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Gilbert-Varshamov bound (1952)
0.6 +
MRRW bound (1977)

All these upper bounds co-
me from a linear program
whose optimal solution is
unknown.
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Design theory

2-(7,3,1) design
A t-(v,n, \) design is a collection Y of n-subsets of a v-set V
such that each t-subset of V lies in exactly A\ members of Y.

Do t-designs exist for all t7 (mid 19th century)
Teirlinck 1987: A t-design of (t + 1)-sets exists for all ¢.
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How large can a t-intersecting family of n-subsets of a v-set be?

Erdds-Ko-Rado 1961
For v sufficiently large compared to t, the size of a

t-intersecting family of n-subsets of a v-set is at most (;:i)



Metric association schemes

Take a finite metric space (X, p) and the X x X matrices A;

with
1 ifp(x,y) =i
(Ai)xof: .
0 otherwise.



Metric association schemes

Take a finite metric space (X, p) and the X x X matrices A;
with
1 ifp(x,y) =i

(Ai)X,y = .
0 otherwise.

Then (X, (A;)) is a metric association scheme with n classes if
the matrices Ao, A1, ..., A, generate a commutative matrix

algebra over R with “nice” properties.
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Polynomial structures

There is a second basis Eg, Eq, ..., E,.
A=Y Pi(k)Ex Ex = Z Qr(7)
=0 IX!

A metric association scheme is always P-polynomial:
Pi(k) = Pi(x)

for some P; € R[z| of degree i and some x, € R.

Accordingly, we define a Q-polynomial.

This imposes an ordering on Eg, E1, ..., E,.
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Classical association schemes

Hamming scheme Johnson scheme
X ={0,1}" X = {n-subsets of a v-set}
affine g-analogs ordinary g-analogs

Bilinear forms scheme Bil,(n, m)  g-Johnson scheme J,(n, v)
Alternating forms scheme Alt,(m) Polar space schemes

Hermitian forms scheme Her,(n)
p(x,y) = rank(x — y) p(x,y) = n—dim(xNy)

Conjecture (Bannai 1977)

(P and Q)-polynomial schemes with sufficiently many classes

are either classical or “relatives” of the classical ones.
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Polar spaces

f: ]Fg%lﬁé

X = X1X3 + XpX4

Compute all the subspaces

of 5 on which f vanishes.
The maximal subspaces have the same dimension, called rank.

Polar space scheme
X is the set of n-spaces in a
polar space of rank n and

p(x,y) =n—dim(xNy).



The six families of polar spaces

Up to isomorphism, there are six polar spaces of rank n.

form

name type
Hermitian Hermitian 2A,, 4
Hermitian Hermitian 2A,,
alternating symplectic C,
quadratic hyperbolic D,
quadratic parabolic B,
quadratic elliptic D,
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Codes and designs

Inner distribution (ao, ai,...,a,)" of asubset Y of X:

a; = |Y| #Hxy) € Y XY :p(x,y) =i}
1. basis 2. basis
(Ao, Ar, ..., A} {Eo,Ev,..., Eq}
inner distribution (a;) dual distribution (a})
X
= JlvAly = BV Edy
d-code t-design
ai=0forali=1,...,d—1 a,=0forall k=1,... ¢t

p(x,y) >dforall x,y €Y
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The magic of linear programming

do = 17 a; Z 07 Zai = |Y|’ a;< = Qk(i)ai

Forad-code Y: a=a =---=ay_1 =0.

Simple, but powerful property

All entries of the dual distribution (a) are nonnegative.

Linear program (Delsarte 1973)
Find ag, a1, . .., a, that maximize ag + a; + - - - + a, subject to
the above constraints.
The smallest bound that can be obtained in this way is called
the linear programming (LP) optimum, denoted by LP(d).
12



R-numbers

Bil,(n, m), Alty(m), Hery(n)
Polar space schemes
Jq(n, v)

affine g-Krawtchouk polynomials
g-Krawtchouk polynomials

g-Hahn polynomials
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Bipartite halves

SERSas

The polar space D, Bipartite halves %D2

o

'v'

Each %Dm gives a (P and Q)-polynomial association scheme

with n = | 7] classes.

The numbers Qx(7) come from g-Hahn polynomials.

14
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Hermitian polar space

The association scheme arising from the Hermitian polar space

25,1 has two orderings of the matrices Eq, Eq, ..., E,.
» £ B -+ E, g-Krawtchouk polynomials
» Ey E, £ E, 1 E; E, » --- g-Hahn polynomials

15
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Polar space schemes
Jq(n, V), le, 2A2n_1

2

affine g-Krawtchouk polynomials
g-Krawtchouk polynomials

g-Hahn polynomials
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R-numbers

Bil,(n, m), Alty(m), Hery(n) affine g-Krawtchouk polynomials

Polar space schemes g-Krawtchouk polynomials
Jy(n,v), %Dm, 2 Aon1 g-Hahn polynomials
embedding b c
Bil,(n,m) < Jy(n,m+n) gq qm "
Alty(m) < 2D, > qorl/g
Her,(n) — 2 A0 1 —q -1

The polynomials can be written in a unified way in terms of

g-hypergeometric series of type 3¢, with parameters b and c.
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The linear programming bound
Theorem (Schmidt-W. 2023)
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d—2 14
gb® —1
LP(d) = [X| [ ——
( ) | |£:0 qcbn+g_1

17



The linear programming bound
Theorem (Schmidt-W. 2023)
Ordinary g-analogs J,(n, v), %Dm, 2A,, 4

d-2 14
gb® —1
LP(d) = |X _—

Affine g-analogs Bil,(n, m), Alty(m), Hery(n)

Tl
qcbn+£

17



The linear programming bound
Theorem (Schmidt-W. 2023)
Ordinary g-analogs J,(n, v), %Dm, 2A,, 4

d-2 qbé -1

LP(d) = |X| [ ————

Affine g-analogs Bil,(n, m), Alty(m), Hery(n)

d—2 qbé
LP(d) = |X| [] ——
(@) =X T

with d odd for A, ; and Hery(n).

17



The linear programming bound
Theorem (Schmidt-W. 2023)
Ordinary g-analogs J,(n, v), %Dm, 2A,, 4

d-2 14
gb® —1
LP(d) = |X _—

Affine g-analogs Bil,(n, m), Alty(m), Hery(n)

Tl
qcbn+£

with d odd for A, ; and Hery(n).
We also obtained the LP optimum in ?A,,_; and Hery(n) for
even d



The linear programming bound

Theorem (Schmidt-W. 2023)
Ordinary g-analogs J,(n, v), %Dm, 2 Aon1

d-2 14
gb® —1
LP(d) = |X _—

Affine g-analogs Bil,(n, m), Alty(m), Hery(n)

Tl
qcbn+£

with d odd for A, ; and Hery(n).
We also obtained the LP optimum in ?A,,_; and Hery(n) for

even d, as well as for many cases in B,, C,, and D,.
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Constructions

In the affine g-analogs the bound is sharp for
e Bily(n, m) (Delsarte 1978)
e Alt,(m) for odd m or even g (Delsarte-Goethals 1975)
® Her,(n) for odd d (Schmidt 2018).
In the ordinary g-analogs the bound is sharp up to constant
factor for
e J,(n,m+ n) (Kétter-Kschischang 2008)
e 2A, 4 for odd d, D, for odd n or even q, C, for odd d,
and B, for odd d and even g (Schmidt-W. 2023).

This solves the coding problem in nearly all classical
association schemes asymptotically, except for the Hamming
and Johnson schemes.
18
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Intersecting sets

A family Y consisting of n-subsets of a v-set is t-intersecting
if [ xNy|>torn—|xNy|<n—tforall x,y €Y.

A subset Y of X in a metric association scheme (X, (A;)) is
t-intersecting if the distance between two elements is at most
n—t.

How large can a t-intersecting set be?

19



Erdos-Ko-Rado-type results

Corollary (Schmidt-W. 2025+)

A t-intersecting set Y in an affine or ordinary g-analog scheme

satisfies

X]
YN<—————
| ‘_LP(n—t—l—l)’

where LP(n — t + 1) is the LP optimum for (n — t + 1)-codes.
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Erdos-Ko-Rado-type results

Corollary (Schmidt-W. 2025+)

A t-intersecting set Y in an affine or ordinary g-analog scheme

satisfies

X]
YN<—————
| ‘_LP(n—t—l—l)’

where LP(n — t + 1) is the LP optimum for (n — t + 1)-codes.
In particular, we obtain new bounds on t-intersecting sets in
the polar space

> 2A2n—1

» B, and C, for n — t even

» D, for n—t odd.

20



g-Analog designs

21



g-Analog designs

A t-(v,n, \) design over F is a collection Y of n-subspaces
of Iy such that each t-subspace of F lies in exactly A

members of Y.

21



g-Analog designs

A t-(v,n, \) design over F is a collection Y of n-subspaces
of Iy such that each t-subspace of F lies in exactly A

members of Y.

Do t-designs over I exist for all t?

21



g-Analog designs

A t-(v,n, \) design over F is a collection Y of n-subspaces
of Iy such that each t-subspace of F lies in exactly A

members of Y.
Do t-designs over I exist for all t?

Fazeli-Lovett-Vardy 2014
A t-(v,n, \) design over F, exists, provided that v is large
enough and n > 12(t + 1).
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Designs in polar spaces

A t-(v,n, \) design in a polar space P of rank v is a
collection Y of n-spaces in P such that each t-space of P lies
in exactly A\ members of Y.

Do t-designs in polar spaces exist for all t7

Theorem (W. 2025)

Let P be a polar space of rank v. For all positive integers t
and n with n > 10.5t and for v large enough with v > n?,
there exists a t-(v, n, \) design in P whose size is at

most g2Vt

22



