarte cli-
ques.
We denote by τ(x) the number of lines through x for a ver-
tex x .
For future reference we call a vertex x a Delsarte vertex if
all lines through x are Delsarte cliques.
Note that τ(x) = m if and only if x is a Delsarte vertex.
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Step 2: Show that the SRG has geometric parameters.
Step 3: Show that the SRG is geometric.
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To show that the SRG is the point graph of a partial linear space
we use the following result of Metsch.

Theorem
(Metsch) Let Γ be an strongly regular graph with parameters
(v , k , λ, µ). Assume that there exists a positive integer σ such
that the following two conditions are satisfied:
(1) (σ + 1)(λ+ 1)− k > (µ− 1)

(
σ+1

2

)
;

(2) λ+ 1 > (µ− 1)(2σ − 1).
Define a line as a maximal clique with at least λ+2−(µ−1)(σ−1)
vertices. Then X = (V (Γ),L,∈) is a partial linear space, where
L is the set of all lines, Γ is the point graph of X , and the symbol
∈ means that the relation required for the incidence structure is
merely given by inclusion. Moreover, each vertex lies on at most
σ lines, and every pair of adjacent vertices in Γ lie in a unique
line.
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We optimize the two bounds in the result of Metsch and it
turns out that for

λ >
8
3

m(µ− 1)− 2
3
µ+ 3m − 10

3

both bounds are satisfied for σ = 4m
3 .

Metsch (1991) gives a slightly better bound by looking these
two bounds mod 3. But they are the same asymptotically.
Neumaiers bound is the bound in Item (1) for σ = m.
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Now we are ready for Step 2.

By Step 1 we know the SRG is the point graph of a partial
linear space with τ(x) ≤ 4m

3 .
This means that our lines are really big.
To show that the SRG has geometric parameters, we use
the fact that many of the vertices must be Delsarte vertices.
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To do so we use the point-line incidence matrix N.

Now NNT = A+∆, where ∆ is a diagonal matrix with ∆xx =
τ(x) and A the adjacency matrix.
As the lines are all large we see that N has a low rank na-
mely at most the number ` of lines.
Now we use that A has smallest eigenvalue −m and that
τ(x) ≥ m (by the Delsarte bound).
This gives that at least v−` vertices of the SRG are Delsarte
vertices.
We obtain that there are at least two Delsarte vertices un-
less µ = 1.
It is then not so difficult to see that then the SRG has to
have geometric parameters.
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For Step 3 we use two different estimates: namely one for
the case when τ(x) is close to m for all vertices x and one
for the case when there exists a vertex x with large τ(x).

Then we optimize these two bounds, and we obtain that
neither can happen.
So all lines are Delsarte cliques, and hence our SRG is geo-
metric.
Thank you for your attention.
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