Metathin Table Algebras and Association Schemes

Harvey I. Blau

In honor of Paul Terwilliger

June 2025, Kranjska Gora, Slovenia

C. Wroblewski, B. Xu

This includes joint work with Caroline Wroblewski and Bangteng Xu.

It extends results of Bang and Hirasaka (2005) on association schemes.

Definition: Table Algebra

A table algebra (A, B) is a finite dimensional algebra A over the complex numbers \mathbb{C} , and a distinguished basis B that contains 1_A , such that the following properties hold:

(1a) The structure constants for B are all non-negative real numbers; that is, for all $b, c \in B$,

$$bc = \sum_{d \in B} \beta_{bcd} d$$
, for some $\beta_{bcd} \in \mathbb{R}_{\geq 0}$.

- (1b) There is an algebra anti-automorphism (denoted by *) of A such that $(a^*)^* = a$ for all $a \in A$; and $B^* = B$.
- (1c) For all $b, c \in B$,

$$\beta_{bc1} = 0 \text{ if } c \neq b^*; \text{ and } \beta_{bb^*1} (= \beta_{b^*b1}) > 0.$$

Definition: Degree Map, Standard

Let (A, B) be a table algebra. Then (A, B) has a unique degree map, which means an algebra homomorphism $\delta : A \to \mathbb{C}$ such that

$$\delta(B) \subseteq \mathbb{R}_{>0}$$
.

A degree map δ is called standard if for all $b \in B$,

$$\delta(b) = \beta_{bb*1}.$$

In this case, (A, B) is called a *standard table algebra* (STA).

Definition: Order

Let (A, B) be a STA.

For any $S \subseteq B$, the *order* of S is defined as

$$o(S) := \sum_{b \in S} \delta(b).$$

Also,

$$S^+ := \sum_{b \in S} b, \quad S^* := \{b^* | \ b \in S\}.$$

Example of STA: Adjacency Algebra of an Association Scheme

An association scheme is a pair (\mathcal{R}, X) , where \mathcal{R} is a set of relations on an underlying set X, such that

- a) \mathcal{R} forms a partition of $X \times X$.
- b) The identity relation $1_X := \{(x, x) \mid x \in X\} \in \mathcal{R}$.
- c) If $r \in \mathcal{R}$, then $r^T := \{(y, x) \mid (x, y) \in r\} \in \mathcal{R}$.
- d) Let $r, s, t \in \mathcal{R}$ and $x, z \in X$ with $(x, z) \in t$. Then the number of $y \in X$ with $(x, y) \in r$ and $(y, z) \in s$ depends only on t, and not the choice of (x, z).

Adjacency Algebra continued

 $B = \text{set of } 0 \setminus 1 \text{ adjacency matrices of the relations in } \mathcal{R}.$

A = span (B), the adjacency algebra.

Then (A, B) is a STA.

For all $b \in B$, $b^* = b^T$, $\delta(b) = \text{sum of any row of } b$, and o(B) = |X|.

Set $Adj(\mathcal{R}) := B$.

Combinatorial Isomorphism of Schemes

A combinatorial isomorphism of schemes (\mathcal{R},X) and (\mathcal{R}',X') is a

bijective map $\phi: \ X \cup \mathcal{R} \ o \ X' \cup \mathcal{R}'$ such that

$$\phi(X) = X', \quad \phi(\mathcal{R}) = \mathcal{R}',$$

and $x, y \in X$ and $r \in \mathcal{R}$ with $(x, y) \in r \implies (\phi(x), \phi(y)) \in \phi(r)$.

When such a map exists, call the schemes *combinatorially isomorphic*, and write

$$(\mathcal{R}', X') \cong_{comb} (\mathcal{R}, X).$$

Definition: Closed Subset, Cosets, Quotient Algebra

Let (A, B) be a STA.

- (i) For $a = \sum_{b \in B} \alpha_b b$, $\alpha_b \in \mathbb{C}$, $Supp(a) := \{b \in B | \alpha_b \neq 0\}$.
- (ii) For $S, T \subseteq B, ST := \bigcup_{s \in S, t \in T} \text{Supp}(st)$.
- (iii) A closed subset of B is $\emptyset \neq C \subseteq B$ such that $CC^* \subseteq C$.
- (iv) For a closed subset *C*, the *right cosets bC*, the *left cosets Cb*, and the *double cosets CbC* each partition *B*.
- (v) For closed subset C and $b \in B$, $b//C := \frac{(CbC)^+}{o(C)}$,

$$B//C := \{b//C | b \in B\}, A//C := \mathbb{C}(B//C).$$

Quotient algebra (A//C, B//C) is again a standard table algebra, and $o(B) = o(B//C) \cdot o(C)$.

Definition: Isomorphism

Let (A, B), (U, V) be STAs. A *table algebra isomorphism* from (A, B) to (U, V) is an algebra isomorphism

$$\phi: A \to U$$
 with $\phi(B) = V$.

(Thus, the two STAs share the same structure constants.)

Write $B \cong V$.

Denote the group of automorphisms of (A, B) by Aut(A, B).

Definition: Thin Radical, Thin Residue

Let (A, B) be a STA.

 $O_{\vartheta}(B)$, the *thin radical* of B is the set of all $I \in B$ such that

$$I^*I=1_A$$

the *thin elements* of B. $O_{\vartheta}(B)$ is a group under the algebra multiplication; and lb and bl are in B for all $l \in O_{\vartheta}(B)$ and $b \in B$.

 $O^{\vartheta}(B)$, the *thin residue* of B, is the smallest closed subset C of B such that B//C is a group (i.e. such that $B//C = O_{\vartheta}(B//C)$).

Hypothesis: Metathin STA

We assume from now on that (A, B) is a metathin STA. That is,

$$O^{\vartheta}(B) \subseteq O_{\vartheta}(B),$$

so that $O^{\vartheta(B)}$ is itself a group. Let L be any closed subset of B such that

$$O^{\vartheta}(B) \subseteq L \subseteq O_{\vartheta}(B)$$
, and $G := B//L$ is a group.

Now L and G are both groups, and for all $b \in B$, bL = Lb = LbL, so there is no distinction among these right, left, and double cosets.

Transversal

Choose a transversal (set of coset reps) $\mathcal{T}:=\mathcal{T}(L,B)$ of L in B, with $b_1=1_A$. Thus,

$$\mathcal{T} = \{b_g \mid g \in G\}, \quad B = \bigcup_{g \in G} b_g L.$$

Some Normal Subgroups of L

For all $g \in G$, define

$$S_g := \operatorname{\mathsf{Supp}}(b_g b_g^*)$$

Then

$$S_g = \{x \in L \mid xb_g = b_g\},\$$

 S_g is a normal subgroup of L, and

 S_g is independent of the choice of \mathcal{T} .

Also,

$$S_{g^{-1}} = \{ x \in L \mid b_g x = b_g \}.$$

Normal Subgroups and Isomorphisms

Because $b_g L = Lb_g$ for each $g \in G$, there exists an isomorphism

$$\iota_{g} := L/S_{g} \rightarrow L/S_{g^{-1}},$$

where

$$lb_g = b_g l^{\iota_g}$$
 for all $l \in L$.

Furthermore, for all $g, h \in G$,

$$(S_g S_h)^{\iota_g} = S_{g^{-1}} S_{g^{-1}h}.$$
 (I)

Set
$$S := \{S_g \mid g \in G\}, \quad \mathcal{M} := \{\iota_g \mid g \in G\}.$$

Factor Set

There exists a function $\alpha: G \times G \rightarrow L$ such that for all $g,h,k \in G$ and all $l \in L$,

$$lpha(1,1) = 1$$
 (II); $lpha(g,h)I^{\iota_g\iota_h} \equiv I^{\iota_{gh}}lpha(g,h) \mod S_{(gh)^{-1}}S_{h^{-1}}$ (III); $lpha(gh,k)lpha(g,h)^{\iota_k} \equiv lpha(g,hk)lpha(h^{-1},hk)^{-1}lpha(h^{-1},h)^{\iota_k}$ $\mod S_{(ghk)^{-1}}S_{(hk)^{-1}}S_{k^{-1}}$ (IV).

Multiplication in (A, B)

For all $g, h \in G$ and all $l_1, l_2 \in L$,

$$(b_g I_1)(b_h I_2) = |S_{g^{-1}} \cap S_h| \sum_{I \in \mathcal{T}(S_{(gh)^{-1}}, S_{(gh)^{-1}} S_{h^{-1}})} b_{gh} \alpha(g, h) II_1^{\iota_h} I_2. \quad (V)$$

So we have the following

Results

THEOREM A Any metathin STA (A, B) is determined to isomorphism by L, G, S, M, and α .

COROLLARY The structure constants of any metathin STA are integers, and they are constant (when nonzero) over any product of two distinguished basis elements.

Cohort

Let cohort A :=

$$\{\beta: \textit{G} \times \textit{G} \rightarrow \textit{L} \mid \beta(\textit{g},\textit{h}) \equiv \alpha(\textit{g},\textit{h}) \bmod \textit{S}_{(\textit{g}\textit{h})^{-1}} \textit{S}_{\textit{h}^{-1}}, \ \text{all } \textit{g},\textit{h} \in \textit{G}\}$$

Substitution of β for α leaves (I) - (V) unchanged.

We say that (A, B) is of *type* (L, G, S, M, A).

Converse

THEOREM B. Given L, G, \mathcal{S} (with $S_1=\{1_L\}$), \mathcal{M} , \mathcal{A} such that (I)-(IV) hold,

there exists a unique (up to table algebra isomorphism) metathin

STA (A, B) whose multiplication is given by (V), and which is of

type (L, G, S, M, A).

Metathin STAs as Schemes

Let (A, B) be a metathin STA of type $(L, G, S, \mathcal{M}, A)$.

Fix $\alpha \in \mathcal{A}$, define $\hat{\alpha}(g, h) := \alpha(g, h)\alpha(h^{-1}, h)^{-1}$.

Let
$$X := \{(g, I) \mid g \in G, I \in L\}.$$

Each $e \in G$, $p \in L$, define relation $rel_{\alpha}(b_e p)$ on X:

$$((g,l),(h,l_1))\in \ \mathsf{rel}(b_ep)$$

$$\iff$$
 $e = gh^{-1}$ and $p \equiv l^{i_{gh^{-1}}} \hat{\alpha}(g, h^{-1}) l_1^{-1} \mod S_{hg^{-1}}.$

Denote the set of these relations as

$$\mathcal{R}_{\alpha} := \{ \operatorname{rel}_{\alpha}(b_{e}p) \mid e \in G, p \in L \}.$$

Metathin STAs as Schemes continued

Define \mathcal{A}' as the set of all $\alpha \in \mathcal{A}$ such that

$$\alpha(gh,k)\alpha(g,h)^{\iota_k} \equiv \alpha(g,hk)\alpha(h^{-1},hk)^{-1}\alpha(h^{-1},h)^{\iota_k}$$

$$\mod S_{(ghk)^{-1}}S_{k^{-1}}.$$

THEOREM C. (i) If (A, B) is isomorphic to the adjacency algebra of some association scheme, then for some $\alpha \in \mathcal{A}'$, the association scheme is combinatorially isomorphic to the set of relations \mathcal{R}_{α} on set $X = G \times L$.

(ii) For any $\alpha \in \mathcal{A}'$, $(\mathcal{R}_{\alpha}, X)$ is an association scheme such that $B \cong \operatorname{Adj}(\mathcal{R}_{\alpha})$ via $b \leftrightarrow \operatorname{rel}_{\alpha}(b)$ for all $b \in B$.

Combinatorial Isomorphism of Schemes from a Metathin STA

Assume for the next (and last) two theorems that (A, B) is a metathin STA of type $(L, G, \mathcal{S}, \mathcal{M}, \mathcal{A})$ with $L = O^{\vartheta}(B)$.

If $\psi \in Aut(A, B)$, we have $\psi(B) = B$, $\psi(L) = L$, and ψ induces a group automorphism of G such that for all $g \in G$,

$$\psi(b_g) = b_{\psi(g)}u_{\psi,g}$$
 for some $u_{\psi,g} \in L$ (defined mod $S_{\psi(g^{-1})}$).

DEFINITION. Fix $\alpha \in \mathcal{A}'$, $\psi \in Aut(A, B)$, $w \in G$. A set

$$\{z_g\mid g\in G\}\subseteq L$$

is called α - ψ -w-admissible if, for all $g \in G$,

$$z_g \equiv \alpha(\psi(g), \psi(g)^{-1})(u_{\psi,g}z_1)^{\iota_{\psi(g^{-1})}}\hat{\alpha}(w, w^{-1}\psi(g^{-1})) \mod S_{\psi(g)}.$$

Combinatorial Isomorphism of Schemes continued

THEOREM D. Let $\alpha, \beta \in \mathcal{A}'$. Then $(\mathcal{R}_{\alpha}, X) \cong_{comb} (\mathcal{R}_{\beta}, X)$ if and only if for some $\psi \in Aut(A, B)$, $w \in G$, and an α - ψ -w-admissible set $\{z_g \mid g \in G\} \subseteq L$, then for all $g, h \in G$,

$$\hat{\beta}(\mathbf{g},\mathbf{h}) \, \equiv \, \psi^{-1} \big(\mathbf{u}_{\psi,\mathbf{gh}}^{-1} \mathbf{z}_{\mathbf{g}}^{\iota_{\psi(\mathbf{gh})}} \hat{\alpha}(\psi(\mathbf{g})\mathbf{w},\mathbf{w}^{-1}\psi(\mathbf{h})) \mathbf{z}_{\mathbf{h}^{-1}}^{-1} \big) \quad \text{mod} \ S_{(\mathbf{gh})^{-1}}.$$

THEOREM E. Assume that L is abelian. Let $\alpha \in \mathcal{A}'$, $\psi \in Aut(A, B)$, $w \in G$; and let $\{z_g \mid g \in G\}$ be an α - ψ -w-admissible subset of L. Define $\beta : G \times G \to L$ by

$$\beta(g,h) := \psi^{-1} \left(u_{\psi,gh}^{-1} z_g^{\iota_{\psi(gh)}} \hat{\alpha}(\psi(g)w, w^{-1}\psi(h)) z_{h^{-1}}^{-1} \right) \alpha(h^{-1}, h)$$

mod $S_{(gh)^{-1}}$, for all $g, h \in G$.

Then $\beta \in \mathcal{A}'$, and $(\mathcal{R}_{\beta}, X) \cong_{comb} (\mathcal{R}_{\alpha}, X)$.

