b-Coloring Rooted Products of Graphs

Michael S. Lang

Department of Mathematics Bradley University

(joint work with Sarah Bockting-Conrad and Marko Jakovac)

TerwilligerFest June 2025 Kranjska Gora, Slovenija

b-Coloring (Irving and Manlove, 1999)

Definition

Consider a graph, G, whose vertices are properly colored.

A color-dominating vertex (CDV)

is one that is adjacent to at least one vertex of each other color class.

We have a b-coloring when each color class includes a CDV.

If there are k colors, we might say it is a k-b-coloring.

The *b-chromatic number* of G, denoted by $\varphi(G)$,

is the largest k such that G admits a k-b-coloring.

b-Coloring (Irving and Manlove, 1999)

Definition

Consider a graph, G, whose vertices are properly colored.

A color-dominating vertex (CDV)

is one that is adjacent to at least one vertex of each other color class.

We have a b-coloring when each color class includes a CDV.

If there are k colors, we might say it is a k-b-coloring.

The *b-chromatic number* of G, denoted by $\varphi(G)$,

is the largest k such that G admits a k-b-coloring.

Theorem

Determining $\varphi(G)$ is NP-hard in general but polynomial for trees.

Motivation and Application

Motivation and Application

Poset

Start with a proper coloring of a graph. If there is a color class that does not contain a CDV, then (properly) recolor every vertex from this class and remove this color from further consideration. Iterating this process eventually yields a b-coloring, which can be considered a minimal element.

Motivation and Application

Poset

Start with a proper coloring of a graph.

If there is a color class that does not contain a CDV, then (properly) recolor every vertex from this class and remove this color from further consideration.

Iterating this process eventually yields a b-coloring, which can be considered a minimal element.

Conflict Avoidance

The b-chromatic number can be thought of as indicating how many communities can be placed in an area so that every community has a representative that is able to communicate with all of the other communities, reducing misunderstandings.

Some Basic Examples

 $\varphi(K_{m,n})=2$

Some Basic Examples

$$\varphi(K_{m,n})=2$$

$$\varphi(P_n) = \varphi(C_n) = 3 \text{ for } n \ge 5$$

Observation

$$\chi(G) \leq \varphi(G) \leq \Delta(G) + 1$$

Observation

$$\chi(G) \leq \varphi(G) \leq \Delta(G) + 1$$

These expressions can collide.

Observation

$$\chi(G) \leq \varphi(G) \leq \Delta(G) + 1$$

These expressions can collide.

Comparing φ and χ

The difference between χ and φ can be arbitrarily large.

For example, if G is $K_{n,n}$ minus a matching, then $\chi(G) = 2$ but $\varphi(G) = n$.

Observation

$$\chi(G) \leq \varphi(G) \leq \Delta(G) + 1$$

These expressions can collide.

Comparing φ and χ

The difference between χ and φ can be arbitrarily large.

For example, if G is $K_{n,n}$ minus a matching, then $\chi(G) = 2$ but $\varphi(G) = n$.

Comparing φ and $\Delta+1$

The difference between φ and $\Delta+1$ can also be arbitrarily large.

For example, if G is $K_{1,n}$, then $\varphi(G) = 2$ but $\Delta(G) = n$.

Observation

A k-b-coloring needs at least k vertices with degree at least k-1. These are the CDV candidates.

Observation

A k-b-coloring needs at least k vertices with degree at least k-1. These are the CDV candidates.

Definition (Irving and Manlove, 1999)

Label the vertices of G so $d_G(v_1) \geq d_G(v_2) \geq \cdots \geq d_G(v_n)$. We call

$$m(G) = \max\{i : d_G(v_i) \ge i - 1\}$$

the m-degree of G.

Observation

A k-b-coloring needs at least k vertices with degree at least k-1. These are the CDV candidates.

Definition (Irving and Manlove, 1999)

Label the vertices of G so $d_G(v_1) \geq d_G(v_2) \geq \cdots \geq d_G(v_n)$. We call

$$m(G) = \max\{i : d_G(v_i) \ge i - 1\}$$

the m-degree of G.

An Improvement

$$\varphi(G) \leq m(G) \leq \Delta(G) + 1$$

Agreement of Upper Bounds

If G is d-regular, then $m(G) = \Delta(G) + 1 = d + 1$.

Agreement of Upper Bounds

If G is d-regular, then $m(G) = \Delta(G) + 1 = d + 1$.

Many theorems with added hypotheses guarantee $\varphi(G) = d + 1$.

Agreement of Upper Bounds

If G is d-regular, then $m(G) = \Delta(G) + 1 = d + 1$.

Many theorems with added hypotheses guarantee $\varphi(G) = d + 1$.

Cycle Structure (Kouider and El Sahili, 2006)

Suppose G has girth 5 and no 6-cycles.

Agreement of Upper Bounds

If G is d-regular, then $m(G) = \Delta(G) + 1 = d + 1$.

Many theorems with added hypotheses guarantee $\varphi(G) = d + 1$.

Cycle Structure (Kouider and El Sahili, 2006)

Suppose G has girth 5 and no 6-cycles.

High Order (Cabello and Jakovac, 2011)

Suppose G has at least $2d^3$ vertices.

Agreement of Upper Bounds

If G is d-regular, then $m(G) = \Delta(G) + 1 = d + 1$.

Many theorems with added hypotheses guarantee $\varphi(G) = d + 1$.

Cycle Structure (Kouider and El Sahili, 2006)

Suppose G has girth 5 and no 6-cycles.

High Order (Cabello and Jakovac, 2011)

Suppose G has at least $2d^3$ vertices.

Cubic with Four Exceptions (Jakovac and Klavžar, 2010)

Suppose G is connected with d=3 but is not $K_3 \square K_2$, $K_{3,3}$, Petersen, or another 10-vertex sporadic example.

Some Results on Products

Some Results on Products

Cartesian

- F. A. Chaouche, A. Berrachedi: "Some bounds for the b-chromatic number of a generalized Hamming graphs"; Far East J. Appl. Math. 26 (2007), 375–391
- F. Maffray, A. Silva: "b-colouring the Cartesian product of trees and some other graphs"; *Discrete Appl. Math.* 161 (2013), 650–669
- C. Guo, M. Newman: "On the b-chromatic number of Cartesian products"; *Discrete Appl. Math.* 239 (2018), 82–93

Some Results on Products

Cartesian

- F. A. Chaouche, A. Berrachedi: "Some bounds for the b-chromatic number of a generalized Hamming graphs"; Far East J. Appl. Math. 26 (2007), 375–391
- F. Maffray, A. Silva: "b-colouring the Cartesian product of trees and some other graphs"; *Discrete Appl. Math.* 161 (2013), 650–669
- C. Guo, M. Newman: "On the b-chromatic number of Cartesian products"; *Discrete Appl. Math.* 239 (2018), 82–93

Direct, Strong, Lexicographic

- M. Jakovac, I. Peterin: "On the b-chromatic number of some graph products"; *Studia Sci. Math. Hungar.* 49 (2012), 156–169
- I. Koch, I. Peterin: "The b-chromatic index of direct product of graphs"; Discrete Appl. Math. 190 (2015), 109–117

Another Product

Definition (Godsil and McKay, 1978)

Another Product

Definition (Godsil and McKay, 1978)

Given graphs G and H, choose a vertex $v \in V(H)$ to be the *root* of H. The *rooted product* of G and H, written $G \circ_v H$, has vertex set $V(G) \times V(H)$ and edge set

$$\{(x,v)(x',v): xx' \in E(G)\} \cup \bigcup_{x \in V(G)} \{(x,y)(x,y'): yy' \in E(H)\}.$$

Rooted Product as Subgraph of Cartesian Product

 $C_3 \circ_v P_4$, with $d_{P_4}(v) = 2$

Proposition (BJL)

Given graphs G and H with $v \in V(H)$,

$$\varphi(G \circ_{V} H) \ge \max\{\varphi(G), \varphi(H)\}.$$

Proposition (BJL)

Given graphs G and H with $v \in V(H)$,

$$\varphi(G \circ_{\mathsf{v}} H) \geq \max\{\varphi(G), \varphi(H)\}.$$

Example

Let *n* be at least 5, let *G* be P_n , and let *H* be $K_{1,n-1}$.

Recall that $\varphi(G) = 3$ and $\varphi(H) = 2$.

If $d_H(v) = 1$, then $\varphi(G \circ_v H) = n$.

Proposition (BJL)

Given graphs G and H with $v \in V(H)$,

$$\varphi(G \circ_{\mathsf{v}} H) \geq \max\{\varphi(G), \varphi(H)\}.$$

Example

Let *n* be at least 5, let *G* be P_n , and let *H* be $K_{1,n-1}$.

Recall that $\varphi(G) = 3$ and $\varphi(H) = 2$.

If $d_H(v) = 1$, then $\varphi(G \circ_v H) = n$.

Observation

Without restricting G and H,

no function of $\varphi(G)$ and $\varphi(H)$ can bound $\varphi(G \circ_{\mathsf{v}} H)$ from above.

Even the amount by which $\varphi(G \circ_V H)$ exceeds our lower bound can be arbitrarily large.

A New Parameter

Definition (BJL)

Let G be a graph. We write $n_{\varphi}(G)$ to denote the maximum number of CDVs in any $\varphi(G)$ -b-coloring of G.

A New Parameter

Definition (BJL)

Let G be a graph. We write $n_{\varphi}(G)$ to denote the maximum number of CDVs in any $\varphi(G)$ -b-coloring of G.

Theorem (BJL)

Given graphs G and H with $v \in V(H)$, if

$$\Delta(H) < \varphi(G) + d_H(v) \le n_{\varphi}(G),$$

then

$$\varphi(G \circ_{\mathsf{v}} H) \geq \varphi(G) + d_H(\mathsf{v}).$$

Moreover, if $\varphi(G) = m(G)$, then equality holds in this bound.

Another New Parameter

Definition (BJL)

Let H be a graph.

Let D denote the set of all maximum-degree vertices of H.

We will call a subset $D' \subseteq D$ a far set of H if for every two distinct vertices y_1 and y_2 in D', the distance between y_1 and y_2 is at least 4. We define

 $n_f(H) = \max\{|D'| : D' \text{ is a far set of } H\}.$

Another New Parameter

Definition (BJL)

Let H be a graph.

Let D denote the set of all maximum-degree vertices of H.

We will call a subset $D' \subseteq D$ a far set of H if for every two distinct vertices y_1 and y_2 in D', the distance between y_1 and y_2 is at least 4. We define

$$n_f(H) = \max\{|D'| : D' \text{ is a far set of } H\}.$$

Theorem (BJL)

Given graphs G and H with $v \in V(H)$, if

$$\Delta(G) + d_H(v) \leq \Delta(H) < n(G)n_f(H),$$

then

$$\varphi(G \circ_{V} H) = \Delta(H) + 1.$$

Relationships Between Theorems

Relationships Between Theorems

Hypotheses

In our first theorem, we assume that $\varphi(G) + d_H(v)$ is greater than $\Delta(H)$. In our second, we more or less assume the reverse.

Relationships Between Theorems

Hypotheses

In our first theorem, we assume that $\varphi(G) + d_H(v)$ is greater than $\Delta(H)$. In our second, we more or less assume the reverse.

Location of CDVs

In our first theorem, we locate our CDVs in the "G-layer".

In our second, they are in the "H-layers".

Examples of Each Theorem

 $K_{1,3} \circ_{v} P_{3}$, with $d_{P_{3}}(v) = 2$

 $P_5\circ_{v} K_{1,4}$, with $d_{K_{1,4}}(v)=1$

Fixing Factors: Paths

Fixing Factors: Paths

Proposition (BJL)

Let $a, b \ge 2$ and $v \in V(P_b)$. If $d_{P_b}(v) = 1$, then

$$\varphi(P_a \circ_v P_b) = m(P_a \circ_v P_b) = \begin{cases} 2 & a = b = 2 \\ 3 & (a = 2 \text{ and } b \ge 3) \text{ or } 3 \le a \le 5 . \\ 4 & a \ge 6 \end{cases}$$

If $d_{P_b}(v) = 2$, then

$$\varphi(P_a \circ_v P_b) = m(P_a \circ_v P_b) = \begin{cases} 2 & a = 2 \text{ and } b = 3\\ 3 & (a = 2 \text{ and } b \ge 4) \text{ or } a = 3\\ 4 & 4 \le a \le 6\\ 5 & a \ge 7 \end{cases}.$$

Fixing Factors: Path by Cycle

Proposition (BJL)

If $a \ge 2$, $b \ge 3$, and $v \in V(C_b)$, then

$$\varphi(P_a \circ_v C_b) = m(P_a \circ_v C_b) = \begin{cases} 3 & 2 \le a \le 3 \\ 4 & 4 \le a \le 6 \\ 5 & a \ge 7 \end{cases}$$

Fixing Factors: Cycle by Path

Proposition (BJL)

Let $a \ge 3$, $b \ge 2$, and $v \in V(P_b)$. If $d_{P_b}(v) = 1$, then

$$\varphi(C_a \circ_v P_b) = \begin{cases} 3 & a = 3 \text{ or } a = 5\\ 4 & a = 4 \text{ or } a \ge 6 \end{cases}$$

and

$$m(C_a \circ_{V} P_b) = \begin{cases} 3 & a = 3 \\ 4 & a \ge 4 \end{cases}.$$

If $d_{P_b}(v) = 2$, then

$$\varphi(C_a \circ_{V} P_b) = m(C_a \circ_{V} P_b) = \min\{5, a\}.$$

Fixing Factors: Cycles

Proposition (BJL)

If $a, b \ge 3$ and $v \in V(C_b)$, then

$$\varphi(C_a \circ_v C_b) = m(C_a \circ_v C_b) = \min\{5, a\}.$$

m-degree of the Rooted Product

m-degree of the Rooted Product

Proposition (BJL)

Suppose G and H are regular. Then

$$m(G \circ_{V} H) = \begin{cases} \Delta(G) + \Delta(H) + 1 & \Delta(G) + \Delta(H) + 1 \leq n(G) \\ n(G) & \Delta(H) + 1 \leq n(G) < \Delta(G) + \Delta(H) + 1 \\ \Delta(H) + 1 & n(G) < \Delta(H) + 1 \end{cases}$$

Proposition (Kouider and Mahéo, 2002)

Suppose $a \geq b$.

If
$$a \leq b(b-1)$$
, then $a \leq \varphi(K_a \square K_b) \leq b(b-1)$.

If
$$a \ge b(b-1)$$
, then $\varphi(K_a \square K_b) = a$.

Proposition (Kouider and Mahéo, 2002)

Suppose $a \geq b$.

If
$$a \leq b(b-1)$$
, then $a \leq \varphi(K_a \square K_b) \leq b(b-1)$.

If
$$a \ge b(b-1)$$
, then $\varphi(K_a \square K_b) = a$.

Proposition (BJL)

If
$$a, b \ge 2$$
 and $v \in V(K_b)$, then $\varphi(K_a \circ_v K_b) = \max\{a, b\}$.

Proposition (Kouider and Mahéo, 2002)

Suppose $a \geq b$.

If
$$a \leq b(b-1)$$
, then $a \leq \varphi(K_a \square K_b) \leq b(b-1)$.

If
$$a \ge b(b-1)$$
, then $\varphi(K_a \square K_b) = a$.

Proposition (BJL)

If $a, b \ge 2$ and $v \in V(K_b)$, then $\varphi(K_a \circ_v K_b) = \max\{a, b\}$.

Proposition (BJL)

Let H be a graph with $\Delta(H) < n$ and let v be any vertex of H.

Then
$$\varphi(K_n \circ_v H) = n$$
.

Example

Consider $G = K_{a+1,a+1}$ and $H = K_{a,a}$ with $a \ge 3$ and $v \in V(H)$.

Example

Consider $G = K_{a+1,a+1}$ and $H = K_{a,a}$ with $a \ge 3$ and $v \in V(H)$. Notice that $\varphi(G) = \varphi(H) = 2 < m(H) < m(G)$.

Example

Consider $G = K_{a+1,a+1}$ and $H = K_{a,a}$ with $a \ge 3$ and $v \in V(H)$.

Notice that $\varphi(G) = \varphi(H) = 2 < m(H) < m(G)$.

Since $\Delta(G \circ_{V} H) = 2a + 1$ and there are 2a + 2 vertices with this degree,

 $m(G \circ_{V} H) = 2a + 2.$

Example

Consider $G = K_{a+1,a+1}$ and $H = K_{a,a}$ with $a \ge 3$ and $v \in V(H)$.

Notice that $\varphi(G) = \varphi(H) = 2 < m(H) < m(G)$.

Since $\Delta(G \circ_{V} H) = 2a + 1$ and there are 2a + 2 vertices with this degree, $m(G \circ_{V} H) = 2a + 2$.

We can b-color $G \circ_{v} H$ with 2a + 2 colors:

Example

Consider $G = K_{a+1,a+1}$ and $H = K_{a,a}$ with $a \ge 3$ and $v \in V(H)$.

Notice that $\varphi(G) = \varphi(H) = 2 < m(H) < m(G)$.

Since $\Delta(G \circ_v H) = 2a + 1$ and there are 2a + 2 vertices with this degree, $m(G \circ_v H) = 2a + 2$.

We can b-color $G \circ_{v} H$ with 2a + 2 colors:

Give each of the maximum-degree vertices a different color.

Example

Consider $G = K_{a+1,a+1}$ and $H = K_{a,a}$ with $a \ge 3$ and $v \in V(H)$.

Notice that $\varphi(G) = \varphi(H) = 2 < m(H) < m(G)$.

Since $\Delta(G \circ_v H) = 2a + 1$ and there are 2a + 2 vertices with this degree, $m(G \circ_v H) = 2a + 2$.

We can b-color $G \circ_{v} H$ with 2a + 2 colors:

Give each of the maximum-degree vertices a different color.

Color the remaining neighbors of these vertices so they become CDVs.

Example

Consider $G = K_{a+1,a+1}$ and $H = K_{a,a}$ with $a \ge 3$ and $v \in V(H)$.

Notice that $\varphi(G) = \varphi(H) = 2 < m(H) < m(G)$.

Since $\Delta(G \circ_v H) = 2a + 1$ and there are 2a + 2 vertices with this degree, $m(G \circ_v H) = 2a + 2$.

We can b-color $G \circ_{v} H$ with 2a + 2 colors:

Give each of the maximum-degree vertices a different color.

Color the remaining neighbors of these vertices so they become CDVs.

The rest of the vertices can be colored greedily.

Example

Consider $G = K_{a+1,a+1}$ and $H = K_{a,a}$ with $a \ge 3$ and $v \in V(H)$.

Notice that $\varphi(G) = \varphi(H) = 2 < m(H) < m(G)$.

Since $\Delta(G \circ_{V} H) = 2a + 1$ and there are 2a + 2 vertices with this degree, $m(G \circ_{V} H) = 2a + 2$.

We can b-color $G \circ_{v} H$ with 2a + 2 colors:

Give each of the maximum-degree vertices a different color.

Color the remaining neighbors of these vertices so they become CDVs.

The rest of the vertices can be colored greedily.

So
$$\varphi(G \circ_{\mathsf{v}} H) = m(G \circ_{\mathsf{v}} H)$$
.

Example

Consider $G = K_{a+1,a+1}$ and $H = K_{a,a}$ with $a \ge 3$ and $v \in V(H)$.

Notice that $\varphi(G) = \varphi(H) = 2 < m(H) < m(G)$.

Since $\Delta(G \circ_v H) = 2a + 1$ and there are 2a + 2 vertices with this degree, $m(G \circ_v H) = 2a + 2$.

We can b-color $G \circ_{v} H$ with 2a + 2 colors:

Give each of the maximum-degree vertices a different color.

Color the remaining neighbors of these vertices so they become CDVs.

The rest of the vertices can be colored greedily.

So
$$\varphi(G \circ_{\mathsf{v}} H) = m(G \circ_{\mathsf{v}} H)$$
.

Observation

Can have $\varphi(G) < m(G)$ and $\varphi(H) < m(H)$ but $\varphi(G \circ_{\nu} H) = m(G \circ_{\nu} H)$.

Example

Take $G = C_5$ and $H = P_b$ with $b \ge 5$ and $d_H(v) = 1$.

Then
$$\varphi(G) = \varphi(H) = m(G) = m(H) = 3$$
,

but
$$\varphi(G \circ_V H) = 3$$
 and $m(G \circ_V H) = 4$.

Example

Take $G = C_5$ and $H = P_b$ with $b \ge 5$ and $d_H(v) = 1$.

Then
$$\varphi(G) = \varphi(H) = m(G) = m(H) = 3$$
,

but $\varphi(G \circ_{\mathsf{v}} H) = 3$ and $m(G \circ_{\mathsf{v}} H) = 4$.

Observation

Can have $\varphi(G) = m(G)$ and $\varphi(H) = m(H)$ but $\varphi(G \circ_{v} H) < m(G \circ_{v} H)$.

Example

Take $G = C_5$ and $H = P_b$ with $b \ge 5$ and $d_H(v) = 1$.

Then $\varphi(G) = \varphi(H) = m(G) = m(H) = 3$,

but $\varphi(G \circ_{V} H) = 3$ and $m(G \circ_{V} H) = 4$.

Observation

Can have $\varphi(G) = m(G)$ and $\varphi(H) = m(H)$ but $\varphi(G \circ_{\nu} H) < m(G \circ_{\nu} H)$.

Note

This example is not as broad as the one on the previous slide.

There may be only two choices for the first factor.

Most other examples we considered with $\varphi(G) = m(G)$ and $\varphi(H) = m(G)$ have $\varphi(G \circ_{V} H) = m(G \circ_{V} H)$.

Question 1

How are equality between φ and \emph{m} in the factors related to equality in the rooted product?

Question 1

How are equality between φ and m in the factors related to equality in the rooted product?

Question 2

When is $\varphi(G \circ_{v} H)$ either $\Delta(H) + 1$ or $\varphi(G) + d_{H}(v)$?

Question 1

How are equality between φ and \emph{m} in the factors related to equality in the rooted product?

Question 2

When is $\varphi(G \circ_{v} H)$ either $\Delta(H) + 1$ or $\varphi(G) + d_{H}(v)$?

Question 3

When is $\varphi(G \circ_{\nu} H)$ simply the larger of $\varphi(G)$ and $\varphi(H)$?

Some Citations

These Results

S. Bockting-Conrad, M. Jakovac, M. S. Lang:

"On the b-chromatic number of rooted product graphs"; *Filomat* 39 (2025), 3805–3815

A Nice Overview

M. Jakovac, I. Peterin:

"The b-chromatic number and related topics – a survey";

Discrete Appl. Math. 235 (2018), 184-201