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What is the point of this talk?

Philosophy:
Everything should be made elliptic!

Example:
Elliptic hypergeometric integrals
and the Ruijsenaars model.
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Philosophy

Hierarchy:
Rational – trigonometric (q) – elliptic (p and q)

Algebra
Lie groups – Quantum groups – Elliptic quantum groups

Special functions
Jacobi polynomials – Askey–Wilson polynomials –
Spiridonov–Zhedanov functions

Physics

Combinatorics (should be studied more!)
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Elliptic curves

Realize elliptic curve (complex torus) multiplicatively

(C \ 0)/(x ∼ px),

where |p| < 1.

Equivalently, if x = e2πiz,

z ∈ C/(z = z + 1 = z + τ),

where p = e2πiτ .
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Elliptic functions
An elliptic function is a meromorphic function on C \ 0 such that

f(x) = f(px).

The (multiplicative) theta function is defined by

θ(x; p) =
∞∏
j=0

(1− xpj)(1− pj+1/x).

It satisfies
θ(px; p) = −x−1θ(x; p).

Any elliptic function can be factored as

f(x) = C
θ(a1x; p) · · · θ(anx; p)
θ(b1x; p) · · · θ(bnx; p)

,

where
a1 · · · an = b1 · · · bn.
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Elliptic hypergeometric integrals
A one-variable elliptic hypergeometric integral has the form∮

g(x)
dx

x
,

where f(x) = g(qx)/g(x) is elliptic. Equivalently,

g(x)g(pqx) = g(px)g(qx).

Factoring f as above, we are reduced to solving

g(qx)

g(x)
= θ(x; p).

This is solved by Ruijsenaars’s elliptic gamma function

g(x) = Γ(x; p, q) =

∞∏
j,k=0

1− pj+1qk+1/x

1− pjqkx
.
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Elliptic hypergeometric integrals

Elliptic hypergeometric integrals have the form
(Spiridonov, 2001)∮

Γ(a1x; p, q) · · ·Γ(anx; p, q)
Γ(b1x; p, q) · · ·Γ(bnx; p, q)

dx

x
,

where

Γ(x; p, q) =
∞∏

j,k=0

1− pj+1qk+1/x

1− pjqkx
.

We will encounter multivariable versions of such integrals.
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Ruijsenaars operators
Ruijsenaars operators (depending on p, q, t)

(D(k)f)(x1, . . . , xn)

=
∑

I⊆{1,...,n},
|I|=k

∏
i∈I, j∈Ic

θ(txi/xj ; p)

θ(xi/xj ; p)
· f(x1, . . . , qxi︸︷︷︸

i∈I

, . . . , xn).

Commutativity (Ruijsenaars 1987)

[D(k), D(l)] = 0, k, l = 0, 1, . . . , n.

Define integrable system of relativistic quantum particles.
Generalizes various Calogero–Moser–Sutherland-type models.

When p = 0, θ(x; 0) = 1− x, D(k) are the Macdonald operators,
having Macdonald polynomials as joint eigenfunctions.
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Q-operators

We will define a commuting family of integral operators Qc,
which also commute with all the operators D(k).

Belousov, Derkachov, Kharchev & Khoroshkin (2024) studied
and applied such operators in the hyperbolic limit case.
Following those authors, we call them Q-operators.

The terminology originates in Baxter’s solution of the
eight-vertex model (1972, 1973).
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Definition of Q-operators

Our Q-operators are (from now on Γ(x) = Γ(x; p, q))

(Qcf)(y1, . . . , yn)

=

∫
x∈Tn−1

y1···yn

f(x1, . . . , xn)
∏

1≤i ̸=j≤n

Γ(txi/xj)

Γ(xi/xj)

n∏
i,j=1

Γ(cyj/xi)

Γ(ctyj/xi)
|dx|.

Similar operators were considered already by Ruijsenaars
(2005). Here,

Tn−1
y1···yn = {x ∈ Cn; |x1| = |x2| = · · · = |xn|, x1 · · ·xn = y1 · · · yn},

|dx| = dx1
2πix1

· · · dxn−1

2πixn−1
.

We will not go into details about parameter conditions.
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Commutativity

It is not hard to show that

[Qc, D
(k)] = 0, 0 ≤ k ≤ n.

However, the relation
[Qc, Qd] = 0

is not obvious!
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GRRY identity
The integral operator identity [Qc, Qd] = 0 is equivalent to (after
a change of parameters)

∫
x∈Tn−1

∏n
i=1

∏2n
j=1 Γ(ayjxi)Γ(b/yjxi)∏

1≤i ̸=j≤n Γ(xi/xj)Γ(abxi/xj)
|dx|

=

∫
x∈Tn−1

∏n
i=1

∏2n
j=1 Γ(byjxi)Γ(a/yjxi)∏

1≤i ̸=j≤n Γ(xi/xj)Γ(abxi/xj)
|dx|,

where
x1 · · ·xn = y1 · · · y2n = 1.

Conjectured by Gadde, Rastelli, Razamat and Yan (2010).
Appeared from quantum field theory.

One-dimensional case (n = 2) due to Van de Bult (2011).
Hyperbolic limit case proved by Belousov et al. (2024).
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Proof of commutativity

Together with Rains we found two proofs of [Qc, Qd] = 0. I will
sketch one of them, based on the elliptic Macdonald
polynomials of Langmann, Noumi and Shiraishi (2022).

Work in space of formal power series

V = C[x1, x−1
1 , . . . , xn, x

−1
n ]Sn [[p]].

Elements are series
∞∑
k=0

fk(x1, . . . , xn)p
k,

where fk are symmetric Laurent polynomials.

The Ruijsenaars operators D(k) act on this space.
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Elliptic Macdonald polynomials
Monomial symmetric Laurent polynomials

mλ(x) = xλ1
1 · · ·xλn

n + distinct permutations,

where λ1 ≥ · · · ≥ λn. Note that λj may be negative.
Dominance order

λ ≤ µ ⇐⇒ λ1 + · · ·+ λj ≤ µ1 + · · ·+ µj , 1 ≤ j ≤ n.

Elliptic Macdonald polynomials have the form

Pλ(x; p) =
∞∑
k=0

P
(k)
λ (x)pk,

where
P

(k)
λ ∈ spanµ≤λ+(k,0,...,0,−k)mµ.

The constant term P
(0)
λ is a standard Macdonald polynomial.

14/21



Elliptic Macdonald polynomials
Monomial symmetric Laurent polynomials

mλ(x) = xλ1
1 · · ·xλn

n + distinct permutations,

where λ1 ≥ · · · ≥ λn. Note that λj may be negative.
Dominance order

λ ≤ µ ⇐⇒ λ1 + · · ·+ λj ≤ µ1 + · · ·+ µj , 1 ≤ j ≤ n.

Elliptic Macdonald polynomials have the form

Pλ(x; p) =

∞∑
k=0

P
(k)
λ (x)pk,

where
P

(k)
λ ∈ spanµ≤λ+(k,0,...,0,−k)mµ.

The constant term P
(0)
λ is a standard Macdonald polynomial.

14/21



Example

P00(x1, x2; p) = 1

+
q(1− t)2(1 + t)

t(1− q)(1− tq)

(
x1
x2

+
x2
x1

)
p

+
q(1− t2)2(1− q2)(1− t2q)

t(1− tq)3(1− tq2)

(
x1
x2

+
x2
x1

)
p2

+
q2(1− t)(1− t2)(1− t2q)

t2(1− q)(1− q2)(1− tq2)

(
x21
x22

+
x22
x21

)
p2

+O(p3).

No explicit formula for Pλ is known, not even for λ = (0, 0).
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Elliptic Macdonald polynomials diagonalize
Ruijsenaars operators

Pλ(x; p) are eigenfunctions of D(k).

Schauder basis: any f ∈ V can be written uniquely

f(x; p) =
∑
λ

Aλ(p)Pλ(x; p),

Aλ ∈ C[[p]], with convergence as formal power series.

Langmann et al. show that the series defining Pλ converges for
some range of parameters.
Very hard to prove and we don’t need it.
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Expansion of integral

We want to show that Qc act on V .

Γ(x; 0, q) =
∞∏
j=0

1

1− xqj
=

1

(x; q)∞
.

Integral kernel of Qc is

∏
1≤i ̸=j≤n

(xi/xj ; q)∞
(txi/xj ; q)∞

n∏
i,j=1

(tcyj/xi; q)∞
(cyj/xi; q)∞

(1+Φ1p+Φ2p
2+· · · ),

with Φk(x;y) Laurent polynomials.
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Expansion of integral

By standard results from Macdonald theory (here Pλ are usual
Macdonald polynomials)

∫
x∈Tn−1

y1···yn

Pλ(x)
∏

1≤i ̸=j≤n

(xi/xj ; q)∞
(txi/xj ; q)∞

n∏
i,j=1

(tcyj/xi; q)∞
(cyj/xi; q)∞

|dx|

= ϕλ(c)Pλ(y),

for some ϕλ.

Using this fact, is it easy to see that Qc act on V (formal power
series in p with symmetric Laurent polynomial coefficients).
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Conclusion of proof
The rest is hand-waving.

Since Qc acts on V , we can expand

QcPλ(x; p) =
∑
µ

Aλµ(p)Pµ(x; p).

We write
D(k)Pλ(x; p) = E

(k)
λ (p)Pλ(x; p).

The equation [Qc, D
(k)] = 0 then gives

Aλµ(p)(E
(k)
λ (p)− E(k)

µ (p)) = 0, 0 ≤ k ≤ n.

This implies that Aλµ vanishes for λ ̸= µ, that is, Pλ(x; p) are
eigenvectors of Qc.

This implies that [Qc, Qd] = 0 on V , which implies that the
integral kernel of the commutator vanishes.
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Concluding remark

We have not been able to extend the applications of
Q-operators due to Belousov et al.

Main problem is to relate n-particle and (n+ 1)-particle system
in elliptic case.

Macdonald polynomials are stable,

Pλ(x1, . . . , xn, 0) = Pλ(x1, . . . , xn)

but we don’t know any similar property of elliptic Macdonald
polynomials.

Maybe a better combinatorial understanding of elliptic
Macdonald polynomials would be useful.
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Happy birthday, Paul!


