Codes and Designs in Classical Association Schemes

Charlene Weiß

University of Amsterdam

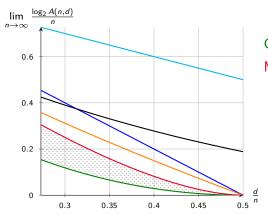
A binary d-code is a subset of $\{0,1\}^n$ such that any two distinct elements differ in at least d positions.

A binary d-code is a subset of $\{0,1\}^n$ such that any two distinct elements differ in at least d positions.

How large can a code be? (1940s)

A binary d-code is a subset of $\{0,1\}^n$ such that any two distinct elements differ in at least d positions.

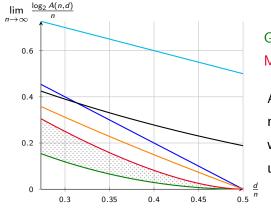
How large can a code be? (1940s)



Gilbert-Varshamov bound (1952) MRRW bound (1977)

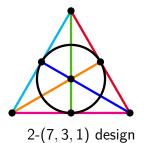
A binary d-code is a subset of $\{0,1\}^n$ such that any two distinct elements differ in at least d positions.

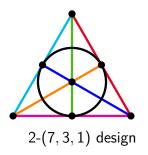
How large can a code be? (1940s)



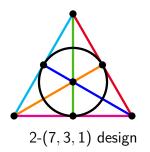
Gilbert-Varshamov bound (1952) MRRW bound (1977)

All these upper bounds come from a linear program whose optimal solution is unknown.



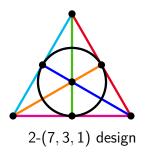


A t- (v, n, λ) design is a collection Y of n-subsets of a v-set V such that each t-subset of V lies in exactly λ members of Y.



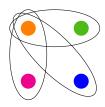
A t- (v, n, λ) design is a collection Y of n-subsets of a v-set V such that each t-subset of V lies in exactly λ members of Y.

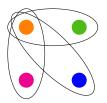
Do t-designs exist for all t? (mid 19th century)

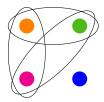


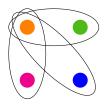
A t- (v, n, λ) design is a collection Y of n-subsets of a v-set V such that each t-subset of V lies in exactly λ members of Y.

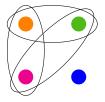
Do t-designs exist for all t? (mid 19th century) Teirlinck 1987: A t-design of (t+1)-sets exists for all t.



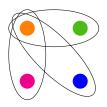


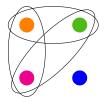






How large can a *t*-intersecting family of *n*-subsets of a *v*-set be?





How large can a *t*-intersecting family of *n*-subsets of a *v*-set be?

Erdős-Ko-Rado 1961

For v sufficiently large compared to t, the size of a t-intersecting family of n-subsets of a v-set is at most $\binom{v-t}{n-t}$.

Metric association schemes

Take a finite metric space (X, ρ) and the $X \times X$ matrices A_i with

$$(A_i)_{x,y} = \begin{cases} 1 & \text{if } \rho(x,y) = i \\ 0 & \text{otherwise.} \end{cases}$$

Metric association schemes

Take a finite metric space (X, ρ) and the $X \times X$ matrices A_i with

$$(A_i)_{x,y} = \begin{cases} 1 & \text{if } \rho(x,y) = i \\ 0 & \text{otherwise.} \end{cases}$$

Then $(X, (A_i))$ is a metric association scheme with n classes if the matrices A_0, A_1, \ldots, A_n generate a commutative matrix algebra over \mathbb{R} with "nice" properties.

There is a second basis E_0, E_1, \ldots, E_n .

There is a second basis E_0, E_1, \ldots, E_n .

$$A_i = \sum_{k=0}^{n} P_i(k) E_k$$
 $E_k = \frac{1}{|X|} \sum_{i=0}^{n} Q_k(i) A_i$

There is a second basis E_0, E_1, \ldots, E_n .

$$A_i = \sum_{k=0}^{n} P_i(k) E_k$$
 $E_k = \frac{1}{|X|} \sum_{i=0}^{n} Q_k(i) A_i$

A metric association scheme is always *P*-polynomial:

$$P_i(k) = P_i(x_k)$$

for some $P_i \in \mathbb{R}[z]$ of degree i and some $x_k \in \mathbb{R}$.

There is a second basis E_0, E_1, \ldots, E_n .

$$A_i = \sum_{k=0}^{n} P_i(k) E_k$$
 $E_k = \frac{1}{|X|} \sum_{i=0}^{n} Q_k(i) A_i$

A metric association scheme is always *P*-polynomial:

$$P_i(k) = P_i(x_k)$$

for some $P_i \in \mathbb{R}[z]$ of degree i and some $x_k \in \mathbb{R}$.

Accordingly, we define a *Q*-polynomial.

There is a second basis E_0, E_1, \ldots, E_n .

$$A_i = \sum_{k=0}^{n} P_i(k) E_k$$
 $E_k = \frac{1}{|X|} \sum_{i=0}^{n} Q_k(i) A_i$

A metric association scheme is always *P*-polynomial:

$$P_i(k) = P_i(x_k)$$

for some $P_i \in \mathbb{R}[z]$ of degree i and some $x_k \in \mathbb{R}$.

Accordingly, we define a *Q*-polynomial.

This imposes an ordering on E_0, E_1, \ldots, E_n .

Hamming scheme

$$X = \{0, 1\}^n$$

Johnson scheme

$$X = \{n\text{-subsets of a } v\text{-set}\}$$

Hamming scheme

$$X = \{0, 1\}^n$$

affine q-analogs

Bilinear forms scheme $Bil_q(n, m)$

Alternating forms scheme $Alt_q(m)$

Hermitian forms scheme $\operatorname{Her}_q(n)$

$$\rho(x,y) = \operatorname{rank}(x-y)$$

Johnson scheme

$$X = \{n\text{-subsets of a } v\text{-set}\}$$

Hamming scheme

$$X = \{0, 1\}^n$$

affine q-analogs

Bilinear forms scheme $Bil_q(n, m)$

Alternating forms scheme $Alt_q(m)$

Hermitian forms scheme $\operatorname{Her}_q(n)$

$$\rho(x,y) = \operatorname{rank}(x-y)$$

Johnson scheme

$$X = \{n\text{-subsets of a } v\text{-set}\}$$

ordinary q-analogs

q-Johnson scheme $J_q(n, v)$

Polar space schemes

$$\rho(x,y)=n-\dim(x\cap y)$$

Hamming scheme

$$X = \{0, 1\}^n$$

affine q-analogs

Bilinear forms scheme $Bil_q(n, m)$ Alternating forms scheme $Alt_q(m)$

Hermitian forms scheme $\operatorname{Her}_q(n)$

$$\rho(x,y) = \operatorname{rank}(x-y)$$

Johnson scheme

$$X = \{n\text{-subsets of a } v\text{-set}\}$$

ordinary q-analogs

q-Johnson scheme $J_q(n, v)$

Polar space schemes

$$\rho(x,y) = n - \dim(x \cap y)$$

Conjecture (Bannai 19??)

(P and Q)-polynomial schemes with sufficiently many classes are either classical or "relatives" of the classical ones.

 \mathbb{F}_2^4

$$f: \mathbb{F}_2^4 \to \mathbb{F}_2$$
$$x \mapsto x_1 x_3 + x_2 x_4$$

$$f: \mathbb{F}_2^4 \to \mathbb{F}_2$$
$$x \mapsto x_1 x_3 + x_2 x_4$$

Compute all the subspaces of \mathbb{F}_2^4 on which f vanishes.

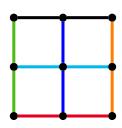
$$f: \mathbb{F}_2^4 \to \mathbb{F}_2$$
$$x \mapsto x_1 x_3 + x_2 x_4$$

Compute all the subspaces of \mathbb{F}_2^4 on which f vanishes.

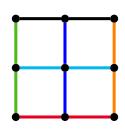
• • •

$$f: \mathbb{F}_2^4 \to \mathbb{F}_2$$
$$x \mapsto x_1 x_3 + x_2 x_4$$

Compute all the subspaces of \mathbb{F}_2^4 on which f vanishes.

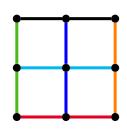


$$f: \mathbb{F}_2^4 \to \mathbb{F}_2$$
$$x \mapsto x_1 x_3 + x_2 x_4$$

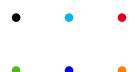


Compute all the subspaces of \mathbb{F}_2^4 on which f vanishes.

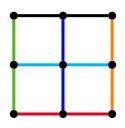
$$f: \mathbb{F}_2^4 \to \mathbb{F}_2$$
$$x \mapsto x_1 x_3 + x_2 x_4$$



Compute all the subspaces of \mathbb{F}_2^4 on which f vanishes.

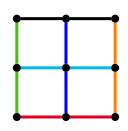


$$f: \mathbb{F}_2^4 \to \mathbb{F}_2$$
$$x \mapsto x_1 x_3 + x_2 x_4$$



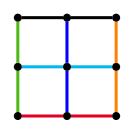
Compute all the subspaces of \mathbb{F}_2^4 on which f vanishes.

$$f: \mathbb{F}_2^4 \to \mathbb{F}_2$$
$$x \mapsto x_1 x_3 + x_2 x_4$$



Compute all the subspaces of \mathbb{F}_2^4 on which f vanishes.

$$f: \mathbb{F}_2^4 \to \mathbb{F}_2$$
$$x \mapsto x_1 x_3 + x_2 x_4$$



Compute all the subspaces of \mathbb{F}_2^4 on which f vanishes.

The maximal subspaces have the same dimension, called rank.

Polar space scheme

X is the set of *n*-spaces in a polar space of rank *n* and $\rho(x, y) = n - \dim(x \cap y)$.

The six families of polar spaces

Up to isomorphism, there are six polar spaces of rank n.

form	name	type
Hermitian	Hermitian	$^{2}A_{2n-1}$
Hermitian	Hermitian	$^{2}A_{2n}$
alternating	symplectic	C_n
quadratic	hyperbolic	D_n
quadratic	parabolic	B_n
quadratic	elliptic	$^{2}D_{n+1}$

Inner distribution $(a_0, a_1, \ldots, a_n)^T$ of a subset Y of X:

$$a_i = \frac{1}{|Y|} \# \{ (x, y) \in Y \times Y : \rho(x, y) = i \}$$

Inner distribution $(a_0, a_1, \ldots, a_n)^T$ of a subset Y of X:

$$a_i = \frac{1}{|Y|} \# \{ (x, y) \in Y \times Y : \rho(x, y) = i \}$$

1. basis

$$\{A_0, A_1, \ldots, A_n\}$$

Inner distribution $(a_0, a_1, \ldots, a_n)^T$ of a subset Y of X:

$$a_i = \frac{1}{|Y|} \# \{(x, y) \in Y \times Y : \rho(x, y) = i\}$$

1. basis

$$\{A_0, A_1, \ldots, A_n\}$$

inner distribution (a_i)

$$a_i = \frac{1}{|Y|} \mathbf{1}_Y^T A_i \mathbf{1}_Y$$

Inner distribution $(a_0, a_1, \ldots, a_n)^T$ of a subset Y of X:

$$a_i = \frac{1}{|Y|} \# \{ (x,y) \in Y \times Y : \rho(x,y) = i \}$$

$$\{A_0, A_1, \ldots, A_n\}$$

2. basis

$$\{E_0, E_1, \ldots, E_n\}$$

inner distribution (a_i)

$$a_i = \frac{1}{|Y|} \mathbf{1}_Y^T A_i \mathbf{1}_Y$$

Inner distribution $(a_0, a_1, \ldots, a_n)^T$ of a subset Y of X:

$$a_i = \frac{1}{|Y|} \# \{ (x,y) \in Y \times Y : \rho(x,y) = i \}$$

$$\{A_0, A_1, \ldots, A_n\}$$

inner distribution
$$(a_i)$$

$$a_i = \frac{1}{|Y|} \mathbf{1}_Y^T A_i \mathbf{1}_Y$$

2. basis

$$\{E_0,E_1,\ldots,E_n\}$$

dual distribution
$$(a'_k)$$

$$a'_k = \frac{|X|}{|Y|} \mathbf{1}_Y^T E_k \mathbf{1}_Y$$

Inner distribution $(a_0, a_1, \ldots, a_n)^T$ of a subset Y of X:

$$a_i = \frac{1}{|Y|} \# \{ (x,y) \in Y \times Y : \rho(x,y) = i \}$$

$$\{A_0,A_1,\ldots,A_n\}$$

inner distribution
$$(a_i)$$

$$a_i = \frac{1}{|Y|} \mathbf{1}_Y^T A_i \mathbf{1}_Y$$

d-code

$$a_i = 0$$
 for all $i = 1, ..., d - 1$

2. basis

$$\{E_0,E_1,\ldots,E_n\}$$

dual distribution (a'_k)

$$a_k' = \frac{|X|}{|Y|} 1_Y^T E_k 1_Y$$

Inner distribution $(a_0, a_1, \ldots, a_n)^T$ of a subset Y of X:

$$a_i = \frac{1}{|Y|} \# \{ (x,y) \in Y \times Y : \rho(x,y) = i \}$$

$$\{A_0, A_1, \ldots, A_n\}$$

inner distribution
$$(a_i)$$

$$a_i = \frac{1}{|Y|} \mathbf{1}_Y^T A_i \mathbf{1}_Y$$

d-code

$$a_i = 0$$
 for all $i = 1, ..., d - 1$

$$\rho(x,y) \ge d$$
 for all $x,y \in Y$

2. basis

$$\{E_0,E_1,\ldots,E_n\}$$

dual distribution (a'_k)

$$a_k' = \frac{|X|}{|Y|} \mathbf{1}_Y^T E_k \mathbf{1}_Y$$

Inner distribution $(a_0, a_1, \ldots, a_n)^T$ of a subset Y of X:

$$a_i = \frac{1}{|Y|} \# \{ (x,y) \in Y \times Y : \rho(x,y) = i \}$$

$$\{A_0,A_1,\ldots,A_n\}$$

inner distribution
$$(a_i)$$

$$a_i = \frac{1}{|Y|} \mathbf{1}_Y^T A_i \mathbf{1}_Y$$

d-code

$$a_i = 0$$
 for all $i = 1, \ldots, d-1$

$$\rho(x,y) \ge d$$
 for all $x,y \in Y$

$$\{E_0,E_1,\ldots,E_n\}$$

dual distribution (a'_k)

$$a_k' = \frac{|X|}{|Y|} \mathbf{1}_Y^T E_k \mathbf{1}_Y$$

t-design

$$a_k'=0$$
 for all $k=1,\ldots,t$

The *t*-designs in the

• Johnson scheme are combinatorial *t*-designs

The *t*-designs in the

• Johnson scheme are combinatorial *t*-designs

Hamming scheme are orthogonal arrays

The *t*-designs in the

• Johnson scheme are combinatorial *t*-designs

Hamming scheme are orthogonal arrays

• q-Johnson scheme are designs over \mathbb{F}_q

The *t*-designs in the

• Johnson scheme are combinatorial *t*-designs

Hamming scheme are orthogonal arrays

- ullet q-Johnson scheme are designs over \mathbb{F}_q
- . . .

$$a_0 = 1,$$
 $a_i \ge 0,$ $\sum_{i=0}^n a_i = |Y|,$ $a'_k = \sum_{i=0}^n Q_k(i)a_i$

$$a_0 = 1,$$
 $a_i \ge 0,$ $\sum_{i=0}^n a_i = |Y|,$ $a'_k = \sum_{i=0}^n Q_k(i)a_i$

For a *d*-code *Y*: $a_1 = a_2 = \cdots = a_{d-1} = 0$.

$$a_0 = 1,$$
 $a_i \ge 0,$ $\sum_{i=0}^n a_i = |Y|,$ $a'_k = \sum_{i=0}^n Q_k(i)a_i$

For a *d*-code *Y*: $a_1 = a_2 = \cdots = a_{d-1} = 0$.

Simple, but powerful property

All entries of the dual distribution (a'_k) are nonnegative.

$$a_0 = 1,$$
 $a_i \ge 0,$ $\sum_{i=0}^n a_i = |Y|,$ $a'_k = \sum_{i=0}^n Q_k(i)a_i$

For a *d*-code *Y*: $a_1 = a_2 = \cdots = a_{d-1} = 0$.

Simple, but powerful property

All entries of the dual distribution (a'_k) are nonnegative.

Linear program (Delsarte 1973)

Find a_0, a_1, \ldots, a_n that maximize $a_0 + a_1 + \cdots + a_n$ subject to the above constraints.

$$a_0 = 1,$$
 $a_i \ge 0,$ $\sum_{i=0}^n a_i = |Y|,$ $a'_k = \sum_{i=0}^n Q_k(i)a_i$

For a *d*-code *Y*: $a_1 = a_2 = \cdots = a_{d-1} = 0$.

Simple, but powerful property

All entries of the dual distribution (a'_k) are nonnegative.

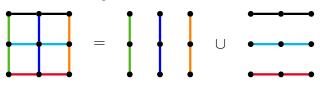
Linear program (Delsarte 1973)

Find a_0, a_1, \ldots, a_n that maximize $a_0 + a_1 + \cdots + a_n$ subject to the above constraints.

The smallest bound that can be obtained in this way is called the linear programming (LP) optimum, denoted by LP(d).

 $Bil_q(n, m)$, $Alt_q(m)$, $Her_q(n)$ Polar space schemes $J_q(n, v)$

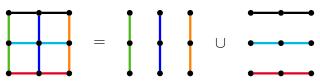
Bipartite halves



The polar space D_2

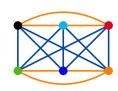
Bipartite halves $\frac{1}{2}D_2$

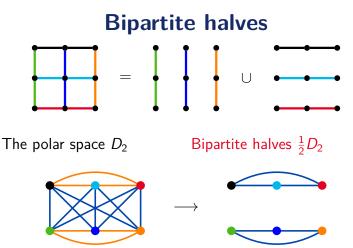
Bipartite halves



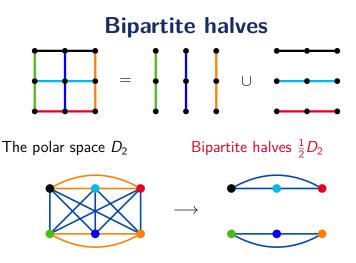
The polar space D_2

Bipartite halves $\frac{1}{2}D_2$





Each $\frac{1}{2}D_m$ gives a (P and Q)-polynomial association scheme with $n = \lfloor \frac{m}{2} \rfloor$ classes.



Each $\frac{1}{2}D_m$ gives a (P and Q)-polynomial association scheme with $n = \lfloor \frac{m}{2} \rfloor$ classes.

The numbers $Q_k(i)$ come from q-Hahn polynomials.

The association scheme arising from the Hermitian polar space ${}^{2}A_{2n-1}$ has two orderings of the matrices E_0, E_1, \ldots, E_n .

The association scheme arising from the Hermitian polar space ${}^{2}A_{2n-1}$ has two orderings of the matrices E_0, E_1, \ldots, E_n .

$$\triangleright$$
 E_0 E_1 \cdots E_n

q-Krawtchouk polynomials

The association scheme arising from the Hermitian polar space ${}^{2}A_{2n-1}$ has two orderings of the matrices E_0, E_1, \ldots, E_n .

 \triangleright E_0 E_1 \cdots E_n

- q-Krawtchouk polynomials
- $ightharpoonup E_0 E_n E_1 E_{n-1} E_2 E_{n-2} \cdots$

The association scheme arising from the Hermitian polar space ${}^{2}A_{2n-1}$ has two orderings of the matrices E_0, E_1, \ldots, E_n .

 \triangleright E_0 E_1 \cdots E_n

- q-Krawtchouk polynomials
- $ightharpoonup E_0$ E_n E_1 E_{n-1} E_2 E_{n-2} \cdots q-Hahn polynomials

 $Bil_q(n, m)$, $Alt_q(m)$, $Her_q(n)$ Polar space schemes $J_q(n, v)$,

 $\operatorname{Bil}_q(n,m)$, $\operatorname{Alt}_q(m)$, $\operatorname{Her}_q(n)$ affine Polar space schemes q-Krav $J_q(n,v)$, $\frac{1}{2}D_m$, $^2A_{2n-1}$ q-Hah

 $Bil_q(n, m)$, $Alt_q(m)$, $Her_q(n)$ Polar space schemes $J_q(n, v)$, $\frac{1}{2}D_m$, $^2A_{2n-1}$

embedding	b	С
$Bil_q(n,m) \hookrightarrow J_q(n,m+n)$	q	q^{m-n}
$Alt_q(m) \hookrightarrow frac{1}{2} D_m$	q^2	q or $1/q$
$\operatorname{Her}_q(n) \hookrightarrow {}^2A_{2n-1}$	-q	-1

 $Bil_q(n, m)$, $Alt_q(m)$, $Her_q(n)$ Polar space schemes $J_q(n, v)$, $\frac{1}{2}D_m$, $^2A_{2n-1}$

affine q-Krawtchouk polynomials q-Krawtchouk polynomials q-Hahn polynomials

embedding	b	C
$Bil_q(n,m) \hookrightarrow J_q(n,m+n)$	q	q^{m-n}
$Alt_q(m) \hookrightarrow frac{1}{2} D_m$	q^2	$\it q$ or $1/\it q$
$\operatorname{Her}_q(n) \hookrightarrow {}^2A_{2n-1}$	-q	-1

The polynomials can be written in a unified way in terms of q-hypergeometric series of type $_3\phi_2$ with parameters b and c.

Theorem (Schmidt-W. 2023)

Ordinary q-analogs $J_q(n, v)$, $\frac{1}{2}D_m$, $^2A_{2n-1}$

$$\mathsf{LP}(d) = |X| \prod_{\ell=0}^{d-2} rac{qb^\ell - 1}{qcb^{n+\ell} - 1}$$

Theorem (Schmidt-W. 2023)

Ordinary q-analogs $J_q(n, v)$, $\frac{1}{2}D_m$, $^2A_{2n-1}$

$$\mathsf{LP}(d) = |X| \prod_{\ell=0}^{d-2} rac{qb^\ell - 1}{qcb^{n+\ell} - 1}$$

Affine q-analogs $Bil_q(n, m)$, $Alt_q(m)$, $Her_q(n)$

$$\mathsf{LP}(d) = |X| \prod_{\ell=0}^{d-2} \frac{qb^{\ell}}{qcb^{n+\ell}}$$

Theorem (Schmidt-W. 2023)

Ordinary q-analogs $J_q(n, v)$, $\frac{1}{2}D_m$, $^2A_{2n-1}$

$$\mathsf{LP}(d) = |X| \prod_{\ell=0}^{d-2} rac{qb^\ell - 1}{qcb^{n+\ell} - 1}$$

Affine q-analogs $Bil_q(n, m)$, $Alt_q(m)$, $Her_q(n)$

$$\mathsf{LP}(d) = |X| \prod_{\ell=0}^{d-2} rac{qb^\ell}{qcb^{n+\ell}}$$

with d odd for ${}^2A_{2n-1}$ and $\operatorname{Her}_q(n)$.

Theorem (Schmidt-W. 2023)

Ordinary q-analogs $J_q(n, v)$, $\frac{1}{2}D_m$, $^2A_{2n-1}$

$$\mathsf{LP}(d) = |X| \prod_{\ell=0}^{d-2} rac{qb^\ell - 1}{qcb^{n+\ell} - 1}$$

Affine q-analogs $Bil_q(n, m)$, $Alt_q(m)$, $Her_q(n)$

$$\mathsf{LP}(d) = |X| \prod_{\ell=0}^{d-2} rac{qb^\ell}{qcb^{n+\ell}}$$

with d odd for ${}^{2}A_{2n-1}$ and $\operatorname{Her}_{q}(n)$.

We also obtained the LP optimum in ${}^2A_{2n-1}$ and $\operatorname{Her}_q(n)$ for even d

Theorem (Schmidt-W. 2023)

Ordinary q-analogs $J_q(n, v)$, $\frac{1}{2}D_m$, $^2A_{2n-1}$

$$\mathsf{LP}(d) = |X| \prod_{\ell=0}^{d-2} rac{qb^\ell - 1}{qcb^{n+\ell} - 1}$$

Affine q-analogs $Bil_q(n, m)$, $Alt_q(m)$, $Her_q(n)$

$$\mathsf{LP}(d) = |X| \prod_{\ell=0}^{d-2} rac{qb^\ell}{qcb^{n+\ell}}$$

with d odd for ${}^2A_{2n-1}$ and $\operatorname{Her}_q(n)$.

We also obtained the LP optimum in ${}^2A_{2n-1}$ and $\operatorname{Her}_q(n)$ for even d, as well as for many cases in B_n , C_n , and D_n .

In the affine q-analogs the bound is sharp for

• $Bil_q(n, m)$ (Delsarte 1978)

In the affine q-analogs the bound is sharp for

- $Bil_q(n, m)$ (Delsarte 1978)
- Alt_q(m) for odd m or even q (Delsarte-Goethals 1975)

In the affine q-analogs the bound is sharp for

- $Bil_q(n, m)$ (Delsarte 1978)
- Alt_q(m) for odd m or even q (Delsarte-Goethals 1975)
- $\operatorname{Her}_q(n)$ for odd d (Schmidt 2018).

In the affine q-analogs the bound is sharp for

- $Bil_q(n, m)$ (Delsarte 1978)
- Alt_q(m) for odd m or even q (Delsarte-Goethals 1975)
- $\operatorname{Her}_q(n)$ for odd d (Schmidt 2018).

In the ordinary q-analogs the bound is sharp up to constant factor for

• $J_q(n, m + n)$ (Kötter-Kschischang 2008)

In the affine q-analogs the bound is sharp for

- $Bil_q(n, m)$ (Delsarte 1978)
- Alt_q(m) for odd m or even q (Delsarte-Goethals 1975)
- $\operatorname{Her}_q(n)$ for odd d (Schmidt 2018).

In the ordinary q-analogs the bound is sharp up to constant factor for

- $J_q(n, m + n)$ (Kötter-Kschischang 2008)
- ${}^{2}A_{2n-1}$ for odd d, D_n for odd n or even q, C_n for odd d, and B_n for odd d and even q (Schmidt-W. 2023).

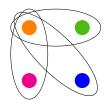
In the affine q-analogs the bound is sharp for

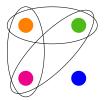
- $Bil_q(n, m)$ (Delsarte 1978)
- Alt_q(m) for odd m or even q (Delsarte-Goethals 1975)
- $\operatorname{Her}_q(n)$ for odd d (Schmidt 2018).

In the ordinary q-analogs the bound is sharp up to constant factor for

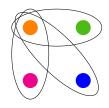
- $J_q(n, m + n)$ (Kötter-Kschischang 2008)
- ${}^{2}A_{2n-1}$ for odd d, D_n for odd n or even q, C_n for odd d, and B_n for odd d and even q (Schmidt-W. 2023).

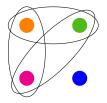
This solves the coding problem in nearly all classical association schemes asymptotically, except for the Hamming and Johnson schemes.



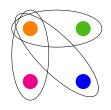


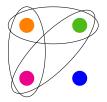
A family Y consisting of n-subsets of a v-set is t-intersecting if $|x \cap y| \ge t$





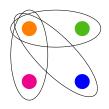
A family Y consisting of n-subsets of a v-set is t-intersecting if $|x \cap y| \ge t$ or $n - |x \cap y| \le n - t$ for all $x, y \in Y$.

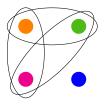




A family Y consisting of n-subsets of a v-set is t-intersecting if $|x \cap y| \ge t$ or $|x \cap y| \le t$ for all $x, y \in Y$.

A subset Y of X in a metric association scheme $(X, (A_i))$ is t-intersecting if the distance between two elements is at most n-t.





A family Y consisting of n-subsets of a v-set is t-intersecting if $|x \cap y| \ge t$ or $n - |x \cap y| \le n - t$ for all $x, y \in Y$.

A subset Y of X in a metric association scheme $(X, (A_i))$ is t-intersecting if the distance between two elements is at most n-t.

How large can a *t*-intersecting set be?

Erdős-Ko-Rado-type results

Corollary (Schmidt-W. 2025+)

A t-intersecting set Y in an affine or ordinary q-analog scheme satisfies

$$|Y| \leq \frac{|X|}{\mathsf{LP}(n-t+1)},$$

where LP(n-t+1) is the LP optimum for (n-t+1)-codes.

Erdős-Ko-Rado-type results

Corollary (Schmidt-W. 2025+)

A t-intersecting set Y in an affine or ordinary q-analog scheme satisfies

$$|Y| \leq \frac{|X|}{\mathsf{LP}(n-t+1)},$$

where LP(n-t+1) is the LP optimum for (n-t+1)-codes. In particular, we obtain new bounds on t-intersecting sets in the polar space

- $ightharpoonup {}^{2}A_{2n-1}$
- \triangleright B_n and C_n for n-t even
- \triangleright D_n for n-t odd.

A t- (v, n, λ) design over \mathbb{F}_q is a collection Y of n-subspaces of \mathbb{F}_q^v such that each t-subspace of \mathbb{F}_q^v lies in exactly λ members of Y.

A t- (v, n, λ) design over \mathbb{F}_q is a collection Y of n-subspaces of \mathbb{F}_q^v such that each t-subspace of \mathbb{F}_q^v lies in exactly λ members of Y.

Do *t*-designs over \mathbb{F}_q exist for all t?

A t- (v, n, λ) design over \mathbb{F}_q is a collection Y of n-subspaces of \mathbb{F}_q^v such that each t-subspace of \mathbb{F}_q^v lies in exactly λ members of Y.

Do *t*-designs over \mathbb{F}_q exist for all *t*?

Fazeli-Lovett-Vardy 2014

A t- (v, n, λ) design over \mathbb{F}_q exists, provided that v is large enough and n > 12(t+1).

Designs in polar spaces

A t- (v, n, λ) design in a polar space \mathcal{P} of rank v is a collection Y of n-spaces in \mathcal{P} such that each t-space of \mathcal{P} lies in exactly λ members of Y.

Designs in polar spaces

A t- (v, n, λ) design in a polar space \mathcal{P} of rank v is a collection Y of n-spaces in \mathcal{P} such that each t-space of \mathcal{P} lies in exactly λ members of Y.

Do *t*-designs in polar spaces exist for all *t*?

Designs in polar spaces

A t- (v, n, λ) design in a polar space \mathcal{P} of rank v is a collection Y of n-spaces in \mathcal{P} such that each t-space of \mathcal{P} lies in exactly λ members of Y.

Do t-designs in polar spaces exist for all t?

Theorem (W. 2025)

Let \mathcal{P} be a polar space of rank v. For all positive integers t and n with n>10.5 t and for v large enough with $v>n^2$, there exists a t- (v,n,λ) design in \mathcal{P} whose size is at most q^{21vt} .