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Definition: Table Algebra

A table algebra (A,B) is a finite dimensional algebra A over the
complex numbers C, and a distinguished basis B that contains 1A,
such that the following properties hold:

(1a) The structure constants for B are all non-negative real
numbers; that is, for all b, c ∈ B,

bc =
∑
d∈B

βbcdd , for some βbcd ∈ R≥0.

(1b) There is an algebra anti-automorphism (denoted by ∗) of A
such that (a∗)∗ = a for all a ∈ A; and B∗ = B.

(1c) For all b, c ∈ B,

βbc1 = 0 if c ̸= b∗; and
βbb∗1(= βb∗b1) > 0.



Definition: Degree Map, Standard

Let (A,B) be a table algebra. Then (A,B) has a unique degree
map, which means an algebra homomorphism δ : A → C such that

δ(B) ⊆ R>0.

A degree map δ is called standard if for all b ∈ B,

δ(b) = βbb∗1.

In this case, (A,B) is called a standard table algebra (STA).



Definition: Order

Let (A,B) be a STA.

For any S ⊆ B, the order of S is defined as

o(S) :=
∑
b∈S

δ(b).

Also,
S+ :=

∑
b∈S

b, S∗ := {b∗| b ∈ S}.



Example of STA: Adjacency Algebra of an Association
Scheme

An association scheme is a pair (R,X ), where R is a set of
relations on an underlying set X , such that

a) R forms a partition of X × X .

b) The identity relation 1X := {(x , x) | x ∈ X} ∈ R.

c) If r ∈ R, then rT := {(y , x) | (x , y) ∈ r} ∈ R.

d) Let r , s, t ∈ R and x , z ∈ X with (x , z) ∈ t. Then the number
of y ∈ X with (x , y) ∈ r and (y , z) ∈ s depends only on t, and not
the choice of (x , z).



Adjacency Algebra continued

B = set of 0\1 adjacency matrices of the relations in R.

A = span (B), the adjacency algebra.

Then (A,B) is a STA.

For all b ∈ B, b∗ = bT , δ(b) = sum of any row of b, and
o(B) = |X |.

Set Adj(R) := B.



Combinatorial Isomorphism of Schemes

A combinatorial isomorphism of schemes (R,X ) and (R′,X ′) is a

bijective map ϕ : X ∪R → X ′ ∪R′ such that

ϕ(X ) = X ′, ϕ(R) = R′,

and x , y ∈ X and r ∈ R with (x , y) ∈ r ⇒ (ϕ(x), ϕ(y)) ∈ ϕ(r).

When such a map exists, call the schemes combinatorially
isomorphic, and write

(R′,X ′) ∼=comb (R,X ).



Definition: Closed Subset, Cosets, Quotient Algebra

Let (A,B) be a STA.

(i) For a =
∑

b∈B αbb, αb ∈ C, Supp(a) := {b ∈ B| αb ̸= 0}.
(ii) For S ,T ⊆ B, ST :=

⋃
s∈S ,t∈T Supp(st).

(iii) A closed subset of B is ∅ ≠ C ⊆ B such that CC ∗ ⊆ C .

(iv) For a closed subset C , the right cosets bC , the left cosets Cb,
and the double cosets CbC each partition B.

(v) For closed subset C and b ∈ B, b//C := (CbC)+

o(C) ,

B//C := {b//C | b ∈ B}, A//C := C(B//C ).

Quotient algebra (A//C ,B//C ) is again a standard table
algebra, and o(B) = o(B//C ) · o(C ).



Definition: Isomorphism

Let (A,B), (U,V ) be STAs. A table algebra isomorphism from
(A,B) to (U,V ) is an algebra isomorphism

ϕ : A → U with ϕ(B) = V .

(Thus, the two STAs share the same structure constants.)

Write B ∼= V .

Denote the group of automorphisms of (A,B) by Aut(A,B).



Definition: Thin Radical, Thin Residue

Let (A,B) be a STA.

Oϑ(B), the thin radical of B is the set of all l ∈ B such that

l∗l = 1A,

the thin elements of B. Oϑ(B) is a group under the algebra
multiplication; and lb and bl are in B for all l ∈ Oϑ(B) and b ∈ B.

Oϑ(B), the thin residue of B, is the smallest closed subset C of B
such that B//C is a group (i.e. such that B//C = Oϑ(B//C )).



Hypothesis: Metathin STA

We assume from now on that (A,B) is a metathin STA. That is,

Oϑ(B) ⊆ Oϑ(B),

so that Oϑ(B) is itself a group. Let L be any closed subset of B
such that

Oϑ(B) ⊆ L ⊆ Oϑ(B), and G := B//L is a group.

Now L and G are both groups, and for all b ∈ B, bL = Lb = LbL,
so there is no distinction among these right, left, and double cosets.



Transversal

Choose a transversal (set of coset reps) T := T (L,B) of L in B,
with b1 = 1A. Thus,

T = {bg | g ∈ G}, B =
⋃̇

g∈G
bgL.



Some Normal Subgroups of L

For all g ∈ G , define

Sg := Supp(bgb
∗
g )

Then
Sg = {x ∈ L | xbg = bg},

Sg is a normal subgroup of L, and

Sg is independent of the choice of T .

Also,
Sg−1 = {x ∈ L | bgx = bg}.



Normal Subgroups and Isomorphisms

Because bgL = Lbg for each g ∈ G , there exists an isomorphism

ιg := L/Sg → L/Sg−1 ,

where

lbg = bg l
ιg for all l ∈ L.

Furthermore, for all g , h ∈ G ,

(SgSh)
ιg = Sg−1Sg−1h. (I)

Set S := {Sg | g ∈ G}, M := {ιg | g ∈ G}.



Factor Set

There exists a function α : G × G → L such that for all
g , h, k ∈ G and all l ∈ L,

α(1, 1) = 1 (II);

α(g , h)l ιg ιh ≡ l ιghα(g , h) mod S(gh)−1Sh−1 (III);

α(gh, k)α(g , h)ιk ≡ α(g , hk)α(h−1, hk)−1α(h−1, h)ιk

mod S(ghk)−1S(hk)−1Sk−1 (IV).



Multiplication in (A,B)

For all g , h ∈ G and all l1, l2 ∈ L,

(bg l1)(bhl2) = |Sg−1∩Sh|
∑

l∈T (S(gh)−1 ,S(gh)−1Sh−1 )

bghα(g , h)ll
ιh
1 l2. (V)

So we have the following



Results

THEOREM A Any metathin STA (A,B) is determined to
isomorphism by L, G , S, M, and α.

COROLLARY The structure constants of any metathin STA are
integers, and they are constant (when nonzero) over any product
of two distinguished basis elements.



Cohort

Let cohort A :=

{β : G×G → L | β(g , h) ≡ α(g , h)mod S(gh)−1Sh−1 , all g , h ∈ G}

Substitution of β for α leaves (I) - (V) unchanged.

We say that (A,B) is of type (L,G ,S,M,A).



Converse

THEOREM B. Given L, G , S (with S1 = {1L}), M, A such that
(I)-(IV) hold,

there exists a unique (up to table algebra isomorphism) metathin

STA (A, B) whose multiplication is given by (V), and which is of

type (L,G ,S,M,A).



Metathin STAs as Schemes

Let (A,B) be a metathin STA of type (L,G ,S,M,A).

Fix α ∈ A, define α̂(g , h) := α(g , h)α(h−1, h)−1.

Let X := {(g , l) | g ∈ G , l ∈ L}.

Each e ∈ G , p ∈ L, define relation relα(bep) on X :

((g , l), (h, l1)) ∈ rel(bep)

⇐⇒ e = gh−1 and p ≡ l igh−1 α̂(g , h−1)l−1
1 mod Shg−1 .

Denote the set of these relations as

Rα := { relα(bep) | e ∈ G , p ∈ L}.



Metathin STAs as Schemes continued

Define A′ as the set of all α ∈ A such that

α(gh, k)α(g , h)ιk ≡ α(g , hk)α(h−1, hk)−1α(h−1, h)ιk

mod S(ghk)−1Sk−1 .

THEOREM C. (i) If (A,B) is isomorphic to the adjacency algebra
of some association scheme, then for some α ∈ A′, the association
scheme is combinatorially isomorphic to the set of relations Rα on
set X = G × L.

(ii) For any α ∈ A′, (Rα,X ) is an association scheme such that
B ∼= Adj(Rα) via b ↔ relα(b) for all b ∈ B.



Combinatorial Isomorphism of Schemes from a Metathin
STA

Assume for the next (and last) two theorems that (A,B) is a
metathin STA of type (L,G ,S,M,A) with L = Oϑ(B).

If ψ ∈ Aut(A,B), we have ψ(B) = B, ψ(L) = L, and ψ induces a
group automorphism of G such that for all g ∈ G ,

ψ(bg ) = bψ(g)uψ,g for some uψ,g ∈ L (defined mod Sψ(g−1)).

DEFINITION. Fix α ∈ A′, ψ ∈ Aut(A,B), w ∈ G . A set

{zg | g ∈ G} ⊆ L

is called α-ψ-w -admissible if, for all g ∈ G ,

zg ≡ α(ψ(g), ψ(g)−1)(uψ,gz1)
ιψ(g−1)α̂(w ,w−1ψ(g−1)) mod Sψ(g).



Combinatorial Isomorphism of Schemes continued

THEOREM D. Let α, β ∈ A′. Then (Rα,X ) ∼=comb (Rβ,X )
if and only if for some ψ ∈ Aut(A,B), w ∈ G , and an
α-ψ-w -admissible set {zg | g ∈ G} ⊆ L, then for all g , h ∈ G ,

β̂(g , h) ≡ ψ−1
(
u−1
ψ,ghz

ιψ(gh)
g α̂(ψ(g)w ,w−1ψ(h))z−1

h−1

)
mod S(gh)−1 .

THEOREM E. Assume that L is abelian. Let α ∈ A′,
ψ ∈ Aut(A,B), w ∈ G ; and let {zg | g ∈ G} be an
α-ψ-w -admissible subset of L. Define β : G × G → L by

β(g , h) :≡ ψ−1
(
u−1
ψ,ghz

ιψ(gh)
g α̂(ψ(g)w ,w−1ψ(h))z−1

h−1

)
α(h−1, h)

mod S(gh)−1 , for all g , h ∈ G .

Then β ∈ A′, and (Rβ, X) ∼=comb (Rα,X ).


