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Coding theory
A binary d-code is a subset of {0, 1}n such that any two
distinct elements differ in at least d positions.

How large can a code be? (1940s)

0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

d
n

lim
n→∞

log2 A(n,d)
n

Gilbert-Varshamov bound (1952)
MRRW bound (1977)

All these upper bounds co-
me from a linear program
whose optimal solution is
unknown.
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Design theory

2-(7, 3, 1) design

A t-(v , n, λ) design is a collection Y of n-subsets of a v -set V
such that each t-subset of V lies in exactly λ members of Y .

Do t-designs exist for all t? (mid 19th century)
Teirlinck 1987: A t-design of (t + 1)-sets exists for all t.
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Extremal combinatorics

How large can a t-intersecting family of n-subsets of a v -set be?

Erdős-Ko-Rado 1961
For v sufficiently large compared to t, the size of a
t-intersecting family of n-subsets of a v -set is at most

(
v−t
n−t

)
.
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Metric association schemes

Take a finite metric space (X , ρ) and the X × X matrices Ai

with

(Ai)x ,y =

1 if ρ(x , y) = i

0 otherwise.

Then (X , (Ai)) is a metric association scheme with n classes if
the matrices A0, A1, . . . , An generate a commutative matrix
algebra over R with “nice” properties.
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Polynomial structures

There is a second basis E0, E1, . . . , En.

Ai =
n∑

k=0
Pi(k)Ek Ek = 1

|X |

n∑
i=0

Qk(i)Ai

A metric association scheme is always P-polynomial:

Pi(k) = Pi(xk)

for some Pi ∈ R[z ] of degree i and some xk ∈ R.

Accordingly, we define a Q-polynomial.
This imposes an ordering on E0, E1, . . . , En.
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Classical association schemes

Hamming scheme Johnson scheme
X = {0, 1}n X = {n-subsets of a v -set}

affine q-analogs ordinary q-analogs
Bilinear forms scheme Bilq(n, m) q-Johnson scheme Jq(n, v)
Alternating forms scheme Altq(m) Polar space schemes
Hermitian forms scheme Herq(n)

ρ(x , y) = rank(x − y) ρ(x , y) = n − dim(x ∩ y)

Conjecture (Bannai 19??)
(P and Q)-polynomial schemes with sufficiently many classes
are either classical or “relatives” of the classical ones.
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Polar spaces

f : F4
2 → F2

x 7→ x1x3 + x2x4

Compute all the subspaces
of F4

2 on which f vanishes.

The maximal subspaces have the same dimension, called rank.

Polar space scheme
X is the set of n-spaces in a
polar space of rank n and
ρ(x , y) = n − dim(x ∩ y).
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The six families of polar spaces
Up to isomorphism, there are six polar spaces of rank n.

form name type

Hermitian Hermitian 2A2n−1

Hermitian Hermitian 2A2n

alternating symplectic Cn

quadratic hyperbolic Dn

quadratic parabolic Bn

quadratic elliptic 2Dn+1

9



Codes and designs
Inner distribution (a0, a1, . . . , an)T of a subset Y of X :

ai = 1
|Y |

#{(x , y) ∈ Y × Y : ρ(x , y) = i}

1. basis 2. basis
{A0, A1, . . . , An} {E0, E1, . . . , En}

inner distribution (ai) dual distribution (a′
k)

ai = 1
|Y |1

T
Y Ai1Y a′

k = |X |
|Y |1

T
Y Ek1Y

d-code t-design
ai = 0 for all i = 1, . . . , d − 1 a′

k = 0 for all k = 1, . . . , t

ρ(x , y) ≥ d for all x , y ∈ Y
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Examples of t-designs
The t-designs in the

• Johnson scheme are combinatorial t-designs

• Hamming scheme are orthogonal arrays

• q-Johnson scheme are designs over Fq

• . . .
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The magic of linear programming

a0 = 1, ai ≥ 0,
n∑

i=0
ai = |Y |, a′

k =
n∑

i=0
Qk(i)ai

For a d-code Y : a1 = a2 = · · · = ad−1 = 0.

Simple, but powerful property
All entries of the dual distribution (a′

k) are nonnegative.

Linear program (Delsarte 1973)
Find a0, a1, . . . , an that maximize a0 + a1 + · · · + an subject to
the above constraints.
The smallest bound that can be obtained in this way is called
the linear programming (LP) optimum, denoted by LP(d).

12
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Q-numbers
Bilq(n, m), Altq(m), Herq(n) affine q-Krawtchouk polynomials
Polar space schemes q-Krawtchouk polynomials
Jq(n, v) q-Hahn polynomials
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Bipartite halves

= ∪

The polar space D2 Bipartite halves 1
2D2

−→

Each 1
2Dm gives a (P and Q)-polynomial association scheme

with n = ⌊m
2 ⌋ classes.

The numbers Qk(i) come from q-Hahn polynomials.
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Hermitian polar space

The association scheme arising from the Hermitian polar space
2A2n−1 has two orderings of the matrices E0, E1, . . . , En.

▶ E0 E1 · · · En q-Krawtchouk polynomials

▶ E0 En E1 En−1 E2 En−2 · · · q-Hahn polynomials
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Q-numbers
Bilq(n, m), Altq(m), Herq(n) affine q-Krawtchouk polynomials
Polar space schemes q-Krawtchouk polynomials
Jq(n, v),

1
2Dm, 2A2n−1

q-Hahn polynomials

embedding b c
Bilq(n, m) ↪→ Jq(n, m + n) q qm−n

Altq(m) ↪→ 1
2Dm q2 q or 1/q

Herq(n) ↪→ 2A2n−1 −q −1

The polynomials can be written in a unified way in terms of
q-hypergeometric series of type 3ϕ2 with parameters b and c .
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The linear programming bound
Theorem (Schmidt-W. 2023)
Ordinary q-analogs Jq(n, v), 1

2Dm, 2A2n−1

LP(d) = |X |
d−2∏
ℓ=0

qbℓ − 1
qcbn+ℓ − 1

Affine q-analogs Bilq(n, m), Altq(m), Herq(n)

LP(d) = |X |
d−2∏
ℓ=0

qbℓ

qcbn+ℓ

with d odd for 2A2n−1 and Herq(n).
We also obtained the LP optimum in 2A2n−1 and Herq(n) for
even d , as well as for many cases in Bn, Cn, and Dn.
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Constructions
In the affine q-analogs the bound is sharp for

• Bilq(n, m) (Delsarte 1978)

• Altq(m) for odd m or even q (Delsarte-Goethals 1975)
• Herq(n) for odd d (Schmidt 2018).

In the ordinary q-analogs the bound is sharp up to constant
factor for

• Jq(n, m + n) (Kötter-Kschischang 2008)
• 2A2n−1 for odd d , Dn for odd n or even q, Cn for odd d ,

and Bn for odd d and even q (Schmidt-W. 2023).

This solves the coding problem in nearly all classical
association schemes asymptotically, except for the Hamming

and Johnson schemes.
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Intersecting sets

A family Y consisting of n-subsets of a v -set is t-intersecting
if |x ∩ y | ≥ t

or n − |x ∩ y | ≤ n − t for all x , y ∈ Y .

A subset Y of X in a metric association scheme (X , (Ai)) is
t-intersecting if the distance between two elements is at most
n − t.

How large can a t-intersecting set be?

19
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Erdős-Ko-Rado-type results

Corollary (Schmidt-W. 2025+)
A t-intersecting set Y in an affine or ordinary q-analog scheme
satisfies

|Y | ≤ |X |
LP(n − t + 1) ,

where LP(n − t + 1) is the LP optimum for (n − t + 1)-codes.

In particular, we obtain new bounds on t-intersecting sets in
the polar space
▶ 2A2n−1

▶ Bn and Cn for n − t even
▶ Dn for n − t odd.
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q-Analog designs

A t-(v , n, λ) design over Fq is a collection Y of n-subspaces
of Fv

q such that each t-subspace of Fv
q lies in exactly λ

members of Y .

Do t-designs over Fq exist for all t?

Fazeli-Lovett-Vardy 2014
A t-(v , n, λ) design over Fq exists, provided that v is large
enough and n > 12(t + 1).
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Designs in polar spaces

A t-(v , n, λ) design in a polar space P of rank v is a
collection Y of n-spaces in P such that each t-space of P lies
in exactly λ members of Y .

Do t-designs in polar spaces exist for all t?

Theorem (W. 2025)
Let P be a polar space of rank v . For all positive integers t
and n with n > 10.5 t and for v large enough with v > n2,
there exists a t-(v , n, λ) design in P whose size is at
most q21vt .
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