Multivariate P-polynomial association schemes and m-distance regular graphs

Xiaohong Zhang

Université de Montréal Joint work with Pierre-Antoine Bernard, Nicolas Crampé, Luc Vinet and Meri Zaimi

TerwilligerFest - Combinatorics around the q-Onsager algebra Kranjska gora

Outline

- 1 DRG and P-polynomial association scheme
 - Distance regular graphs
 - P-polynomial association scheme

- 2 m-distance regular graph and m-variate P-polynomial scheme
 - Multivariate P-polynomial scheme
 - *m*-distance regular graphs

A graph G is distance regular if for any $u, v \in V(G)$ and any $i, j \in \mathbb{Z}$, $|S_i(u) \cap S_i(v)|$ depends only on dist(u, v).

A graph G is distance regular if for any $u, v \in V(G)$ and any $i, j \in \mathbb{Z}$, $|S_i(u) \cap S_i(v)|$ depends only on dist(u, v).

Equivalently, G is distance regular if for any $u, v \in V(G)$ and $i \in \mathbb{Z}$, $|S_i(u) \cap S_1(v)|$ depends only on dist(u, v).

Examples

- C_n
- Petersen graph
- Strongly regular graphs
 Hamming graphs
 Johnson graphs
 Grassmann graphs

$$A_{0} = I_{8}$$

$$A_{1} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}, A_{2} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix},$$

$$A_2 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{l} A_{0} + A_{1} + A_{2} + A_{3} \\ A_{1}^{2} = 2A_{2} + 3A_{0}, \\ A_{1}A_{2} = A_{2}A_{1} = 2A_{2} \\ A_{1}A_{3} = A_{3}A_{1} = A_{2} \\ A_{2}^{2} = 3A_{0} + 2A_{2} \\ A_{2}A_{3} = A_{3}A_{2} = A_{1} \\ A_{2}A_{3} = A_{3}A_{2} = A_{1} \\ A_{3} = A_{3}A_{2} = A_{1} \\ A_{4}A_{5} = A_{5}A_{5} = A_{5}A_{5} \\ A_{5}A_{5} A_{5$$

$$A_0 + A_1 + A_2 + A_3 = J$$

$$A_1^2 = 2A_2 + 3A_0,$$

$$A_1A_2 = A_2A_1 = 2A_1 + 3A_3$$

$$A_1A_3 = A_3A_1 = A_2$$

$$A_2^2 = 3A_0 + 2A_2$$

$$A_2A_3 = A_3A_2 = A_1$$

$$A_3^2 = A_0$$

Association scheme

A commutative association scheme with d classes on n vertices is a set of $n \times n$ 01-matrices $\mathcal{A} = \{A_0, \dots, A_d\}$ such that:

- $A_0 = I$
- $\sum_r A_r = J$
- $A_r^T \in \mathcal{A}$ for all r
- For all $i, j, A_i A_i = A_i A_i$ lies in $\mathbb{C}[A]$, the span of A over \mathbb{C} .

•
$$v_0(x) = 1$$
, $v_1(x) = x$, $v_2(x) = \frac{1}{2}x^2 - \frac{3}{2}$, $v_3(x) = \frac{1}{6}x^2 - \frac{7}{6}x$

DRG and *P*-polynomial association scheme *m*-distance regular graph and *m*-variate *P*-polynomial scheme Distance regular graphs *P*-polynomial association scheme

•
$$v_0(x) = 1$$
, $v_1(x) = x$, $v_2(x) = \frac{1}{2}x^2 - \frac{3}{2}$, $v_3(x) = \frac{1}{6}x^2 - \frac{7}{6}x$

•
$$v_0(A_1) = A_0, v_1(A_1) = A_1, v_2(A_1) = A_2, v_3(A_1) = A_3$$

DRG and *P*-polynomial association scheme *m*-distance regular graph and *m*-variate *P*-polynomial scheme Distance regular graphs *P*-polynomial association scheme

•
$$v_0(x) = 1$$
, $v_1(x) = x$, $v_2(x) = \frac{1}{2}x^2 - \frac{3}{2}$, $v_3(x) = \frac{1}{6}x^2 - \frac{7}{6}x$

•
$$v_0(A_1) = A_0, v_1(A_1) = A_1, v_2(A_1) = A_2, v_3(A_1) = A_3$$

An association scheme $A = \{A_0, ..., A_d\}$ is P-polynomial if we can relabel the matrices such that $A_i = v_i(A_1)$ for some polynomial v_i of degree i.

DRG and *P*-polynomial association scheme *m*-distance regular graph and *m*-variate *P*-polynomial scheme Distance regular graphs *P*-polynomial association scheme

•
$$v_0(x) = 1$$
, $v_1(x) = x$, $v_2(x) = \frac{1}{2}x^2 - \frac{3}{2}$, $v_3(x) = \frac{1}{6}x^2 - \frac{7}{6}x$

•
$$v_0(A_1) = A_0, v_1(A_1) = A_1, v_2(A_1) = A_2, v_3(A_1) = A_3$$

An association scheme $A = \{A_0, ..., A_d\}$ is P-polynomial if we can relabel the matrices such that $A_i = v_i(A_1)$ for some polynomial v_i of degree i.

Examples: Hamming scheme, Johnson scheme...

Non-examples: nonbinary Johnson scheme, association scheme based on attenuated spaces, association scheme based on isotropic spaces...

$$A_i A_j = A_j A_i = \sum_k p_{ij}^k A_k$$

$$\mathcal{A} = \{A_0, \dots, A_d\}$$

• A is a P-polynomial ordering

$$A_i A_j = A_j A_i = \sum_k p_{ij}^k A_k$$

$$\mathcal{A} = \{A_0, \ldots, A_d\}$$

- A is a P-polynomial ordering
- The graph associated to A_1 is distance regular

$$A_i A_j = A_j A_i = \sum_k p_{ij}^k A_k$$

$$\mathcal{A} = \{A_0, \ldots, A_d\}$$

- A is a P-polynomial ordering
- The graph associated to A_1 is distance regular

$$A_i A_j = A_j A_i = \sum_k p_{ij}^k A_k$$

$$\mathcal{A} = \{A_0, \dots, A_d\}$$

- A is a P-polynomial ordering $(A_i = v_i(A_1))$
- The graph associated to A_1 is distance regular
- $p_{1i}^k \neq 0 \implies i-1 \leq k \leq i+1$, and $p_{1i}^{i+1} \neq 0$, $p_{1i}^{i-1} \neq 0$

Outline

- 1 DRG and P-polynomial association scheme
 - Distance regular graphs
 - P-polynomial association scheme

- 2 m-distance regular graph and m-variate P-polynomial scheme
 - Multivariate P-polynomial scheme
 - *m*-distance regular graphs

Monomial orders

A monomial order \leq on $\mathbb{C}[x_1, x_2, \dots, x_m]$ is a relation on the set of monomials $x_1^{n_1} x_2^{n_2} \dots x_m^{n_m}$ satisfying:

- (i) \leq is a total order
- (ii) for monomials u, v, w, if $u \le v$, then $wu \le wv$
- (iii) ≤ is a well-ordering (any non-empty subset of the set of monomials has a minimum element under ≤)

An order on \mathbb{N}^m as well

Examples of monomial order

• $\alpha \leq_{\text{lex}} \beta$: the leftmost nonzero entry of $\alpha - \beta$ is negative $(0,2) \leq_{\text{lex}} (1,0)$

Examples of monomial order

- $\alpha \leq_{\text{lex}} \beta$: the leftmost nonzero entry of $\alpha \beta$ is negative $(0,2) \leq_{\text{lex}} (1,0)$
- $\alpha \leq_{\mathsf{grlex}} \beta$: $\alpha_1 + \dots + \alpha_m < \beta_1 + \dots + \beta_m$ or $(\alpha_1 + \dots + \alpha_m = \beta_1 + \dots + \beta_m \text{ and } \alpha \leq_{\mathsf{lex}} \beta)$ $(1,0) \leq_{\mathsf{grlex}} (0,2) \leq_{\mathsf{grlex}} (1,1)$

Region \mathcal{D}

- Bivariate P-polynomial association schemes
 Bernard, Crampe, Poulain d'Andecy, Vinet, Zaimi (2022)
- Multivariate P- and/or Q-polynomial association schemes
 Bannai, Kurihara, Zhao, Zhu (2023)

Region \mathcal{D}

- Bivariate P-polynomial association schemes
 Bernard, Crampe, Poulain d'Andecy, Vinet, Zaimi (2022)
- Multivariate P- and/or Q-polynomial association schemes Bannai, Kurihara, Zhao, Zhu (2023)

$$\mathcal{D}\subset\mathbb{N}^m$$

(i)

$$\bullet$$
 $\epsilon_1, \epsilon_2, \ldots, \epsilon_m \in \mathcal{D}$

Region \mathcal{D}

- Bivariate P-polynomial association schemes
 Bernard, Crampe, Poulain d'Andecy, Vinet, Zaimi (2022)
- Multivariate P- and/or Q-polynomial association schemes Bannai, Kurihara, Zhao, Zhu (2023)

$$\mathcal{D}\subset\mathbb{N}^m$$

(i)

- $\epsilon_1, \epsilon_2, \ldots, \epsilon_m \in \mathcal{D}$
- \leq monomial order on \mathbb{N}^m

$$\left. \begin{array}{l} \mathbf{n} = (n_1, n_2, \dots, n_m) \in \mathcal{D} \\ 0 \le n'_i \le n_i \text{ for all } i \end{array} \right\} \implies \mathbf{n}' = (n'_1, n'_2, \dots, n'_m) \in \mathcal{D}$$

< monomial order on \mathbb{N}^m

 $\mathcal{D} \subset \mathbb{N}^m$ satisfying (i) $(\epsilon_i \in \mathcal{D} \text{ and 'boxing property'})$

A commutative association scheme A is called *m*-variate

P-polynomial on \mathcal{D} with respect to \leq if

(ii) There exists a relabeling of the elements of $\mathcal{A} = \{A_{\mathbf{n}} \mid \mathbf{n} \in \mathcal{D}\}$ such that for all $\mathbf{n} \in \mathcal{D}$ we have

$$A_{\mathbf{n}} = v_{\mathbf{n}}(A_{\epsilon_1}, A_{\epsilon_2}, \dots, A_{\epsilon_m}),$$

where $v_{\mathbf{n}}(\mathbf{x})$ is an *m*-variate polynomial of degree \mathbf{n}

< monomial order on \mathbb{N}^m

 $\mathcal{D} \subset \mathbb{N}^m$ satisfying (i) $(\epsilon_i \in \mathcal{D} \text{ and 'boxing property'})$

A commutative association scheme A is called *m*-variate

P-polynomial on \mathcal{D} with respect to \leq if

(ii) There exists a relabeling of the elements of $\mathcal{A} = \{A_{\mathbf{n}} \mid \mathbf{n} \in \mathcal{D}\}$ such that for all $\mathbf{n} \in \mathcal{D}$ we have

$$A_{\mathbf{n}} = \nu_{\mathbf{n}}(A_{\epsilon_1}, A_{\epsilon_2}, \dots, A_{\epsilon_m}),$$

where $v_{\mathbf{n}}(\mathbf{x})$ is an m-variate polynomial of degree \mathbf{n} and all monomials \mathbf{x}^{β} in $v_{n}(\mathbf{x})$ satisfy $\beta \in \mathcal{D}$

< monomial order on \mathbb{N}^m

 $\mathcal{D} \subset \mathbb{N}^m$ satisfying (i): $\epsilon_i \in \mathcal{D}$ and 'boxing property'

A commutative association scheme A is called m-variate

P-polynomial on \mathcal{D} with respect to < if

(ii) $A_{\mathbf{n}} = v_{\mathbf{n}}(A_{\epsilon_1}, A_{\epsilon_2}, \dots, A_{\epsilon_m})$, monomials of $v_{\mathbf{n}}$ have degree in \mathcal{D}

 \leq monomial order on \mathbb{N}^m

 $\mathcal{D} \subset \mathbb{N}^m$ satisfying (i): $\epsilon_i \in \mathcal{D}$ and 'boxing property'

A commutative association scheme A is called *m*-variate

P-polynomial on \mathcal{D} with respect to < if

(ii)
$$A_{\mathbf{n}}=v_{\mathbf{n}}(A_{\epsilon_1},A_{\epsilon_2},\ldots,A_{\epsilon_m})$$
, monomials of $v_{\mathbf{n}}$ have degree in $\mathcal D$

(iii) For
$$i=1,2,\ldots,m$$
 and $\alpha=(\alpha_1,\alpha_2,\ldots,\alpha_m)\in\mathcal{D}$, the product $A_{\epsilon_i}A_{\epsilon_1}^{\alpha_1}A_{\epsilon_2}^{\alpha_2}\ldots A_{\epsilon_m}^{\alpha_m}$ is a linear combination of

$$\{A_{\epsilon_1}^{\beta_1}A_{\epsilon_2}^{\beta_2}\dots A_{\epsilon_m}^{\beta_m}\mid \beta=(\beta_1,\dots,\beta_m)\in\mathcal{D},\ \beta\leq\alpha+\epsilon_i\}.$$

An equivalent condition

 $\mathcal{A} = \{ A_{\pmb{i}} \mid \pmb{i} \in \mathcal{D} \} \text{ is a commutative association scheme}$ Then the following two statements are equivalent:

- (i) $\mathcal A$ is an m-variate P-polynomial association scheme on $\mathcal D$ with respect to a monomial order \leq
- (ii) for $i=1,2,\ldots,m$ and $\alpha\in\mathcal{D}$, $p_{\epsilon_{i},\alpha}^{\beta}\neq0 \implies (\beta\leq\alpha+\epsilon_{i} \text{ and } \alpha\leq\beta+\epsilon_{i})$ $p_{\epsilon_{i},\alpha}^{\alpha+\epsilon_{i}}\neq0$, $p_{\epsilon_{i},\alpha}^{\alpha-\epsilon_{i}}\neq0$

Examples

- Direct product of P-polynomial association schemes
- Extensions of an association scheme
- Nonbinary Johnson scheme
- Association scheme based on attenuated spaces
- Association scheme based on isotropic spaces
- Generalized 24-cell

m-length of walks

$$G = (X, E_1 \sqcup \cdots \sqcup E_m)$$
 a connected graph $(E_i \cap E_j = \emptyset \text{ if } i \neq j)$

$$\xi = (e_1, e_2, \dots, e_L)$$
 a walk on G .

The *m*-length $\ell_m(\xi)$ of ξ with respect to the *m*-partition

$$\{E_i|\ i=1,2,\ldots,m\}\ {\rm of}\ E(G)\ {\rm is}$$

$$\ell_m(\xi) = (|\{j \mid e_j \in E_1\}|, |\{j \mid e_j \in E_2\}|, \dots, |\{j \mid e_j \in E_m\}|).$$

m-length of walks

$$G = (X, E_1 \sqcup \cdots \sqcup E_m)$$
 a connected graph $(E_i \cap E_j = \emptyset \text{ if } i \neq j)$

$$\xi = (e_1, e_2, \dots, e_L)$$
 a walk on G .

The *m*-length $\ell_m(\xi)$ of ξ with respect to the *m*-partition

$$\{E_i|\ i=1,2,\ldots,m\}\ {\rm of}\ E(G)\ {\rm is}$$

$$\ell_m(\xi) = (|\{j \mid e_j \in E_1\}|, |\{j \mid e_j \in E_2\}|, \dots, |\{j \mid e_j \in E_m\}|).$$

m-length of walks

$$G = (X, E_1 \sqcup \cdots \sqcup E_m)$$
 a connected graph $(E_i \cap E_i = \emptyset \text{ if } i \neq j)$

$$\xi = (e_1, e_2, \dots, e_L)$$
 a walk on G .

The *m*-length $\ell_m(\xi)$ of ξ with respect to the *m*-partition

$$\{E_i|\ i=1,2,\ldots,m\}\ {\rm of}\ E(G)\ {\rm is}$$

$$\ell_m(\xi) = (|\{j \mid e_j \in E_1\}|, |\{j \mid e_j \in E_2\}|, \dots, |\{j \mid e_j \in E_m\}|).$$

$$E_1 = \{e_1\}$$

 $E_2 = \{e_2, e_3\}$

$$\ell_2((e_1)) = (1,0)$$

$$\ell_2((e_2e_3))=(0,2)$$

m-distance between vertices

 \leq a monomial order on $\mathbb{C}[x_1,\ldots,x_m]$

The *m*-distance d_m between $x, y \in V(G)$ is

 $d_m(x, y) = \min_{\xi \in \mathcal{U}_m(\xi)} | \xi \text{ is a walk between } x \text{ and } y \}.$

m-distance between vertices

 \leq a monomial order on $\mathbb{C}[x_1,\ldots,x_m]$

The *m*-distance d_m between $x, y \in V(G)$ is

 $d_m(x,y) = \min_{\xi \in \mathcal{U}_m(\xi)} | \xi \text{ is a walk between } x \text{ and } y \}.$

$$\leq_{\text{lex}}$$
: $d_2(u, v) = (0, 2)$
 \leq_{grlex} : $d_2(u, v) = (1, 0)$

m-distance between vertices

 \leq a monomial order on $\mathbb{C}[x_1,\ldots,x_m]$

The *m*-distance d_m between $x, y \in V(G)$ is

 $d_m(x,y) = \min_{\xi \in \mathcal{U}_m(\xi)} | \xi \text{ is a walk between } x \text{ and } y \}.$

$$\leq_{\text{lex}}$$
: $d_2(u, v) = (0, 2)$

$$\leq_{\mathsf{grlex}}: d_2(u, v) = (1, 0)$$

$$d_m(x,y)=\alpha$$
,

 $\beta \leq \alpha$, there may not be vertices at *m*-

distance β

 $\gamma_i \leq \alpha_i$, there may not be vertices at m-distance γ .

DRG and *P*-polynomial association scheme *m*-distance regular graph and *m*-variate *P*-polynomial scheme Multivariate *P*-polynomial scheme *m*-distance regular graphs

m-distance regular graphs $G = (V, E_1 \sqcup \cdots \sqcup E_m)$

 $G = (V, E_1 \sqcup \cdots \sqcup E_m)$ is m-distance regular with respect to the monomial order \leq if for any $u, v \in V(G)$ and any $\mathbf{i}, \mathbf{j} \in \mathbb{N}^m$, $|S_{\mathbf{i}}(u) \cap S_{\mathbf{j}}(v)|$ depends only on $\mathrm{dist}_m(u, v)$.

m-distance regular graphs $G = (V, E_1 \sqcup \cdots \sqcup E_m)$

$$G = (V, E_1 \sqcup \cdots \sqcup E_m)$$
 is m -distance regular with respect to the monomial order \leq if for any $u, v \in V(G)$ and any $\mathbf{i}, \mathbf{j} \in \mathbb{N}^m$, $|S_{\mathbf{i}}(u) \cap S_{\mathbf{j}}(v)|$ depends only on $\mathrm{dist}_m(u, v)$.

$$d_m(x,y) = \alpha$$
,

 $\gamma_i \leq \alpha_i$, there are vertices at *m*-distance γ

Cartesian product of distance regular graphs

Connection

- \leq a monomial order on \mathbb{N}^m
- $\mathcal{D} \subset \mathbb{N}^m$ satisfies condition (i)
- $\mathcal{A} = \{A_{\mathbf{n}} | \mathbf{n} \in \mathcal{D}\}$ a symmetric association scheme on a set X

Define
$$E_i \subseteq X \times X$$
 by $(x, y) \in E_i \iff (A_{\epsilon_i})_{xy} = 1$

The following statements are equivalent:

- (i) ${\mathcal A}$ is an ${\it m}$ -variate ${\it P}$ -polynomial association scheme on ${\mathcal D}$ with respect to <
- (ii) $G = (X, E_1 \sqcup \cdots \sqcup E_m)$ is m-distance-regular with respect to the edge partition $\{E_i \mid i = 1, 2, \ldots, m\}$ and \leq \mathcal{D} is the set of all m-distances in G and the matrix A_ℓ is the ℓ -th m-distance matrix of G for all $\ell \in \mathcal{D}$

DRG and P-polynomial association scheme m-distance regular graph and m-variate P-polynomial scheme m-distance regular graphs

More examples

• Direct product of *P*-polynomial association schemes

More examples

- Direct product of P-polynomial association schemes ↔
 Cartesian product of distance regular graphs
- $\mathcal{A} = \{A_0, \dots, A_d\}$ an association scheme on q vertices Extension (symmetrization) of \mathcal{A} of length n

More examples

- Direct product of P-polynomial association schemes ↔
 Cartesian product of distance regular graphs
- $\mathcal{A} = \{A_0, \dots, A_d\}$ an association scheme on q vertices Extension (symmetrization) of \mathcal{A} of length $n \leftrightarrow$ Hamming graph H(n, q), d-distance regular

24-cell,
$$(\pm 1, \pm 1, 0, 0)$$

2, $\sqrt{6}$,

DRG and *P*-polynomial association scheme *m*-distance regular graph and *m*-variate *P*-polynomial scheme Multivariate *P*-polynomial scheme *m*-distance regular graphs

There exists at most one m-variate P-polynomial association scheme \mathcal{Z} with order \leq and with fixed generating matrices A_{ϵ_i} , $i=1,2\ldots,m$.

More

- Terwilliger algebra of m-variate P- and Q-polynomial association schemes
- For a given $k=(k_1,k_2,\ldots,k_m)$, are there finitely many m-distance-regular graph $G=(X,\Gamma_1\sqcup\Gamma_2\sqcup\cdots\sqcup\Gamma_m)$ such that the graph (X,Γ_i) is k_i -regular?
- Partial order \leq such that $\alpha \leq \beta \implies \alpha \leq \beta$
- Generators

Thank you!