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b-Coloring (Irving and Manlove, 1999)

Definition

Consider a graph, G, whose vertices are properly colored.

A color-dominating vertex (CDV)

is one that is adjacent to at least one vertex of each other color class.
We have a b-coloring when each color class includes a CDV.

If there are k colors, we might say it is a k-b-coloring.

The b-chromatic number of G, denoted by ¢(G),

is the largest k such that G admits a k-b-coloring.
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b-Coloring (Irving and Manlove, 1999)

Definition

Consider a graph, G, whose vertices are properly colored.

A color-dominating vertex (CDV)

is one that is adjacent to at least one vertex of each other color class.
We have a b-coloring when each color class includes a CDV.

If there are k colors, we might say it is a k-b-coloring.

The b-chromatic number of G, denoted by ¢(G),

is the largest k such that G admits a k-b-coloring.

Determining ¢(G) is NP-hard in general but polynomial for trees.
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Motivation and Application
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Motivation and Application

Start with a proper coloring of a graph.

If there is a color class that does not contain a CDV,
then (properly) recolor every vertex from this class
and remove this color from further consideration.
Iterating this process eventually yields a b-coloring,
which can be considered a minimal element. )
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Motivation and Application

Start with a proper coloring of a graph.

If there is a color class that does not contain a CDV,
then (properly) recolor every vertex from this class
and remove this color from further consideration.
Iterating this process eventually yields a b-coloring,
which can be considered a minimal element. )

Conflict Avoidance

The b-chromatic number can be thought of as indicating

how many communities can be placed in an area

so that every community has a representative

that is able to communicate with all of the other communities,
reducing misunderstandings.
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Some Basic Examples

©(Kin,n) =2
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Some Basic Examples

X0,

QO mn:

o(Pn) )=3forn>5
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Easy Bounds

Observation

X(G) < p(G) <A(G) +1
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Observation

X(G) < p(G) <A(G) +1

These expressions can collide.

Comparing ¢ and

The difference between x and ¢ can be arbitrarily large.
For example, if G is K, , minus a matching, then x(G) = 2 but ¢(G) = n.
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Easy Bounds

Observation

X(G) < p(G) <A(G) +1

These expressions can collide.

Comparing ¢ and

The difference between x and ¢ can be arbitrarily large.
For example, if G is K, , minus a matching, then x(G) = 2 but ¢(G) = n.

v

Comparing ¢ and A + 1

The difference between ¢ and A + 1 can also be arbitrarily large.
For example, if G is K1, then ¢(G) = 2 but A(G) = n.

N
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A Better Upper Bound
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A Better Upper Bound

Observation

A k-b-coloring needs at least k vertices with degree at least kK — 1.
These are the CDV candidates.
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A Better Upper Bound

Observation

A k-b-coloring needs at least k vertices with degree at least kK — 1.
These are the CDV candidates.

Definition (Irving and Manlove, 1999)

Label the vertices of G so dg(vi) > dg(v2) > -+ > dg(vn). We call
m(G) = max{i : dg(v;) > i—1}
the m-degree of G.
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A Better Upper Bound

Observation

A k-b-coloring needs at least k vertices with degree at least kK — 1.
These are the CDV candidates.

Definition (Irving and Manlove, 1999)

Label the vertices of G so dg(vi) > dg(v2) > -+ > dg(vn). We call
m(G) = max{i : dg(v;) > i—1}

the m-degree of G.

An Improvement

p(G) <m(G) <A(G) +1
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Some Results for Regular Graphs

Agreement of Upper Bounds
If G is d-regular, then m(G) = A(G)+1=d+ 1.
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Many theorems with added hypotheses guarantee p(G) = d + 1.
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Many theorems with added hypotheses guarantee p(G) = d + 1.

Cycle Structure (Kouider and El Sahili, 2006)

Suppose G has girth 5 and no 6-cycles.
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Some Results for Regular Graphs

Agreement of Upper Bounds
If G is d-regular, then m(G) = A(G)+1=d+ 1.

Many theorems with added hypotheses guarantee p(G) = d + 1.

Cycle Structure (Kouider and El Sahili, 2006)
Suppose G has girth 5 and no 6-cycles.

High Order (Cabello and Jakovac, 2011)

Suppose G has at least 2d> vertices.

Cubic with Four Exceptions (Jakovac and KlavZar, 2010)

Suppose G is connected with d = 3 but is not K3 K>, K33, Petersen, or
another 10-vertex sporadic example.
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Some Results on Products
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Some Results on Products

F. A. Chaouche, A. Berrachedi: “Some bounds for the b-chromatic
number of a generalized Hamming graphs”; Far East J. Appl. Math. 26
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F. Maffray, A. Silva: “b-colouring the Cartesian product of trees and some
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Another Product

Definition (Godsil and McKay, 1978)
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Another Product

Definition (Godsil and McKay, 1978)

Given graphs G and H, choose a vertex v € V(H) to be the root of H.
The rooted product of G and H, written G o, H,
has vertex set V(G) x V(H) and edge set

{6 V(X v) o € E(G)} U [ {len)(x.y) v € E(H)}
xeV(G)
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Rooted Product as Subgraph of Cartesian Product

— T
T
T I
T IS

GOP, Gz 0, Py, with dp4(V) =2
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A Lower Bound
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A Lower Bound

Proposition (BJL)

Given graphs G and H with v € V(H),

QP(G Ov H) > max{cp(G),cp(H)}.
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A Lower Bound

Proposition (BJL)
Given graphs G and H with v € V(H),

@(G Ov H) > max{cp(G),cp(H)}.

N

Example
Let n be at least 5, let G be P,, and let H be Ky 1.

Recall that ¢(G) = 3 and ¢(H) = 2.
If dy(v) =1, then p(G o, H) = n.
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A Lower Bound

Proposition (BJL)
Given graphs G and H with v € V(H),

@(G Ov H) > max{cp(G),cp(H)}.

N

Example

Let n be at least 5, let G be P,, and let H be Ky 1.
Recall that ¢(G) = 3 and ¢(H) = 2.

If dy(v) =1, then p(G o, H) = n.

\

Observation

Without restricting G and H,

no function of ¢(G) and ¢(H) can bound ¢(G o, H) from above.
Even the amount by which ¢(G o, H) exceeds our lower bound
can be arbitrarily large.

4
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A New Parameter

Definition (BJL)

Let G be a graph. We write n,(G) to denote the maximum number of
CDVs in any ¢(G)-b-coloring of G.
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A New Parameter

Definition (BJL)
Let G be a graph. We write n,(G) to denote the maximum number of
CDVs in any ¢(G)-b-coloring of G.

A

Theorem (BJL)
Given graphs G and H with v € V(H), if

A(H) < ¢(G) + du(v) < ny(G),

then
o(G o, H) > ¢(G) + du(v).

Moreover, if o(G) = m(G), then equality holds in this bound.

N
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Another New Parameter

Definition (BJL)

Let H be a graph.

Let D denote the set of all maximum-degree vertices of H.

We will call a subset D’ C D a far set of H if for every two distinct
vertices y1 and y» in D', the distance between y; and y» is at least 4.

We define

ne(H) = max{|D’| : D is a far set of H}.
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Another New Parameter

Definition (BJL)

Let H be a graph.

Let D denote the set of all maximum-degree vertices of H.

We will call a subset D’ C D a far set of H if for every two distinct
vertices y1 and y» in D', the distance between y; and y» is at least 4.
We define

ne(H) = max{|D’| : D is a far set of H}.

4

Theorem (BJL)
Given graphs G and H with v € V(H), if

A(G) + du(v) < A(H) < n(G)ng(H),

then

0(G o, H) = A(H) + 1.

N

b-coloring rooted products T-Fest '25 13/25



Relationships Between Theorems
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Relationships Between Theorems

Hypotheses

In our first theorem, we assume that ¢(G) + dy(v) is greater than A(H).
In our second, we more or less assume the reverse.
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Relationships Between Theorems

Hypotheses

In our first theorem, we assume that ¢(G) + dy(v) is greater than A(H).
In our second, we more or less assume the reverse.

A

Location of CDVs

In our first theorem, we locate our CDVs in the “G-layer”.
In our second, they are in the “H-layers".
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Examples of Each Theorem

K1,4(V) =1

P5 oy K174, with d

Qo @ =
/ \ <

=

Do =

| &

?.‘ S

(3ol

X'



Fixing Factors: Paths
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Fixing Factors: Paths

Proposition (BJL)

Let a,b>2 and v € V(Pp).
If dp,(v) =1, then
2 a=b=2
o(Paoy Pp) =m(Pyo, Pp)=¢3 (a=2andb>3)or3<a<5.
4 a>6
If dp,(v) = 2, then
2 a=2andb=3
3 (a=2andb>4)ora=3
P, o, Py) = m(Pso, Pp) = = _
o(Pyou Py = m(Pyo, Py =4 1 772
5 a>7
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Fixing Factors: Path by Cycle

Proposition (BJL)
Ifa>2,b>3,andv e V(Cp), then

SO(PaOva):m(Paova): 4 4<3<6.
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Fixing Factors: Cycle by Path

Proposition (BJL)

Leta>3, b>2, and v e V(Pp).
If dp,(v) =1, then

3 a=3o0ra=>5
4 a=4o0ra>b6b

(P(Ca Oy Pb) = {

and
3 a=3
m(C, o0, Pp) = .
( b) {4 a>4

If dp,(v) = 2, then

©(Cs 0, Pp) = m(C, 0, Pp) = min{5, a}.
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Fixing Factors: Cycles

Proposition (BJL)

Ifa,b> 3 and v € V(Cp), then

©(Cy0, Cp) = m(C, 0, Cp) = min{5, a}.
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m-degree of the Rooted Product
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m-degree of the Rooted Product

Proposition (BJL)

Suppose G and H are regular. Then

n(G) A(H)+1<n(G) < A(G)+ A(H) +1.

A(G)+A(H)+1 A(G)+ A(H)+ 1< n(G)
m(Go, H) =
A(H)+1 n(G) < A(H)+1
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Fixing Factors: Complete Graphs
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Fixing Factors: Complete Graphs

Proposition (Kouider and Mahéo, 2002)

Suppose a > b.
If a<b(b—1), then a < o(K,OKp) < b(b—1).
If a> b(b—1), then p(K;OKp) = a.
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Fixing Factors: Complete Graphs

Proposition (Kouider and Mahéo, 2002)

Suppose a > b.
If a<b(b—1), then a < o(K,OKp) < b(b—1).
If a> b(b—1), then p(K;OKp) = a.

Proposition (BJL)

If a,b> 2 and v € V(K}), then (K, o, Kp) = max{a, b}.
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Fixing Factors: Complete Graphs

Proposition (Kouider and Mahéo, 2002)

Suppose a > b.
If a<b(b—1), then a < o(K,OKp) < b(b—1).
If a> b(b—1), then p(K;OKp) = a.

Proposition (BJL)

If a,b> 2 and v € V(K}), then (K, o, Kp) = max{a, b}.

Proposition (BJL)

Let H be a graph with A(H) < n and let v be any vertex of H.
Then o(Kp o, H) = n.
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Comparing m and ¢ in Factors vs Product, Part 1
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Comparing m and ¢ in Factors vs Product, Part 1

Consider G = K 41,541 and H = K, ; with a> 3 and v € V(H).
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Comparing m and ¢ in Factors vs Product, Part 1
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Notice that ¢(G) = ¢(H) =2 < m(H) < m(G).
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Comparing m and ¢ in Factors vs Product, Part 1

Example

Consider G = K 41,541 and H = K, ; with a> 3 and v € V(H).
Notice that ¢(G) = ¢(H) =2 < m(H) < m(G).

Since A(G o, H) =2a+ 1 and there are 2a + 2 vertices with this degree,
m(Go, H) =2a+2.
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Comparing m and ¢ in Factors vs Product, Part 1

Example

Consider G = K 41,541 and H = K, ; with a> 3 and v € V(H).

Notice that ¢(G) = ¢(H) =2 < m(H) < m(G).

Since A(G o, H) =2a+ 1 and there are 2a + 2 vertices with this degree,
m(Go, H) =2a+2.

We can b-color G o, H with 2a + 2 colors:

Give each of the maximum-degree vertices a different color.

Color the remaining neighbors of these vertices so they become CDVs.
The rest of the vertices can be colored greedily.

So ¢(G o, H) = m(G o, H).

A

Observation
Can have ¢(G) < m(G) and ¢(H) < m(H) but ¢(G o, H) = m(G o, H).
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Comparing m and ¢ in Factors vs Product, Part 2

Take G = G5 and H = P, with b > 5 and dy(v) = 1.
Then ¢(G) = ¢(H) = m(G) = m(H) =3,
but ¢(G o, H) =3 and m(G o, H) = 4.
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Comparing m and ¢ in Factors vs Product, Part 2

Take G = G5 and H = P, with b > 5 and dy(v) = 1.
Then ¢(G) = ¢(H) = m(G) = m(H) =3,
but ¢(G o, H) =3 and m(G o, H) = 4.

Observation

Can have p(G) = m(G) and p(H) = m(H) but (G o, H) < m(G o, H).
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Comparing m and ¢ in Factors vs Product, Part 2

Take G = G5 and H = P, with b > 5 and dy(v) = 1.
Then ¢(G) = ¢(H) = m(G) = m(H) =3,
but ¢(G o, H) =3 and m(G o, H) = 4.

Observation
Can have p(G) = m(G) and p(H) = m(H) but (G o, H) < m(G o, H).

This example is not as broad as the one on the previous slide.

There may be only two choices for the first factor.

Most other examples we considered with ¢(G) = m(G) and p(H) = m(G)
have ¢(G o, H) = m(G o, H).
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Suggestions for Future Research
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Suggestions for Future Research

How are equality between ¢ and m in the factors related to equality in the
rooted product?
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rooted product?

When is ¢(G o, H) either A(H) + 1 or ¢(G) + dn(v)?

b-coloring rooted products T-Fest '25 24 /25



Suggestions for Future Research

How are equality between ¢ and m in the factors related to equality in the
rooted product?

When is ¢(G o, H) either A(H) + 1 or ¢(G) + dn(v)?

When is ¢(G o, H) simply the larger of p(G) and ¢(H)?
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