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Quantum isomorphic graphs

The isomorphism game

We need:
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Graphs: X & Y

Referee: R
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Group algebras and quantum Latin squares
Quantum isomorphic graphs

Winning the game

Alice and Bob win the game if their output vertices, y, y′, have the
same relation as their input vertices x, x′.

In other words,

if x = x′, then y = y′,
if x ∼ x′, then y ∼ y′, and
if x ̸= x′ and x ̸∼ x′, then y ̸= y′ and y ̸∼ y′
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Quantum isomorphic graphs

Quantum isomorphic graphs

Classical:
Alice & Bob win ⇐⇒ X ∼= Y

Quantum:

If they have access to an entangled quantum state, they can win on
non-isomorphic graphs.

Definition

Graphs X and Y are quantum isomorphic, denoted X ∼=q Y , if Alice
and Bob can win the isomorphism game using a quantum strategy.
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Quantum isomorphic graphs

Another definition

Definition

A quantum permutation matrix is an n× n matrix, U = (uij)i,j∈[n]

whose entries are elements of a C∗-algebra and satisfy

ui,j = u∗i,j = u2i,j , for all i, j ∈ [n] and
n∑

i=1

ui,k =

n∑
j=1

uℓ,j = I , for all ℓ, k ∈ [n].

Permutation matrices.

1
2


(
1 1

1 1

) (
1 −
− 1

)
(
1 −
− 1

) (
1 1

1 1

)

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Group algebras and quantum Latin squares
Quantum isomorphic graphs

Another definition

Definition

Let X and Y be graphs with adjacency matrices AX and AY ,
respectively. Then X and Y are quantum isomorphic if there exits a
quantum permutation matrix U satisfying

AXU = UAY .

Remark

X and Y are isomorphic if and only if there exists a permutation
matrix, P satisfying

AXP = PAY .
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Group algebras and quantum Latin squares
Quantum Latin Squares

Quantum Latin Squares

Definition

A quantum Latin square (QLS), Ψ = (ψi,j)i,j∈[n], is an n× n array of
vectors from an n-dimensional complex vector space V such that the
entries of each row and column form an orthonormal basis of V .

1√
3

(1, 1, 1) (1, ω, ω2) (1, ω2, ω)

(1, ω, ω2) (1, ω2, ω) (1, 1, 1)

(1, ω2, ω) (1, 1, 1) (1, ω, ω2)

→
1 2 3

2 3 1

3 1 2

A quantum Latin square, where ω := e2π/3.
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Group algebras and quantum Latin squares
Quantum Latin Squares

Quantum Latin squares

1

2

(1, 1, 1, 1) (1,−1, 1,−1) (1, 1,−1,−1) (1,−1,−1, 1)

(1,−i,−1, i) (1, i,−1,−i) (1,−i, 1,−i) (1, i, 1, i)

(1,−1, 1,−1) (1, 1, 1, 1) (1,−1,−1, 1) (1, 1,−1,−1)

(1, i,−1,−i) (1,−i,−1, i) (1, i, 1, i) (1,−i, 1,−i)

Remark

Given a quantum Latin square, we can form a quantum permutation
matrix by taking ui,j to be the projection onto the i, j-entry.
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Group algebras and quantum Latin squares
Group-invariance

Group-invariant QLS

Definition

For finite groups G and H , we say that a quantum Latin square
Ψ = (ψa,b) is (G,H)-invariant if its rows are indexed by G and its
columns by H and the inner product ⟨ψa,b | ψc,d⟩ depends only on the
values of a−1c ∈ G and b−1d ∈ H .

13 / 28



Group algebras and quantum Latin squares
Group-invariance

Again this example

Let G = Z4 = ⟨g⟩ and H = Z2
2 = ⟨x, y⟩.

e x y xy

e (1, 1, 1, 1) (1,−1, 1,−1) (1, 1,−1,−1) (1,−1,−1, 1)

g (1,−i,−1, i) (1, i,−1,−i) (1,−i, 1,−i) (1, i, 1, i)

g2 (1,−1, 1,−1) (1, 1, 1, 1) (1,−1,−1, 1) (1, 1,−1,−1)

g3 (1, i,−1,−i) (1,−i,−1, i) (1, i, 1, i) (1,−i, 1,−i)

Take for example ψg,e, ψe,y and ψg2,x, ψg,xy .

Then

g−1e = g−1 = g−2g and e−1y = y = x−1xy.

Indeed we have

⟨ψg,e|ψe,y⟩ =
1− i

2
= ⟨ψg2,x|ψg,xy⟩.
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Group algebras and quantum Latin squares
Group-invariance

Transformation matrices

Definition

Suppose that Ψ = (ψa,b) is a (G,H)-invariant quantum Latin square.
Define its transformation matrix, denoted UΨ, to be the |G| × |H|
matrix defined entrywise as

UΨ
g,h = ⟨ψa,b | ψc,d⟩

for some a, c ∈ G, b, d ∈ H such that a−1c = g and b−1d = h.

Our previous example is (Z4,Z2
2)-invariant with the following

transformation matrix where α = 1+i
2 and β = 1−i

2 .


1 0 0 0

0 0 α β

0 1 0 0

0 0 β α


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Group algebras and quantum Latin squares
Group-invariance

Properties

Let U ∈ CG×H be the transformation matrix for a (G,H)-invariant
quantum Latin square. Then U satisfies the following:

It is unitary,
Ua,b = Ua−1,b−1 , for all a ∈ G, b ∈ H , and

Uab,c =
∑

x,y∈H
xy=c

Ua,xUb,y for all a, b ∈ G and c ∈ H .

In fact, these three conditions are sufficient.
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Group algebras and quantum Latin squares
Group-invariance

Theorem

A matrix, U ∈ CG×H is a transformation matrix for some (G,H)-invariant
quantum Latin square if and only if

It is unitary,
Ua,b = Ua−1,b−1 , for all a ∈ G, b ∈ H , and

Uab,c =
∑

x,y∈H
xy=c

Ua,xUb,y for all a, b ∈ G and c ∈ H .
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Group algebras and quantum Latin squares
Where are the graphs?

Cayley graphs

Definition

Let G be a group and D ⊆ G\{e} a subset with D−1 = D. The Cayley
graph, X := Cay(G,D), has vertex set V (X) := G, and

g ∼ h if hg−1 ∈ D.

The set D is called the connection set of the graph.

A vague and mostly useless statement

We can use a (G,H)-transformation matrix, to construct pairs, (X,Y )
of quantum isomorphic graphs where X = Cay(G,D) and
Y = Cay(H,D′).

19 / 28
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Group algebras and quantum Latin squares
Where are the graphs?

The construction

Let U be a (G,H)-transformation matrix. We construct an auxiliary
graph with vertex set G ∪H :

g1

g2

g3

gn

h1

h2

h3

hn

Ug1,h2
̸= 0

g1

h2
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Group algebras and quantum Latin squares
Where are the graphs?

The construction

D1 D′
1

Let C1, . . . , Ck be the connected
components of this graph and define
Di := Ci ∩G and D′

i := Ci ∩H .

Then the Cayley graphs Cay(G,Di) and
Cay(H,D′

i) are quantum isomorphic for all
i = 1, . . . , k.

More generally, for any subset I of [k],
Cay

(
G,

∑
i∈I Di

)
and Cay

(
H,

∑
i∈I D

′
i

)
are quantum isomorphic.

21 / 28
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Group algebras and quantum Latin squares
A theorem

Existence

For which groups G,H does a (G,H)-transformation matrix exist?

Theorem (Árnadóttir & Roberson, 2025+)

Let G,H be finite groups. A (G,H)-invariant QLS exists if and only if the
group algebras of G and H are isomorphic.

Remark

The group algebras of G and H being isomorphic is equivalent to the
degrees of their irreducible characters being the same.

23 / 28
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Group algebras and quantum Latin squares
A theorem

Proof - part 1

For a group G with left regular representation λ, the group algebra is
given by ΛG := span{λ(g) : g ∈ G}.

Lemma

Let G be a finite group with left regular representation λ and irreducible,
unitary representations ρ1, . . . , ρr with degrees d1 . . . , dr. Then the map

ΦG : ΛG →
r⊕

i=1

(
Idi

⊗Mdi
(C)

)
, λ(g) 7→

r⊕
i=1

(
Idi

⊗ ρi(g)
)

(extended linearly) is an algebra isomorphism that preserves trace and
commutes with the conjugate transpose.

24 / 28
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Group algebras and quantum Latin squares
A theorem

Proof - part 2

Lemma

Let G and H be groups with isomorphic group algebras, ΛG and ΛH . Then
there exists an isomorphism, Ψ : ΛG → ΛH that preserves trace and
commutes with the conjugate transpose.
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Group algebras and quantum Latin squares
A theorem

Proof - part 3

Lemma

Let G and H be finite groups with left regular representations λ and λ′,
respectively. Then U ∈ CG×H is a (G,H)-transformation matrix if and
only if the linear map ΨU : ΛH → ΛG given by

ΨU (λ
′(b)) =

∑
a∈G

Ua,bλ(a)

is an algebra isomorphism preserving trace and conjugate transpose.
Moreover, every such isomorphism from ΛH to ΛG is attained in this way.
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Group algebras and quantum Latin squares
A theorem

Conclusion of proof

Proof. It follows from the previous lemmas that:

There is one-to-one correspondence between
(G,H)-transformation matrices and isomorphisms between the
algebras that preserve trace and conjugate transpose.

Such isomorphisms exists if and only if the algebras are
isomorphic.

Thus the existence theorem follows.
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A theorem

Thank you

My paper

My cat
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Group algebras and quantum Latin squares

Example

Let G and H be finite abelian groups with |G| = |H| =: n. Let
χ1, . . . , χn and χ′

1, . . . , χ
′
n be the irreducible characters of G and H ,

respectively.

For g ∈ G and h ∈ H , define

ψg,h :=
1

n

(
χ1(g

−1)χ′
1(h), . . . , χn(g

−1)χ′
n(h)

)
.

Then
(
ψg,h

)
g∈G,h∈H

is a (G,H)-invariant quantum Latin square with
inner product matrix

U =
1

n2
M∗M ′

where M and M ′ are the character tables of G and H , respectively,
and M∗ denotes the conjugate transpose of M .
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Group algebras and quantum Latin squares

Example

Take G := Z4 and H := Z2
2.


1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



We get the following (G,H)-invariant quantum Latin square:

1

2

(1, 1, 1, 1) (1,−1, 1,−1) (1, 1,−1,−1) (1,−1,−1, 1)

(1,−i,−1, i) (1, i,−1,−i) (1,−i, 1,−i) (1, i, 1, i)

(1,−1, 1,−1) (1, 1, 1, 1) (1,−1,−1, 1) (1, 1,−1,−1)

(1, i,−1,−i) (1,−i,−1, i) (1, i, 1, i) (1,−i, 1,−i)
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