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b-Coloring (Irving and Manlove, 1999)

Definition

Consider a graph, G , whose vertices are properly colored.
A color-dominating vertex (CDV)
is one that is adjacent to at least one vertex of each other color class.
We have a b-coloring when each color class includes a CDV.
If there are k colors, we might say it is a k-b-coloring.
The b-chromatic number of G , denoted by φ(G ),
is the largest k such that G admits a k-b-coloring.

Theorem

Determining φ(G ) is NP-hard in general but polynomial for trees.
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Motivation and Application

Poset

Start with a proper coloring of a graph.
If there is a color class that does not contain a CDV,
then (properly) recolor every vertex from this class
and remove this color from further consideration.
Iterating this process eventually yields a b-coloring,
which can be considered a minimal element.

Conflict Avoidance

The b-chromatic number can be thought of as indicating
how many communities can be placed in an area
so that every community has a representative
that is able to communicate with all of the other communities,
reducing misunderstandings.
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Some Basic Examples

φ(Km,n) = 2

φ(Pn) = φ(Cn) = 3 for n ≥ 5
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Easy Bounds

Observation

χ(G ) ≤ φ(G ) ≤ ∆(G ) + 1

These expressions can collide.

Comparing φ and χ

The difference between χ and φ can be arbitrarily large.
For example, if G is Kn,n minus a matching, then χ(G ) = 2 but φ(G ) = n.

Comparing φ and ∆ + 1

The difference between φ and ∆ + 1 can also be arbitrarily large.
For example, if G is K1,n, then φ(G ) = 2 but ∆(G ) = n.
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A Better Upper Bound

Observation

A k-b-coloring needs at least k vertices with degree at least k − 1.
These are the CDV candidates.

Definition (Irving and Manlove, 1999)

Label the vertices of G so dG (v1) ≥ dG (v2) ≥ · · · ≥ dG (vn). We call

m(G ) = max{i : dG (vi ) ≥ i − 1}

the m-degree of G .

An Improvement

φ(G ) ≤ m(G ) ≤ ∆(G ) + 1
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Some Results for Regular Graphs

Agreement of Upper Bounds

If G is d-regular, then m(G ) = ∆(G ) + 1 = d + 1.

Many theorems with added hypotheses guarantee φ(G ) = d + 1.

Cycle Structure (Kouider and El Sahili, 2006)

Suppose G has girth 5 and no 6-cycles.

High Order (Cabello and Jakovac, 2011)

Suppose G has at least 2d3 vertices.

Cubic with Four Exceptions (Jakovac and Klavžar, 2010)

Suppose G is connected with d = 3 but is not K3□K2, K3,3, Petersen, or
another 10-vertex sporadic example.
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Suppose G is connected with d = 3 but is not K3□K2, K3,3, Petersen, or
another 10-vertex sporadic example.

Lang b-coloring rooted products T-Fest ’25 7 / 25



Some Results for Regular Graphs

Agreement of Upper Bounds

If G is d-regular, then m(G ) = ∆(G ) + 1 = d + 1.

Many theorems with added hypotheses guarantee φ(G ) = d + 1.

Cycle Structure (Kouider and El Sahili, 2006)

Suppose G has girth 5 and no 6-cycles.

High Order (Cabello and Jakovac, 2011)

Suppose G has at least 2d3 vertices.

Cubic with Four Exceptions (Jakovac and Klavžar, 2010)
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Some Results on Products

Cartesian

F. A. Chaouche, A. Berrachedi: “Some bounds for the b-chromatic
number of a generalized Hamming graphs”; Far East J. Appl. Math. 26
(2007), 375–391
F. Maffray, A. Silva: “b-colouring the Cartesian product of trees and some
other graphs”; Discrete Appl. Math. 161 (2013), 650–669
C. Guo, M. Newman: “On the b-chromatic number of Cartesian
products”; Discrete Appl. Math. 239 (2018), 82–93

Direct, Strong, Lexicographic

M. Jakovac, I. Peterin: “On the b-chromatic number of some graph
products”; Studia Sci. Math. Hungar. 49 (2012), 156–169
I. Koch, I. Peterin: “The b-chromatic index of direct product of graphs”;
Discrete Appl. Math. 190 (2015), 109–117
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Another Product

Definition (Godsil and McKay, 1978)

Given graphs G and H, choose a vertex v ∈ V (H) to be the root of H.
The rooted product of G and H, written G ◦v H,
has vertex set V (G )× V (H) and edge set

{(x , v)(x ′, v) : xx ′ ∈ E (G )} ∪
⋃

x∈V (G)

{(x , y)(x , y ′) : yy ′ ∈ E (H)}.
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Rooted Product as Subgraph of Cartesian Product

C3 □P4 C3 ◦v P4, with dP4(v) = 2
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A Lower Bound

Proposition (BJL)

Given graphs G and H with v ∈ V (H),

φ(G ◦v H) ≥ max{φ(G ), φ(H)}.

Example

Let n be at least 5, let G be Pn, and let H be K1,n−1.
Recall that φ(G ) = 3 and φ(H) = 2.
If dH(v) = 1, then φ(G ◦v H) = n.

Observation

Without restricting G and H,
no function of φ(G ) and φ(H) can bound φ(G ◦v H) from above.
Even the amount by which φ(G ◦v H) exceeds our lower bound
can be arbitrarily large.
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A New Parameter

Definition (BJL)

Let G be a graph. We write nφ(G ) to denote the maximum number of
CDVs in any φ(G )-b-coloring of G .

Theorem (BJL)

Given graphs G and H with v ∈ V (H), if

∆(H) < φ(G ) + dH(v) ≤ nφ(G ),

then
φ(G ◦v H) ≥ φ(G ) + dH(v).

Moreover, if φ(G ) = m(G ), then equality holds in this bound.
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Another New Parameter

Definition (BJL)

Let H be a graph.
Let D denote the set of all maximum-degree vertices of H.
We will call a subset D ′ ⊆ D a far set of H if for every two distinct
vertices y1 and y2 in D ′, the distance between y1 and y2 is at least 4.
We define

nf (H) = max{|D ′| : D ′ is a far set of H}.

Theorem (BJL)

Given graphs G and H with v ∈ V (H), if

∆(G ) + dH(v) ≤ ∆(H) < n(G )nf (H),

then
φ(G ◦v H) = ∆(H) + 1.
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Relationships Between Theorems

Hypotheses

In our first theorem, we assume that φ(G ) + dH(v) is greater than ∆(H).
In our second, we more or less assume the reverse.

Location of CDVs

In our first theorem, we locate our CDVs in the “G -layer”.
In our second, they are in the “H-layers”.
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Examples of Each Theorem

K1,3 ◦v P3, with dP3(v) = 2

P5 ◦v K1,4, with dK1,4(v) = 1
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Fixing Factors: Paths

Proposition (BJL)

Let a, b ≥ 2 and v ∈ V (Pb).
If dPb

(v) = 1, then

φ(Pa ◦v Pb) = m(Pa ◦v Pb) =


2 a = b = 2

3 (a = 2 and b ≥ 3) or 3 ≤ a ≤ 5

4 a ≥ 6

.

If dPb
(v) = 2, then

φ(Pa ◦v Pb) = m(Pa ◦v Pb) =


2 a = 2 and b = 3

3 (a = 2 and b ≥ 4) or a = 3

4 4 ≤ a ≤ 6

5 a ≥ 7

.
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Fixing Factors: Path by Cycle

Proposition (BJL)

If a ≥ 2, b ≥ 3, and v ∈ V (Cb), then

φ(Pa ◦v Cb) = m(Pa ◦v Cb) =


3 2 ≤ a ≤ 3

4 4 ≤ a ≤ 6

5 a ≥ 7

.
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Fixing Factors: Cycle by Path

Proposition (BJL)

Let a ≥ 3, b ≥ 2, and v ∈ V (Pb).
If dPb

(v) = 1, then

φ(Ca ◦v Pb) =

{
3 a = 3 or a = 5

4 a = 4 or a ≥ 6

and

m(Ca ◦v Pb) =

{
3 a = 3

4 a ≥ 4
.

If dPb
(v) = 2, then

φ(Ca ◦v Pb) = m(Ca ◦v Pb) = min{5, a}.
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Fixing Factors: Cycles

Proposition (BJL)

If a, b ≥ 3 and v ∈ V (Cb), then

φ(Ca ◦v Cb) = m(Ca ◦v Cb) = min{5, a}.
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m-degree of the Rooted Product

Proposition (BJL)

Suppose G and H are regular. Then

m(G ◦v H) =


∆(G ) + ∆(H) + 1 ∆(G ) + ∆(H) + 1 ≤ n(G )

n(G ) ∆(H) + 1 ≤ n(G ) < ∆(G ) + ∆(H) + 1

∆(H) + 1 n(G ) < ∆(H) + 1

.
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Fixing Factors: Complete Graphs

Proposition (Kouider and Mahéo, 2002)

Suppose a ≥ b.
If a ≤ b(b − 1), then a ≤ φ(Ka □Kb) ≤ b(b − 1).
If a ≥ b(b − 1), then φ(Ka □Kb) = a.

Proposition (BJL)

If a, b ≥ 2 and v ∈ V (Kb), then φ(Ka ◦v Kb) = max{a, b}.

Proposition (BJL)

Let H be a graph with ∆(H) < n and let v be any vertex of H.
Then φ(Kn ◦v H) = n.
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Suppose a ≥ b.
If a ≤ b(b − 1), then a ≤ φ(Ka □Kb) ≤ b(b − 1).
If a ≥ b(b − 1), then φ(Ka □Kb) = a.
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Comparing m and φ in Factors vs Product, Part 1

Example

Consider G = Ka+1,a+1 and H = Ka,a with a ≥ 3 and v ∈ V (H).
Notice that φ(G ) = φ(H) = 2 < m(H) < m(G ).
Since ∆(G ◦v H) = 2a+ 1 and there are 2a+ 2 vertices with this degree,
m(G ◦v H) = 2a+ 2.
We can b-color G ◦v H with 2a+ 2 colors:
Give each of the maximum-degree vertices a different color.
Color the remaining neighbors of these vertices so they become CDVs.
The rest of the vertices can be colored greedily.
So φ(G ◦v H) = m(G ◦v H).

Observation

Can have φ(G ) < m(G ) and φ(H) < m(H) but φ(G ◦v H) = m(G ◦v H).
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Comparing m and φ in Factors vs Product, Part 2

Example

Take G = C5 and H = Pb with b ≥ 5 and dH(v) = 1.
Then φ(G ) = φ(H) = m(G ) = m(H) = 3,
but φ(G ◦v H) = 3 and m(G ◦v H) = 4.

Observation

Can have φ(G ) = m(G ) and φ(H) = m(H) but φ(G ◦v H) < m(G ◦v H).

Note

This example is not as broad as the one on the previous slide.
There may be only two choices for the first factor.
Most other examples we considered with φ(G ) = m(G ) and φ(H) = m(G )
have φ(G ◦v H) = m(G ◦v H).
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Suggestions for Future Research

Question 1

How are equality between φ and m in the factors related to equality in the
rooted product?

Question 2

When is φ(G ◦v H) either ∆(H) + 1 or φ(G ) + dH(v)?

Question 3

When is φ(G ◦v H) simply the larger of φ(G ) and φ(H)?
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