

Notation

Outline

The Skew group rings

Hopf algebras

Lie algebras, Hopf algebras and skew

dimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}^-}$ modules

Bannai-Ito algebra, the

A skew group ring of $\mathbb{Z}/2\mathbb{Z}$ over $U(\mathfrak{sl}_2)$, Leonard triples and odd graphs

Hau-Wen Huang

Joint work with Dr. Chin-Yen Lee

National Central University, Taiwan

June 24, 2025

Combinatorics around the *q*-Onsager algebra Dedicated to Professor Paul Terwilliger on his 70th birthday

Outline

Outline

Section 1 The skew group rings

Section 2 Hopf algebras

Section 3 Lie algebras, Hopf algebras and skew group rings

Section 4 The finite-dimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -modules

Section 5 The universal Bannai-Ito algebra, the skew group ring $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ and Leonard triples

Section 6 Applications to the odd graphs

The Skew group rings

Section 1: The Skew group rings

The Skew group rings

- Let G be a group.
- Let $\varphi: G \to \operatorname{Aut}(N)$ be a group homomorphism.
- As a set, the **outer semidirect product** $N \rtimes_{\omega} G$ of N and *G* with respect to φ is $N \times G$.
 - The group operation is defined by

$$(n_1, g_1) \cdot (n_2, g_2) = (n_1 \cdot \varphi(g_1)(n_2), g_1g_2)$$

for all $n_1, n_2 \in N$ and all $g_1, g_2 \in G$.

Hau-Wen
Huang
Joint
work
with Dr.
ChinYen Lee

Notation

Outline

The Skew group rings

Hopf algebra

Lie algebras, Hopf algebras and skew group rings

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ modules

The univers

Bannai—Ito

algebra, the

- Let R be a ring with 1.
- Let G be a finite group.
- Let $\varphi: G \to \operatorname{Aut}(R)$ be a group homomorphism.
- As a set, the skew group ring R ×_φ G of G over R induced by φ consists of all formal sums

$$\sum_{g \in G} a_g g \qquad \text{where } a_g \in R \text{ for all } g \in G.$$

- The addition operation is component-wise.
- The multiplication is distributively defined by

$$a_1g_1 \cdot a_2g_2 = (a_1 \cdot \varphi(g_1)(a_2)) g_1g_2$$

for all $a_1, a_2 \in R$ and all $g_1, g_2 \in G$.

Hau-Wen
Huang
Joint
work
with Dr.
ChinYen Lee

Notation

Outline

The Skew group rings

Hopf algebras

Lie algebras, Hopf algebras and skew group rings

The finite-dimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -modules

The uni

• Every element $a \in R$ can be viewed as the element $a \cdot 1$ of $R \rtimes_{\wp} G$.

- Every element $g \in G$ can be viewed as the element $1 \cdot g$ of $R \rtimes_{\wp} G$.
- Suppose that R is a unital associative algebra over a field \mathbb{F} . Then $R \rtimes_{\varphi} G$ is a unital associative algebra over \mathbb{F} .
 - The scalar multiplication is defined by

$$c\left(\sum_{g\in G}a_gg\right)=\sum_{g\in G}(ca_g)g$$

where $c \in \mathbb{F}$ and $a_g \in R$ for all $g \in G$.

Hopf algebras

Notation

reotation

The Skew

Hopf algebras

Lie algebras, Hopf algebras and skew

The finite-dimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$

The un

Bannai-Ito algebra, the

Section 2: Hopf algebras

Hopf algebras

Hau-Wen
Huang
Joint
work
with Dr.
ChinYen Lee

Notatio

Outline

The Skew group rings

Hopf algebras

Lie algebras, Hopf algebras and skew group rings

The finite- $\mathsf{dimensional}\ U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}^+$ $\mathsf{modules}$

The univ

• Let A be a unital associative algebra over \mathbb{F} .

• Let $m: A \otimes A \rightarrow A$ be the multiplication map given by

$$m(a \otimes b) = ab$$
 for all $a, b \in A$.

• Let $\iota : \mathbb{F} \to A$ be the unit map given by

$$\iota(c) = c \cdot 1$$
 for all $c \in \mathbb{F}$.

Hopf algebras

Hau-Wen
Huang
Joint
work
with Dr
ChinYen Lee

Notatio

Outline

The Skew group ring

Hopf algebras

Lie algebras, Hopf algebras and skew group rings

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ modules

Bannai-Ito algebra, the

The algebra A is called a **Hopf algebra** if the following hold:

• There is a unital algebra homomorphism $\Delta:A \to A \otimes A$ such that

$$(1 \otimes \Delta) \circ \Delta = (\Delta \otimes 1) \circ \Delta.$$

The map Δ is called the comultiplication of A.

• There is a unital algebra homomorphism $\varepsilon:A o\mathbb{F}$ such that

$$m \circ (1 \otimes (\iota \circ \varepsilon)) \circ \Delta = 1,$$

 $m \circ ((\iota \circ \varepsilon) \otimes 1) \circ \Delta = 1.$

The map ε is called the counit of A.

• There is a linear map $S: A \rightarrow A$ such that

$$m \circ (1 \otimes S) \circ \Delta = \iota \circ \varepsilon,$$

 $m \circ (S \otimes 1) \circ \Delta = \iota \circ \varepsilon.$

The map S is called the antipode of A.

Hau-Wen Huang Joint work with Dr. Chin-Yen Lee

ivotatio

Outline

The Skew

Hopf algebra

Lie algebras, Hopf algebras and skew group rings

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ modules

The un

Section 3: Lie algebras, Hopf algebras and skew group rings

Hau-Wen
Huang
Joint
work
with Dr.
Chin-

Notation

The Skew group rings

Hopf algebras

Lie algebras, Hopf algebras and skew group rings

The finite-dimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -modules

The univ

- Let $\mathfrak g$ be a finite-dimensional Lie algebra over $\mathbb C.$
- Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} .
- Each element of $\mathfrak g$ can be viewed as an element of $U(\mathfrak g)$.
- The algebra $U(\mathfrak{g})$ is generated by all $u \in \mathfrak{g}$.
- $U(\mathfrak{g})$ is a Hopf algebra.
 - \diamond The comultiplication of $U(\mathfrak{g})$ is a unital algebra homomorphism $\Delta_1: U(\mathfrak{g}) \to U(\mathfrak{g}) \otimes U(\mathfrak{g})$ given by

$$\Delta_1(u) = u \otimes 1 + 1 \otimes u$$
 for all $u \in \mathfrak{g}$.

⋄ The counit of $U(\mathfrak{g})$ is a unital algebra homomorphism $\varepsilon_1: U(\mathfrak{g}) \to \mathbb{C}$ given by

$$\varepsilon_1(u) = 0$$
 for all $u \in \mathfrak{g}$.

 \diamond The antipode of $U(\mathfrak{g})$ is a unital algebra anti-automorphism $S_1:U(\mathfrak{g})\to U(\mathfrak{g})$ given by

$$S_1(u) = -u$$
 for all $u \in \mathfrak{g}$.

Hau-Wen
Huang
Joint
work
with Dr.
ChinYen Lee

Notation

Outline

The Skew group ring

Hopf algebras

Lie algebras, Hopf algebras and skew group rings

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ modules

The univers

Bannai—Ito
algebra, the

- Let G be a group.
- Let $\mathbb{C}[G]$ be the group algebra of G over \mathbb{C} .
- $\mathbb{C}[G]$ is a Hopf algebra.
 - ⋄ The comultiplication of $\mathbb{C}[G]$ is a unital algebra homomorphism $\Delta_2 : \mathbb{C}[G] \to \mathbb{C}[G] \otimes \mathbb{C}[G]$ given by

$$\Delta_2(g)=g\otimes g$$
 for all $g\in G$.

 \diamond The counit of $\mathbb{C}[G]$ is a unital algebra homomorphism $\varepsilon_2:\mathbb{C}[G]\to\mathbb{C}$ given by

$$\varepsilon_2(g)=1$$
 for all $g\in G$.

♦ The antipode of $\mathbb{C}[G]$ is a unital algebra anti-automorphism $S_2 : \mathbb{C}[G] \to \mathbb{C}[G]$ given by

$$S_2(g) = g^{-1}$$
 for all $g \in G$.

Hau-Wen Huang Joint work with Dr Chin-Yen Lee

Notation

Outline

The Skew group ring

Hopf algebras

Lie algebras, Hopf algebras and skew group rings

The finite- $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ - $\mathfrak{modules}$

nodules

The universa

- Assume that G is a finite subgroup of $Aut(\mathfrak{g})$.
- By the universal property of $U(\mathfrak{g})$ every $g \in G$ can be lifted to an algebra automorphism of $U(\mathfrak{g})$. The group G can be viewed as a finite subgroup of $\operatorname{Aut}(U(\mathfrak{g}))$.
- This induces a skew group ring $U(\mathfrak{g}) \rtimes G$ of G over $U(\mathfrak{g})$.
- We simply write $U(\mathfrak{g})_G = U(\mathfrak{g}) \rtimes G$.

Hau-Wen
Huang
Joint
work
with Dr.
ChinYen Lee

Notation

group ring

Hopf algebras

Lie algebras, Hopf algebras and skew group rings

The finite- $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ - $U(\mathfrak{sl}_2)_{\mathbb{Z}}$

The univ

 $U(\mathfrak{g})_G$ has the following Hopf algebra structure:

• The comultiplication of $U(\mathfrak{g})_G$ is a unital algebra homomorphism $\Delta: U(\mathfrak{g})_G \to U(\mathfrak{g})_G \otimes U(\mathfrak{g})_G$ defined by

$$\Delta(a) = \Delta_1(a)$$
 for all $a \in U(\mathfrak{g})$,

$$\Delta(g) = \Delta_2(g)$$
 for all $g \in G$.

• The counit of $U(\mathfrak{g})_G$ is a unital algebra homomorphism $\varepsilon:U(\mathfrak{g})_G\to\mathbb{C}$ defined by

$$\varepsilon(a) = \varepsilon_1(a)$$
 for all $a \in U(\mathfrak{g})$,

$$\varepsilon(g) = \varepsilon_2(g)$$
 for all $g \in G$.

• The antipode of $U(\mathfrak{g})_G$ is a unital algebra anti-automorphism $S: U(\mathfrak{g})_G \to U(\mathfrak{g})_G$ defined by

$$S(a) = S_1(a)$$
 for all $a \in U(\mathfrak{g})$,

$$S(g) = S_2(g)$$
 for all $g \in G$.

Hau-Wen Huang Joint work with Dr Chin-Yen Lee

Notation

Outline

The Skew group ring

Hopf algebras

Lie algebras, Hopf algebras and skew group rings

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ modules

The univ

• The Lie algebra \mathfrak{sl}_2 over $\mathbb C$ consists of all 2×2 matrices with entries in $\mathbb C$ with trace zero. The Lie bracket $[\,,\,]$ is defined by [X,Y]=XY-YX.

• The Lie algebra \mathfrak{sl}_2 has the basis

$$E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

• There is a Lie algebra automorphism $\rho:\mathfrak{sl}_2\to\mathfrak{sl}_2$ that sends

$$E \mapsto F$$
, $F \mapsto E$, $H \mapsto -H$.

• Note that $\rho^2 = 1$.

Hau-Wen
Huang
Joint
work
with Dr.
ChinYen Lee

Notation

Outline

The Skew group rings

Hopf algebras

Lie algebras, Hopf algebras and skew group rings

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ modules

The univers

Bannai—Ito
algebra, the

- Let $G = \langle \rho \rangle \subseteq \operatorname{Aut}(\mathfrak{sl}_2)$ and G is isomorphic to $\mathbb{Z}/2\mathbb{Z}$.
- $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ is a Hopf algebra.
- From now on, let Δ denote the comultiplication of $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$.

Hau-Wen Huang Joint work with Dr. Chin-Yen Lee

Notatio

O., All.

The Skew

Honf algebras

Lie algebras, Hopf algebras and skew

The finite-dimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ modules

The univers

Bannai—Ito

algebra, the

Section 4: The finite-dimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -modules

Hau-Wen
Huang
Joint
work
with Dr.
ChinYen Lee

Notation

The Skew group ring

Hopf algebras

Lie algebras, Hopf algebras and skew group rings

The finite-dimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -modules

• For each integer $n \ge 0$ there exists an (n+1)-dimensional $U(\mathfrak{sl}_2)$ -module L_n that has a basis $\{v_i\}_{i=0}^n$ such that

$$Ev_i = iv_{i-1} \quad (1 \le i \le n), \qquad Ev_0 = 0,$$

 $Fv_i = (n-i)v_{i+1} \quad (0 \le i \le n-1), \qquad Fv_n = 0,$
 $Hv_i = (n-2i)v_i \quad (0 \le i \le n).$

- The $U(\mathfrak{sl}_2)$ -module L_n is irreducible.
- Every (n+1)-dimensional irreducible $U(\mathfrak{sl}_2)$ -module is isomorphic to L_n .
- Any finite-dimensional $U(\mathfrak{sl}_2)$ -module is completely reducible.

The un

Hau-Wen
Huang
Joint
work
with Dr.
ChinYen Lee

Notation

Outling

The Skew group rings

Hopf algebras

Hopf algebra and skew group rings

The finite-dimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -modules

 $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ $\mathbf{nodules}$

Theorem 6.1

The algebra $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ has a presentation generated by E, F, H, ρ subject to the relations

$$[H, E] = 2E,$$

$$[H, F] = -2F,$$

$$[E, F] = H,$$

$$\rho H = -H\rho,$$

$$\rho E = F\rho,$$

$$\rho^2 = 1.$$

Bannai-Ito algebra, the

Hau-Wen
Huang
Joint
work
with Dr.
ChinYen Lee

Notation

Outline

The Skew group ring

Hopf algebras

Lie algebras, Hopf algebra and skew group rings

The finite-dimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -modules

• The $U(\mathfrak{sl}_2)$ -module L_n can be extended to a $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -module by setting

$$\rho v_i = v_{n-i} \qquad (0 \le i \le n).$$

We denote this $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -module by L_n^+ .

• The $U(\mathfrak{sl}_2)$ -module L_n can be extended to a $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -module by setting

$$\rho v_i = -v_{n-i} \qquad (0 \le i \le n).$$

We denote this $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -module by L_n^- .

The ur

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ modules

• The $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -modules L_n^+ and L_n^- are irreducible.

- The $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -modules L_n^+ and L_n^- are not isomorphic.
- Every (n+1)-dimensional irreducible $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -module is isomorphic to either L_n^+ or L_n^- .
- Any finite-dimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -module is completely reducible.

algebra, the

Hau-Wen Huang Joint work with Dr Chin-Yen Lee

Notati

The Skew

Honf alcoher

Lie algebras, Hopf algebra and skew

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ modules

The universal Bannai-Ito

Section 5: The universal Bannai–Ito algebra, the skew group ring $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ and Leonard triples

Hau-Wen
Huang
Joint
work
with Dr.
ChinYen Lee

Notation

Outline

The Skew group ring

Hopf algebra

Lie algebras, Hopf algebras and skew group rings

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ modules

The universal Bannai-Ito

• In an algebra the curl bracket

$$\{X,Y\} = XY + YX.$$

 The universal Bannai–Ito algebra 𝔻ℑ is a unital associative algebra over ℂ generated by X, Y, Z and the relations assert that the three elements

$$\kappa = \{X, Y\} - Z,$$

 $\lambda = \{Y, Z\} - X,$
 $\mu = \{Z, X\} - Y$

are central in \mathfrak{BI} .

Hau-Wen Huang Joint work with Dr Chin-Yen Lee

Notatio

Outline

The Skew group ring

Hopf algebra

Lie algebras, Hopf algebras and skew group rings

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ modules

The universal Bannai-Ito

- Let V be a $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}} \otimes U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -module.
- For any scalar $\theta \in \mathbb{C}$ we define

$$V(\theta) = \{ v \in V \mid \Delta(H)v = \theta v \}.$$

Hau-Wen
Huang
Joint
work
with Dr
ChinYen Lee

Notation

O.,41:...

The Skew group ring

Hopf algebras

Lie algebras, Hopf algebras and skew group rings

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ modules

The universal Bannai-Ito

Theorem 7.1

Suppose that V is a $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}} \otimes U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -module. Then V(1) is a \mathfrak{BI} -module given by

$$X = \Delta(E\rho),$$

 $Y = \frac{H \otimes 1 - 1 \otimes H}{2},$

$$Z = (E \otimes 1 - 1 \otimes E)\Delta(\rho).$$

Hau-Wen
Huang
Joint
work
with Dr
Chin-

Notation

group ring

Hopf algebras

Lie algebras, Hopf algebras and skew group rings

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ modules

The universal Bannai-Ito

Definition 7.2

Let V denote a nonzero finite-dimensional vector space over a field \mathbb{F} . A **Leonard pair** on V consists of an ordered pair of linear transformations $A:V\to V$ and $A^*:V\to V$ that satisfy the following conditions:

- 1. There exists a basis for V with respect to which the matrix representing A is diagonal and the matrix representing A^* is irreducible tridiagonal.
- 2. There exists a basis for V with respect to which the matrix representing A^* is diagonal and the matrix representing A is irreducible tridiagonal.

Prof. Terwilliger introduced Leonard pairs and established the theory of Leonard pairs.

Hau-Wen
Huang
Joint
work
with Dr.
ChinYen Lee

Notation

The Skew group ring

Hopf algebra

Lie algebras, Hopf algebras and skew group rings

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ nodules

The universal

Definition 7.3

Let V denote a nonzero finite-dimensional vector space over a field \mathbb{F} . A **Leonard triple** on V consists of an ordered triple of linear transformations $A:V\to V,A^*:V\to V,A^\varepsilon:V\to V$ that satisfy the following conditions:

- 1. There exists a basis for V with respect to which the matrix representing A is diagonal and the matrices representing A^* and A^{ε} are irreducible tridiagonal.
- 2. There exists a basis for V with respect to which the matrix representing A^* is diagonal and the matrices representing A^{ε} and A are irreducible tridiagonal.
- 3. There exists a basis for V with respect to which the matrix representing A^{ε} is diagonal and the matrices representing A and A^* are irreducible tridiagonal.

Hau-Wen
Huang
Joint
work
with Dr
ChinYen Lee

Motation

Outline

The Skew group ring

Hopf algebra

Lie algebras, Hopf algebras and skew group rings

The finite-dimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -modules

The universal Bannai-Ito

Theorem 7.4

Suppose that V is a finite-dimensional irreducible $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}} \otimes U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -module. The following conditions are equivalent:

- 1. V(1) is nonzero.
- 2. The \mathfrak{BI} -module V(1) is irreducible.
- 3. X, Y, Z act on the \mathfrak{BI} -module V(1) as a Leonard triple.

Hau-Wen
Huang
Joint
work
with Dr.
ChinYen Lee

Notatio

_ ...

The Skew

Hopf algebras

Lie algebras, Hopf algebras and skew

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$

The universa Bannai—Ito algebra, the Section 6: Applications to the odd graphs

Hau-Wen
Huang
Joint
work
with Dr
ChinYen Lee

Notation

Outline

The Skew group ring

Hopf algebras

Lie algebras, Hopf algebras and skew group rings

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ modules

The uni

Let Ω be a finite set.

- The notation \mathbb{C}^{Ω} stands for a vector space over \mathbb{C} that has a basis Ω .
- Let 2^{Ω} denote the power set of Ω .
- The notation \subseteq represents the covering relation of the poset $(2^{\Omega}, \subseteq)$.

Hau-Wen
Huang
Joint
work
with Dr.
ChinYen Lee

Notation

Outline

The Skew group ring

Hopf algebras

Lie algebras, Hopf algebras and skew group rings

The finite- $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}^+$ modules

The univ

Theorem 8.1

For any finite set Ω , there exists a unique $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -module $\mathbb{C}^{2^{\Omega}}$ such that

$$\mathit{Ex} = \sum_{y \subset x} y \qquad \textit{ for all } x \in 2^{\Omega},$$

$$Fx = \sum_{x \in \mathcal{X}} y$$
 for all $x \in 2^{\Omega}$,

$$Hx = (|\Omega| - 2|x|)x$$
 for all $x \in 2^{\Omega}$,

$$\rho x = \Omega \setminus x$$
 for all $x \in 2^{\Omega}$.

• Fix an element
$$x_0 \in 2^{\Omega}$$
.

- $\mathbb{C}^{2\Omega \setminus x_0} \otimes \mathbb{C}^{2x_0}$ is a $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}} \otimes U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -module.
- The linear map $\mathbb{C}^{2^{\Omega}} \to \mathbb{C}^{2^{\Omega \setminus x_0}} \otimes \mathbb{C}^{2^{x_0}}$ given by

$$x \mapsto (x \setminus x_0) \otimes (x \cap x_0)$$
 for all $x \in 2^{\Omega}$

is a linear isomorphism.

• This induces a $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}} \otimes U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -module structure on $\mathbb{C}^{2^{\Omega}}$. We denote this $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}\otimes U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -module bν

$$\mathbb{C}^{2^{\Omega}}(x_0).$$

• The space $\mathbb{C}^{2^{\Omega}}(x_0)(1)$ is a \mathfrak{BI} -module.

Hau-Wen
Huang
Joint
work
with Dr
ChinYen Lee

Notation

Outline

The Skew group ring

Hopf algebra

Lie algebras, Hopf algebras and skew group rings

The finite-dimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -modules

The unive

• Now, fix an integer $d \ge 1$ and let Ω denote a (2d+1)-element set.

- For any integer k with $0 \le k \le |\Omega|$, the notation $\binom{\Omega}{k}$ stands for the set of all k-element subsets of Ω .
- The **odd graph** O_{d+1} is a finite simple connected graph whose vertex set is $\binom{\Omega}{d}$ and two vertices x, y are adjacent if $x \cap y = \emptyset$.

Hau-Wen Huang Joint work with Dr. Chin-Yen Lee

Notatio

Outline

group ring

Hopf algebra

Lie algebras, Hopf algebras and skew group rings

The finite-dimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ -modules

The uni

• The adjacency operator **A** of O_{d+1} is the linear map $\mathbb{C}^{\binom{\Omega}{d}} o \mathbb{C}^{\binom{\Omega}{d}}$ given by

$$\mathbf{A}x = \sum_{x \cap y = \emptyset} y \qquad \text{for all } x \in \binom{\Omega}{d}.$$

• Let $x_0 \in \binom{\Omega}{d}$ be given. The dual adjacency operator $\mathbf{A}^*(x_0)$ of O_{d+1} with respect to x_0 is a linear map $\mathbb{C}^{\binom{\Omega}{d}} \to \mathbb{C}^{\binom{\Omega}{d}}$ given by

$$\mathbf{A}^*(x_0)x = (2d - \tfrac{2d+1}{d+1}(|x_0 \setminus x| + |x \setminus x_0|))x \quad \text{for all } x \in \binom{\Omega}{d}.$$

• The **Terwilliger algebra** $\mathbf{T}(x_0)$ of O_{d+1} with respect to x_0 is the subalgebra of $\mathrm{End}(\mathbb{C}^{\binom{\Omega}{d}})$ generated by \mathbf{A} and $\mathbf{A}^*(x_0)$.

Hau-Wen
Huang
Joint
work
with Dr.
ChinYen Lee

Notation

Outline

The Skew group ring

Hopf algebras

Lie algebras, Hopf algebras and skew group rings

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$ modules

The univ

Theorem 8.2

For any $x_0 \in \binom{\Omega}{d}$ the following statements hold:

1. There exists a unique algebra homomorphism $\mathfrak{BI} \to \mathbf{T}(x_0)$ given by

$$X \mapsto \mathbf{A},$$

 $Y \mapsto \frac{d+1}{2d+1}\mathbf{A}^*(x_0) + \frac{1}{2(2d+1)},$
 $Z \mapsto \frac{d+1}{2d+1}\{\mathbf{A}, \mathbf{A}^*(x_0)\} + \frac{1}{2d+1}\mathbf{A}.$

Moreover the algebra homomorphism is surjective.

2. X, Y, Z act on each irreducible $T(x_0)$ -module as a Leonard triple.

Hau-Wen
Huang
Joint
work
with Dr.
ChinYen Lee

ivotatio

...

The Skew

Honf algebras

Lie algebras, Hopf algebras and skew

The finitedimensional $U(\mathfrak{sl}_2)_{\mathbb{Z}/2\mathbb{Z}}$

Bannai-Ito algebra, the

Thank you for your attention

36 / 35