The *q*-Onsager algebra and the quantum torus: 2025 Edition

TerwilligerFest 2025 —— Combinatorics around the q-Onsager Algebra

Owen Goff — University of Wisconsin - Madison

▶ Let *K* be a field of characteristic 0.

- ▶ Let *K* be a field of characteristic 0.
- ▶ All algebras in this paper are associative, unital, over *K*.

- ▶ Let *K* be a field of characteristic 0.
- All algebras in this paper are associative, unital, over K.
- For elements u, v in any algebra, define [u, v] = uv vu. We call [u, v] the *commutator* of u and v. For nonzero $r \in K$, define $[u, v]_r = ruv - r^{-1}vu$. We call $[u, v]_r$ the r-commutator of u and v.

- ▶ Let *K* be a field of characteristic 0.
- All algebras in this paper are associative, unital, over K.
- ▶ For elements u, v in any algebra, define [u, v] = uv vu. We call [u, v] the *commutator* of u and v. For nonzero $r \in K$, define $[u, v]_r = ruv r^{-1}vu$. We call $[u, v]_r$ the r-commutator of u and v.
- Fix nonzero $q \in K$. We assume q is not a root of unity. Fix a square root of q, which we call $q^{1/2}$.

- ▶ Let *K* be a field of characteristic 0.
- All algebras in this paper are associative, unital, over K.
- ▶ For elements u, v in any algebra, define [u, v] = uv vu. We call [u, v] the *commutator* of u and v. For nonzero $r \in K$, define $[u, v]_r = ruv r^{-1}vu$. We call $[u, v]_r$ the r-commutator of u and v.
- Fix nonzero $q \in K$. We assume q is not a root of unity. Fix a square root of q, which we call $q^{1/2}$.
- For $n \ge 0$, define $[n]_q = \frac{q^n q^{-n}}{q q^{-1}}$. We are using notation from (Terwilliger 2021a).
- ▶ Throughout this paper, *t* is an indeterminate.

- ▶ Let *K* be a field of characteristic 0.
- ▶ All algebras in this paper are associative, unital, over *K*.
- For elements u, v in any algebra, define [u, v] = uv vu. We call [u, v] the *commutator* of u and v. For nonzero $r \in K$, define $[u, v]_r = ruv r^{-1}vu$. We call $[u, v]_r$ the r-commutator of u and v.
- Fix nonzero $q \in K$. We assume q is not a root of unity. Fix a square root of q, which we call $q^{1/2}$.
- For $n \ge 0$, define $[n]_q = \frac{q^n q^{-n}}{q q^{-1}}$. We are using notation from (Terwilliger 2021a).
- ▶ Throughout this paper, *t* is an indeterminate.
- For any integer m, we define $\delta_{m,ev}$ to equal 1 if m is even and 0 if m is odd.

Definition 1 (See (Terwilliger 1993, Lemma 5.4).)

The *q*-Onsager algebra, denoted O_q , is the algebra defined by generators W_0 , W_1 and relations

$$[W_0, [W_0, [W_0, W_1]_q]_{q^{-1}}] = -(q^2 - q^{-2})^2 [W_0, W_1],$$
 (1)

$$[W_1, [W_1, [W_1, W_0]_q]_{q^{-1}}] = -(q^2 - q^{-2})^2 [W_1, W_0].$$
 (2)

Definition 1 (See (Terwilliger 1993, Lemma 5.4).)

The *q*-Onsager algebra, denoted O_q , is the algebra defined by generators W_0 , W_1 and relations

$$[W_0, [W_0, [W_0, W_1]_q]_{q^{-1}}] = -(q^2 - q^{-2})^2 [W_0, W_1],$$
 (1)

$$[W_1, [W_1, [W_1, W_0]_q]_{q^{-1}}] = -(q^2 - q^{-2})^2 [W_1, W_0].$$
 (2)

We call (1) and (2) the *q-Dolan-Grady relations*.

Definition 1 (See (Terwilliger 1993, Lemma 5.4).)

The *q*-Onsager algebra, denoted O_q , is the algebra defined by generators W_0 , W_1 and relations

$$[W_0, [W_0, [W_0, W_1]_q]_{q^{-1}}] = -(q^2 - q^{-2})^2 [W_0, W_1],$$
 (1)

$$[W_1, [W_1, [W_1, W_0]_q]_{q^{-1}}] = -(q^2 - q^{-2})^2 [W_1, W_0].$$
 (2)

We call (1) and (2) the q-Dolan-Grady relations.

Sidenote

In their paper, Baseilhac and Kolb describe the next set of elements as being contained in the algebra \mathcal{B}_c . This is another version of the O_a , where $O_a \cong \mathcal{B}_c/(c-q^{-1}(q-q^{-1})^2)$.

(1) The Baseilhac-Kolb Elements of O_q

Definition 2 (See (Pascal Baseilhac and Kolb 2020, Section 3).)

In the algebra O_q , we define the elements

$$\{B_{n\delta+\alpha_0}\}_{n=0}^{\infty}, \qquad \{B_{n\delta+\alpha_1}\}_{n=0}^{\infty}, \qquad \{B_{n\delta}\}_{n=1}^{\infty}$$
 (3)

in the following way:

(1) The Baseilhac-Kolb Elements of O_q

Definition 2 (See (Pascal Baseilhac and Kolb 2020, Section 3).)

In the algebra O_a , we define the elements

$$\{B_{n\delta+\alpha_0}\}_{n=0}^{\infty}, \qquad \{B_{n\delta+\alpha_1}\}_{n=0}^{\infty}, \qquad \{B_{n\delta}\}_{n=1}^{\infty}$$
 (3)

in the following way:

$$egin{aligned} B_{\delta} &= q^{-2} W_1 W_0 - W_0 W_1, \ B_{lpha_0} &= W_0, \ B_{\delta+lpha_0} &= W_1 + rac{q[B_{\delta}, W_0]}{(q-q^{-1})(q^2-q^{-2})}, \ B_{n\delta+lpha_0} &= B_{(n-2)\delta+lpha_0} + rac{q[B_{\delta}, B_{(n-1)\delta+lpha_0}]}{(q-q^{-1})(q^2-q^{-2})}, \qquad n \geq 2, \ B_{lpha_1} &= W_1, \end{aligned}$$

The Baseilhac-Kolb Elements of O_q , continued

Definition 2, continued

$$egin{aligned} B_{\delta+lpha_1} &= W_0 - rac{q[B_\delta,W_1]}{(q-q^{-1})(q^2-q^{-2})}, \ B_{n\delta+lpha_1} &= B_{(n-2)\delta+lpha_1} - rac{q[B_\delta,B_{(n-1)\delta+lpha_1}]}{(q-q^{-1})(q^2-q^{-2})}, \qquad n \geq 2, \ B_{n\delta} &= q^{-2}B_{(n-1)\delta+lpha_1}W_0 - W_0B_{(n-1)\delta+lpha_1} \ &+ (q^{-2}-1)\sum_{\ell=0}^{n-2}B_{\ell\delta+lpha_1}B_{(n-\ell-2)\delta+lpha_1}, \qquad n \geq 2. \end{aligned}$$

The Baseilhac-Kolb Elements of O_q , continued

Definition 2, continued

$$egin{aligned} B_{\delta+lpha_1} &= W_0 - rac{q[B_\delta,W_1]}{(q-q^{-1})(q^2-q^{-2})}, \ B_{n\delta+lpha_1} &= B_{(n-2)\delta+lpha_1} - rac{q[B_\delta,B_{(n-1)\delta+lpha_1}]}{(q-q^{-1})(q^2-q^{-2})}, \qquad n \geq 2, \ B_{n\delta} &= q^{-2}B_{(n-1)\delta+lpha_1}W_0 - W_0B_{(n-1)\delta+lpha_1} \ &+ (q^{-2}-1)\sum_{\ell=0}^{n-2}B_{\ell\delta+lpha_1}B_{(n-\ell-2)\delta+lpha_1}, \qquad n \geq 2. \end{aligned}$$

FACT: The $B_{n\delta}$ elements mutually commute.

The Baseilhac-Kolb Elements of O_q , continued

Definition 2, continued

$$egin{aligned} B_{\delta+lpha_1} &= W_0 - rac{q[B_\delta,W_1]}{(q-q^{-1})(q^2-q^{-2})}, \ B_{n\delta+lpha_1} &= B_{(n-2)\delta+lpha_1} - rac{q[B_\delta,B_{(n-1)\delta+lpha_1}]}{(q-q^{-1})(q^2-q^{-2})}, \qquad n \geq 2, \ B_{n\delta} &= q^{-2}B_{(n-1)\delta+lpha_1}W_0 - W_0B_{(n-1)\delta+lpha_1} \ &+ (q^{-2}-1)\sum_{\ell=0}^{n-2}B_{\ell\delta+lpha_1}B_{(n-\ell-2)\delta+lpha_1}, \qquad n \geq 2. \end{aligned}$$

FACT: The $B_{n\delta}$ elements mutually commute.

We call the elements in (3) the *Baseilhac-Kolb* elements of O_q . For notational convenience, we define $B_{0\delta} = q^{-2} - 1$.

(2) Alternating Elements of O_{α}

Definition 3 (See (P. Baseilhac and Shigechi 2010, Definition 3.1).)

Define the algebra \mathcal{O}_q by the generators

$$\{\mathcal{W}_{-k}\}_{k=0}^{\infty}, \qquad \{\mathcal{W}_{k+1}\}_{k=0}^{\infty}, \qquad \{\mathcal{G}_{k+1}\}_{k=0}^{\infty}, \qquad \{\tilde{\mathcal{G}}_{k+1}\}_{k=0}^{\infty},$$

$$\{\mathcal{W}_{k+1}\}_{k=0}^{\infty},$$

$$\{\mathcal{G}_{k+1}\}_{k=0}^{\infty},$$

$$\{\tilde{\mathcal{G}}_{k+1}\}_{k=0}^{\infty},$$

(2) Alternating Elements of O_q

Definition 3 (See (P. Baseilhac and Shigechi 2010, Definition 3.1).)

Define the algebra \mathcal{O}_q by the generators

$$\{\mathcal{W}_{-k}\}_{k=0}^{\infty}, \qquad \{\mathcal{W}_{k+1}\}_{k=0}^{\infty}, \qquad \{\mathcal{G}_{k+1}\}_{k=0}^{\infty}, \qquad \{\tilde{\mathcal{G}}_{k+1}\}_{k=0}^{\infty},$$

and 13 sets of commutator relations.

Lemma 5

There is an algebra homomorphism $\gamma: \mathcal{O}_q \mapsto \mathcal{O}_q$ that sends

$$\mathcal{W}_0 \mapsto W_0, \qquad \mathcal{W}_1 \mapsto W_1.$$

The map γ and the alternating elements of O_q

We extend the notation for W_0 and W_1 .

The map γ and the alternating elements of O_q

We extend the notation for W_0 and W_1 .

Definition 4 (See (Terwilliger 2022, Definition 11.5).)

For $k \in \mathbb{N}$, define

$$W_{-k} = \gamma(\mathcal{W}_{-k}), \qquad W_{k+1} = \gamma(\mathcal{W}_{k+1}),$$

$$G_{k+1} = \gamma(\mathcal{G}_{k+1}), \qquad \tilde{G}_{k+1} = \gamma(\tilde{\mathcal{G}}_{k+1}). \qquad (4)$$

We call these images the *alternating elements* of O_q . For notational convenience, we define

$$G_0 = \tilde{G}_0 = -\left(q - q^{-1}
ight)\left(q + q^{-1}
ight)^2.$$

(3) The Lu-Wang Elements

Definition 5 (See (Lu and Wang 2021, Definition 2.1).)

Let $\tilde{\mathbf{U}}^{\imath}$ denote the algebra defined by generators B_0 , B_1 , $\mathbb{K}_0^{\pm 1}$, $\mathbb{K}_1^{\pm 1}$ and the following relations:

$$\begin{split} \mathbb{K}_1\mathbb{K}_1^{-1} &= 1 = \mathbb{K}_1^{-1}\mathbb{K}_1, \qquad \mathbb{K}_0\mathbb{K}_0^{-1} = 1 = \mathbb{K}_0^{-1}\mathbb{K}_0, \\ \mathbb{K}_0, \mathbb{K}_1 \text{ are central}, \end{split}$$

$$\begin{split} [B_0, [B_0, [B_0, B_1]_q]_{q^{-1}}] &= -q^{-1}(q + q^{-1})^2 [B_0, B_1] \mathbb{K}_0, \\ [B_1, [B_1, [B_1, B_0]_q]_{q^{-1}}] &= -q^{-1}(q + q^{-1})^2 [B_1, B_0] \mathbb{K}_1. \end{split}$$

(3) The Lu-Wang Elements

Definition 5 (See (Lu and Wang 2021, Definition 2.1).)

Let $\tilde{\mathbf{U}}^{\imath}$ denote the algebra defined by generators B_0 , B_1 , $\mathbb{K}_0^{\pm 1}$, $\mathbb{K}_1^{\pm 1}$ and the following relations:

$$\begin{split} \mathbb{K}_1\mathbb{K}_1^{-1} &= 1 = \mathbb{K}_1^{-1}\mathbb{K}_1, \qquad \mathbb{K}_0\mathbb{K}_0^{-1} = 1 = \mathbb{K}_0^{-1}\mathbb{K}_0, \\ \mathbb{K}_0, \mathbb{K}_1 \text{ are central}, \end{split}$$

$$[B_0, [B_0, [B_0, B_1]_q]_{q^{-1}}] = -q^{-1}(q + q^{-1})^2 [B_0, B_1] \mathbb{K}_0,$$

$$[B_1, [B_1, [B_1, B_0]_q]_{q^{-1}}] = -q^{-1}(q + q^{-1})^2 [B_1, B_0] \mathbb{K}_1.$$

The algebra $\tilde{\mathbf{U}}^i$ is known as the *universal q-Onsager algebra*.

The map v

Lemma 6 (See (Terwilliger 2022, Remark 5.7).)

There exists a surjective algebra homomorphism $\upsilon: \tilde{\mathbf{U}}^{\imath} \mapsto O_q$ that sends

$$B_0 \mapsto \frac{W_0}{q^{1/2}(q-q^{-1})}, \qquad B_1 \mapsto \frac{W_1}{q^{1/2}(q-q^{-1})}, \qquad \mathbb{K}_0, \mathbb{K}_1 \mapsto 1.$$

There are several series of elements of $\tilde{\mathbf{U}}^i$, known as q-root vectors, given in (Lu and Wang 2021).

There are several series of elements of $\tilde{\mathbf{U}}^i$, known as q-root vectors, given in (Lu and Wang 2021).

Following (Lu and Wang 2021), we define

$$\Theta_0' = \Theta_0 = \frac{1}{q - q^{-1}}, \qquad \qquad \Theta_1' = \Theta_1 = q^2 B_0 B_1 - B_1 B_0.$$

There are several series of elements of $\tilde{\mathbf{U}}^i$, known as q-root vectors, given in (Lu and Wang 2021).

Following (Lu and Wang 2021), we define

$$\Theta_0' = \Theta_0 = \frac{1}{q - q^{-1}}, \qquad \qquad \Theta_1' = \Theta_1 = q^2 B_0 B_1 - B_1 B_0.$$

For notational convenience, we define $\Theta'_n = \Theta_n = 0$ for n < 0.

There are several series of elements of $\tilde{\mathbf{U}}^i$, known as q-root vectors, given in (Lu and Wang 2021).

Following (Lu and Wang 2021), we define

$$\Theta_0' = \Theta_0 = \frac{1}{q - q^{-1}}, \qquad \qquad \Theta_1' = \Theta_1 = q^2 B_0 B_1 - B_1 B_0.$$

For notational convenience, we define $\Theta'_n = \Theta_n = 0$ for n < 0.

Definition 6 (See (Lu and Wang 2021, Section 2).)

The elements $\{B_{1,r}\}_{r\in\mathbb{Z}}$ of $\tilde{\mathbf{U}}^{\imath}$ satisfy $B_{1,0}=B_1,B_{1,-1}=B_0\mathbb{K}_0^{-1},$ and for $\ell\in\mathbb{Z}$,

$$[\Theta_1, B_{1,\ell}] = (q + q^{-1}) \left(B_{1,\ell+1} - B_{1,\ell-1} \mathbb{K}_{\delta} \right) \qquad (\mathbb{K}_{\delta} = \mathbb{K}_0 \mathbb{K}_1).$$

The B and Θ elements

The B and Θ elements

Definition 7

For $n \ge 2$, we define Θ'_n and Θ_n in $\tilde{\mathbf{U}}^i$ by the equations:

The B and Θ elements

Definition 7

For $n \ge 2$, we define Θ'_n and Θ_n in $\tilde{\mathbf{U}}^i$ by the equations:

$$\Theta_n' = \left(-B_{1,n-1}B_0 + q^2B_0B_{1,n-1} + (q^2-1)\sum_{\ell=0}^{n-2}B_{1,\ell}B_{1,n-\ell-2}\right)\mathbb{K}_0,$$

$$\Theta_n = \Theta_n' - \delta_{n,\text{ev}} q^{1-n} \mathbb{K}_{\delta}^{n/2} - \sum_{\ell=1}^{\lfloor \frac{n-1}{2} \rfloor} (q^2-1) q^{-2\ell} \Theta_{n-2\ell}' \mathbb{K}_{\delta}^{\ell}.$$

The elements $\{H'_n\}_{n=1}^{\infty}$ and $\{H_n\}_{n=1}^{\infty}$ have applications to iHall algebras and are defined using generating functions.

The elements $\{H'_n\}_{n=1}^{\infty}$ and $\{H_n\}_{n=1}^{\infty}$ have applications to iHall algebras and are defined using generating functions.

Definition 8

We define the following generating functions for $\tilde{\mathbf{U}}^i$:

$$\Theta'(t) = (q - q^{-1}) \sum_{n=0}^{\infty} \Theta'_n t^n, \qquad \Theta(t) = (q - q^{-1}) \sum_{n=0}^{\infty} \Theta_n t^n.$$

The elements $\{H'_n\}_{n=1}^{\infty}$ and $\{H_n\}_{n=1}^{\infty}$ have applications to iHall algebras and are defined using generating functions.

Definition 8

We define the following generating functions for $\tilde{\mathbf{U}}^i$:

$$\Theta'(t) = (q - q^{-1}) \sum_{n=0}^{\infty} \Theta'_n t^n, \qquad \Theta(t) = (q - q^{-1}) \sum_{n=0}^{\infty} \Theta_n t^n.$$

Next, we define the generating functions H'(t) and H(t) by

$$\exp\left((q-q^{-1})H'(t)\right)=\Theta'(t),\qquad \exp\left((q-q^{-1})H(t)\right)=\Theta(t).$$

The elements $\{H'_n\}_{n=1}^{\infty}$ and $\{H_n\}_{n=1}^{\infty}$ have applications to iHall algebras and are defined using generating functions.

Definition 8

We define the following generating functions for $\tilde{\mathbf{U}}^{\imath}$:

$$\Theta'(t) = (q - q^{-1}) \sum_{n=0}^{\infty} \Theta'_n t^n, \qquad \Theta(t) = (q - q^{-1}) \sum_{n=0}^{\infty} \Theta_n t^n.$$

Next, we define the generating functions H'(t) and H(t) by

$$\exp\left((q-q^{-1})H'(t)\right)=\Theta'(t),\qquad \exp\left((q-q^{-1})H(t)\right)=\Theta(t).$$

Since the constant term of $\Theta'(t)$ is 1, the constant term of H'(t) is 0. By a similar argument, the constant term of H(t) is 0.

The H and H' elements, continued.

Definition 9

For $n \ge 1$, we define H'_n and H_n by

$$H'(t) = \sum_{n=1}^{\infty} H'_n t^n, \qquad H(t) = \sum_{n=1}^{\infty} H_n t^n.$$
 (5)

(Recall that the constant term of each generating function is 0.)

The H and H' elements, continued.

Definition 9

For $n \ge 1$, we define H'_n and H_n by

$$H'(t) = \sum_{n=1}^{\infty} H'_n t^n, \qquad H(t) = \sum_{n=1}^{\infty} H_n t^n.$$
 (5)

(Recall that the constant term of each generating function is 0.)

Woof. We've now defined all of the elements of $\tilde{\mathbf{U}}^{i}$ with images that we care about.

The image of $B_{1,r}$ in O_q

Proposition 2

For $n \ge 0$, the map v sends

$$B_{1,-n-1} \mapsto rac{B_{n\delta+lpha_0}}{q^{1/2}(q-q^{-1})}, \ B_{1,n} \mapsto rac{B_{n\delta+lpha_1}}{q^{1/2}(q-q^{-1})}.$$

The image of $B_{1,r}$ in O_q

Proposition 2

For $n \ge 0$, the map v sends

$$egin{aligned} B_{1,-n-1} &\mapsto rac{B_{n\delta+lpha_0}}{q^{1/2}(q-q^{-1})}, \ B_{1,n} &\mapsto rac{B_{n\delta+lpha_1}}{q^{1/2}(q-q^{-1})}. \end{aligned}$$

For $n \ge 0$, the map v sends

$$\Theta_n'\mapsto -rac{qB_{n\delta}}{(q-q^{-1})^2}.$$

Analyzing the algebra $\tilde{\mathbf{U}}^i$.

For notational convenience, for the elements

$$\{\Theta_n'\}_{n=0}^{\infty}, \qquad \{\Theta_n\}_{n=0}^{\infty}, \qquad \{H_n'\}_{n=1}^{\infty}, \qquad \{H_n\}_{n=1}^{\infty}, \qquad \{B_{1,r}\}_{r\in\mathbb{Z}}$$

of $\tilde{\mathbf{U}}^i$, we retain the same notation for their v-images in O_q .

Analyzing the algebra $\tilde{\mathbf{U}}^{\imath}$.

For notational convenience, for the elements

$$\{\Theta_n'\}_{n=0}^{\infty}, \qquad \{\Theta_n\}_{n=0}^{\infty}, \qquad \{H_n'\}_{n=1}^{\infty}, \qquad \{H_n\}_{n=1}^{\infty}, \qquad \{B_{1,r}\}_{r\in\mathbb{Z}}$$

of $\tilde{\mathbf{U}}^i$, we retain the same notation for their v-images in O_q . These images are called the **Lu-Wang elements** of O_q .

Analyzing the algebra $\tilde{\mathbf{U}}^{i}$.

For notational convenience, for the elements

$$\{\Theta_n'\}_{n=0}^{\infty}, \qquad \{\Theta_n\}_{n=0}^{\infty}, \qquad \{H_n'\}_{n=1}^{\infty}, \qquad \{H_n\}_{n=1}^{\infty}, \qquad \{B_{1,r}\}_{r\in\mathbb{Z}}$$

of $\tilde{\mathbf{U}}^i$, we retain the same notation for their v-images in O_q . These images are called the **Lu-Wang elements** of O_q .

For instance, in O_q , we have

$$\Theta'_n = -\frac{qB_{n\delta}}{(q-q^{-1})^2}, \qquad n \ge 0.$$

Analyzing the algebra $\tilde{\mathbf{U}}^{i}$.

For notational convenience, for the elements

$$\{\Theta_n'\}_{n=0}^{\infty}, \qquad \{\Theta_n\}_{n=0}^{\infty}, \qquad \{H_n'\}_{n=1}^{\infty}, \qquad \{H_n\}_{n=1}^{\infty}, \qquad \{B_{1,r}\}_{r\in\mathbb{Z}}$$

of $\tilde{\mathbf{U}}^i$, we retain the same notation for their v-images in O_q . These images are called the **Lu-Wang elements** of O_q .

For instance, in O_a , we have

$$\Theta'_n = -\frac{qB_{n\delta}}{(q-q^{-1})^2}, \qquad n \geq 0.$$

In a similar fashion, for the generating functions

$$\Theta'(t)$$
, $\Theta(t)$, $H'(t)$, $H(t)$

of $\tilde{\mathbf{U}}^i$, we retain the same notation for their v-images in O_q .

The Sad Truth

The three classes of elements of O_q we have mentioned so far (Baseilhac-Kolb, Alternating, Lu-Wang) all suffer from the same affliction.

The Sad Truth

The three classes of elements of O_q we have mentioned so far (Baseilhac-Kolb, Alternating, Lu-Wang) all suffer from the same affliction.

These elements are defined by recursive formulas and generating functions, and there are no known formulas for them as polynomials in the generators W_0 and W_1 of O_q .

The Sad Truth

The three classes of elements of O_q we have mentioned so far (Baseilhac-Kolb, Alternating, Lu-Wang) all suffer from the same affliction.

These elements are defined by recursive formulas and generating functions, and there are no known formulas for them as polynomials in the generators W_0 and W_1 of O_q .

Our primary goal is to make these elements understandable. We introduce a simple but deep algebra called the *quantum torus* (denoted T_q) and introduce a homomorphism $p: O_q \mapsto T_q$. It so happens that the *p*-images of these elements of O_q have aesthetically pleasing forms in T_q .

The algebra T_q

Definition 10 (See (Gupta 2011).)

Define the algebra T_q by generators

$$x, y, x^{-1}, y^{-1}$$

and relations

$$xx^{-1} = 1 = x^{-1}x$$
, $yy^{-1} = 1 = y^{-1}y$, $xy = q^2yx$.

The algebra T_a is called the *quantum torus*.

The algebra T_q

Definition 10 (See (Gupta 2011).)

Define the algebra T_q by generators

$$x, y, x^{-1}, y^{-1}$$

and relations

$$xx^{-1} = 1 = x^{-1}x$$
, $yy^{-1} = 1 = y^{-1}y$, $xy = q^2yx$.

The algebra T_q is called the *quantum torus*. By (Gupta 2011, p. 3), the vector space T_q has a basis consisting of $\{x^ay^b|a,b\in\mathbb{Z}\}.$

An algebra homomorphism from O_q to T_q

Definition 11

For the algebra T_q , define

$$w_0 = x + x^{-1}, \qquad w_1 = y + y^{-1}.$$

In the algebra T_q , we have

$$\begin{split} [w_0, [w_0, [w_0, w_1]_q]_{q^{-1}}] &= -(q^2 - q^{-2})^2 [w_0, w_1], \\ [w_1, [w_1, [w_1, w_0]_q]_{q^{-1}}] &= -(q^2 - q^{-2})^2 [w_1, w_0]. \end{split}$$

An algebra homomorphism from O_q to T_q

Definition 11

For the algebra T_q , define

$$w_0 = x + x^{-1}, \qquad w_1 = y + y^{-1}.$$

In the algebra T_q , we have

$$\begin{split} [w_0, [w_0, [w_0, w_1]_q]_{q^{-1}}] &= -(q^2 - q^{-2})^2 [w_0, w_1], \\ [w_1, [w_1, [w_1, w_0]_q]_{q^{-1}}] &= -(q^2 - q^{-2})^2 [w_1, w_0]. \end{split}$$

Proposition 4

There exists an algebra homomorphism $p: O_q \mapsto T_q$ that sends $W_0 \mapsto w_0$ and $W_1 \mapsto w_1$.

The Images of the Baseilhac-Kolb Elements

The elements $B_{n\delta+\alpha_0}$ and $B_{n\delta+\alpha_1}$

Theorem 1

For $n \ge 0$, the map p sends

$$B_{n\delta+\alpha_0} \mapsto x(yx)^n + x^{-1}(y^{-1}x^{-1})^n,$$

$$B_{n\delta+\alpha_1} \mapsto y(xy)^n + y^{-1}(x^{-1}y^{-1})^n.$$

The elements $B_{n\delta+\alpha_0}$ and $B_{n\delta+\alpha_1}$

Theorem 1

For $n \ge 0$, the map p sends

$$B_{n\delta+\alpha_0} \mapsto x(yx)^n + x^{-1}(y^{-1}x^{-1})^n,$$

 $B_{n\delta+\alpha_1} \mapsto y(xy)^n + y^{-1}(x^{-1}y^{-1})^n.$

This follows from the recurrences by which these elements are defined.

The $B_{n\delta}$ elements

Next, we apply the map p to the elements $\{B_{n\delta}\}_{n=1}^{\infty}$ of O_q .

The $B_{n\delta}$ elements

Next, we apply the map p to the elements $\{B_{n\delta}\}_{n=1}^{\infty}$ of O_q .

Theorem 2

For $n \ge 1$, the map p sends

$$B_{n\delta} \mapsto (q^{-2} - 1) \left(q^{-n} [n+1]_q (xy)^n + q^n [n+1]_q (xy)^{-n} + \sum_{\ell=1}^{n-1} (1 + q^{4\ell-2n}) (xy)^{n-2\ell} \right).$$

The $B_{n\delta}$ elements

Next, we apply the map p to the elements $\{B_{n\delta}\}_{n=1}^{\infty}$ of O_q .

Theorem 2

For $n \ge 1$, the map p sends

$$B_{n\delta} \mapsto (q^{-2} - 1) \left(q^{-n} [n+1]_q (xy)^n + q^n [n+1]_q (xy)^{-n} + \sum_{\ell=1}^{n-1} (1 + q^{4\ell-2n}) (xy)^{n-2\ell} \right).$$

Alternatively (if you prefer fractions to sums),...

The $B_{n\delta}$ elements – alternate version

Theorem 2A

For $n \ge 1$, the map p sends

$$B_{n\delta} \mapsto (q^{-2} - 1) \left(q^{-n} [n+1]_q (xy)^n + q^n [n+1]_q (xy)^{-n} + \frac{(xy)^{n-1} - (xy)^{1-n}}{xy - (xy)^{-1}} + \frac{(yx)^{n-1} - (yx)^{1-n}}{yx - (yx)^{-1}} \right).$$

The $B_{n\delta}$ elements – alternate version

Theorem 2A

For $n \ge 1$, the map p sends

$$B_{n\delta} \mapsto (q^{-2} - 1) \left(q^{-n} [n+1]_q (xy)^n + q^n [n+1]_q (xy)^{-n} + \frac{(xy)^{n-1} - (xy)^{1-n}}{xy - (xy)^{-1}} + \frac{(yx)^{n-1} - (yx)^{1-n}}{yx - (yx)^{-1}} \right).$$

Sidenote

Now you may be wondering $-T_q$ is not a commutative algebra ... are fractions even allowed? You may notice that the image of $B_{n\delta}$ is contained in the subalgebra of T_q generated by T_q (recall that $yx = q^{-2}xy$). We denote this subalgebra by \widehat{T}_q .

Alternating Elements

The Alternating Elements of O_q

We switch gears now and consider the alternating elements of O_q , denoted by

$$\{W_{-k}\}_{k=0}^{\infty}, \qquad \{W_{k+1}\}_{k=0}^{\infty}, \qquad \{G_{k+1}\}_{k=0}^{\infty}, \qquad \{\tilde{G}_{k+1}\}_{k=0}^{\infty},$$

The Alternating Elements of O_q

We switch gears now and consider the alternating elements of O_q , denoted by

$$\{W_{-k}\}_{k=0}^{\infty}, \qquad \{W_{k+1}\}_{k=0}^{\infty}, \qquad \{G_{k+1}\}_{k=0}^{\infty}, \qquad \{\tilde{G}_{k+1}\}_{k=0}^{\infty},$$

We begin by defining notation for their images in T_q . Our goal is to express these images in closed form in terms of x and y.

The Alternating Elements of O_q

We switch gears now and consider the alternating elements of O_q , denoted by

$$\{W_{-k}\}_{k=0}^{\infty}, \qquad \{W_{k+1}\}_{k=0}^{\infty}, \qquad \{G_{k+1}\}_{k=0}^{\infty}, \qquad \{\tilde{G}_{k+1}\}_{k=0}^{\infty},$$

We begin by defining notation for their images in T_q . Our goal is to express these images in closed form in terms of x and y.

Definition 12

For $k \ge 0$, we define the following elements of T_q :

$$w_{-k} = p(W_{-k}), \quad w_{k+1} = p(W_{k+1}),$$

 $g_{k+1} = p(G_{k+1}), \quad \tilde{g}_{k+1} = p(\tilde{G}_{k+1}).$

Generating Functions

Some of the results in this section are more succinctly written in terms of generating functions.

Generating Functions

Some of the results in this section are more succinctly written in terms of generating functions.

Definition 13 (See (Terwilliger 2022, Definition 12.1))

For the algebra O_q , define the generating functions

$$W^-(t) = \sum_{i=0}^{\infty} W_{-i}t^i, \qquad W^+(t) = \sum_{i=0}^{\infty} W_{i+1}t^i,$$
 $G(t) = \sum_{i=0}^{\infty} G_it^i, \qquad \tilde{G}(t) = \sum_{i=0}^{\infty} \tilde{G}_it^i.$

Let $w^-(t)$, $w^+(t)$, g(t), $\tilde{g}(t)$ denote their p-images in T_q .

The generating function $\eta(t)$

These generating functions do have closed forms in T_q ,

The generating function $\eta(t)$

These generating functions do have closed forms in T_q , ... as long as we define one additional generating function.

We define the generating function

$$\eta(t) = \sum_{i=0}^{\infty} {2i \choose i} \left(\frac{t}{q+q^{-1}}\right)^{2i}$$

The generating function $\eta(t)$

These generating functions do have closed forms in T_q , ... as long as we define one additional generating function.

We define the generating function

$$\eta(t) = \sum_{i=0}^{\infty} {2i \choose i} \left(\frac{t}{q+q^{-1}}\right)^{2i}$$

Lemma 12

Define
$$T=rac{q+q^{-1}}{qt+q^{-1}t^{-1}}$$
 and $S=rac{q+q^{-1}}{qt^{-1}+q^{-1}t}.$ Then,
$$\eta(T)=rac{1+q^2t^2}{1-q^2t^2}, \qquad \eta(S)=rac{1+q^{-2}t^2}{1-q^{-2}t^2}.$$

Apply the homomorphisms γ and ${\it p}$ to (Terwilliger 2021b, Definition 8.4):

Apply the homomorphisms γ and p to (Terwilliger 2021b, Definition 8.4):

$$\left(q + q^{-1}\right)^2 = t^{-1}STw^-(S)w^+(T) + tSTw^+(S)w^-(T)$$

$$- q^2STw^-(S)w^-(T) - q^{-2}STw^+(S)w^+(T)$$

$$+ \left(q^2 - q^{-2}\right)^{-2}g(S)\tilde{g}(T).$$

Apply the homomorphisms γ and p to (Terwilliger 2021b, Definition 8.4):

$$\left(q + q^{-1}\right)^2 = t^{-1}STw^-(S)w^+(T) + tSTw^+(S)w^-(T)$$

$$- q^2STw^-(S)w^-(T) - q^{-2}STw^+(S)w^+(T)$$

$$+ \left(q^2 - q^{-2}\right)^{-2}g(S)\tilde{g}(T).$$

By (Terwilliger 2021b, Lemma 8.22), there is a unique set of generating functions $w^+(t), w^-(t), g(t), \tilde{g}(t)$ that satisfy this equation

Apply the homomorphisms γ and p to (Terwilliger 2021b, Definition 8.4):

$$\left(q + q^{-1}\right)^2 = t^{-1}STw^-(S)w^+(T) + tSTw^+(S)w^-(T)$$

$$- q^2STw^-(S)w^-(T) - q^{-2}STw^+(S)w^+(T)$$

$$+ \left(q^2 - q^{-2}\right)^{-2}g(S)\tilde{g}(T).$$

By (Terwilliger 2021b, Lemma 8.22), there is a unique set of generating functions $w^+(t)$, $w^-(t)$, g(t), $\tilde{g}(t)$ that satisfy this equation as well as the generating function forms (at the level of T_a) of the defining relations for \mathcal{O}_a , which will be omitted.

The Alternating Generating Functions in T_q

It can be shown that these are the generating functions that work.

Theorem 3

The generating functions in T_q described above take the following form:

$$w^{-}(t) = \eta(t)(x + x^{-1})$$

$$w^{+}(t) = \eta(t)(y + y^{-1})$$

$$\tilde{g}(t) = (q^{2} - q^{-2})\eta(t) \left((q^{-1}xy + q^{-1}x^{-1}y^{-1})t - (q + q^{-1}) \right)$$

$$g(t) = (q^{2} - q^{-2})\eta(t) \left((qx^{-1}y + qxy^{-1})t - (q + q^{-1}) \right)$$

The p-Images of the Alternating Elements of O_q

Theorem 4

The *p*-images of the alternating elements of O_q are as follows:

Theorem 4

The *p*-images of the alternating elements of O_q are as follows:

▶ $w_{k+1} = 0$ for odd $k = 2\ell + 1$

Theorem 4

- $w_{k+1} = 0$ for odd $k = 2\ell + 1$
- $w_{k+1} = {2\ell \choose \ell} (q+q^{-1})^{-2\ell} (y+y^{-1})$ for even $k=2\ell$

Theorem 4

- $w_{k+1} = 0$ for odd $k = 2\ell + 1$
- $w_{k+1} = {2\ell \choose \ell} (q+q^{-1})^{-2\ell} (y+y^{-1})$ for even $k=2\ell$
- ▶ $w_{-k} = 0$ for odd $k = 2\ell + 1$

Theorem 4

- $w_{k+1} = 0$ for odd $k = 2\ell + 1$
- $w_{k+1} = {2\ell \choose \ell} (q+q^{-1})^{-2\ell} (y+y^{-1})$ for even $k=2\ell$
- $w_{-k} = 0$ for odd $k = 2\ell + 1$
- $w_{-k} = {2\ell \choose \ell} (q + q^{-1})^{-2\ell} (x + x^{-1})$ for even $k = 2\ell$

Theorem 4

- $w_{k+1} = 0$ for odd $k = 2\ell + 1$
- $w_{k+1} = {2\ell \choose \ell} (q+q^{-1})^{-2\ell} (y+y^{-1})$ for even $k=2\ell$
- $w_{-k} = 0$ for odd $k = 2\ell + 1$
- $w_{-k} = {2\ell \choose \ell} (q + q^{-1})^{-2\ell} (x + x^{-1})$ for even $k = 2\ell$
- $\tilde{g}_k = \binom{2\ell}{\ell} (q+q^{-1})^{-2\ell} (q-q^{-3}) (xy+x^{-1}y^{-1}) \text{ for odd } k = 2\ell+1$

Theorem 4

- $w_{k+1} = 0$ for odd $k = 2\ell + 1$
- $w_{k+1} = {2\ell \choose \ell} (q+q^{-1})^{-2\ell} (y+y^{-1})$ for even $k=2\ell$
- $w_{-k} = 0$ for odd $k = 2\ell + 1$
- $w_{-k} = {2\ell \choose \ell} (q + q^{-1})^{-2\ell} (x + x^{-1})$ for even $k = 2\ell$
- $lack ilde g_k = -inom{2\ell}{\ell}(q+q^{-1})^{1-2\ell}(q^2-q^{-2})$ for even $k=2\ell$

Theorem 4

- $w_{k+1} = 0$ for odd $k = 2\ell + 1$
- $w_{k+1} = {2\ell \choose \ell} (q+q^{-1})^{-2\ell} (y+y^{-1})$ for even $k=2\ell$
- $w_{-k} = 0$ for odd $k = 2\ell + 1$
- $w_{-k} = {2\ell \choose \ell} (q + q^{-1})^{-2\ell} (x + x^{-1})$ for even $k = 2\ell$
- $\tilde{g}_k = \binom{2\ell}{\ell} (q+q^{-1})^{-2\ell} (q-q^{-3}) (xy+x^{-1}y^{-1}) \text{ for odd } k = 2\ell+1$
- $ilde{g}_k = inom{2\ell}{\ell} (q+q^{-1})^{1-2\ell} (q^2-q^{-2})$ for even $k=2\ell$
- $g_k = \binom{2\ell}{\ell} (q+q^{-1})^{-2\ell} (q^3-q^{-1}) (xy^{-1}+x^{-1}y)$ for odd $k=2\ell+1$

Theorem 4

- $w_{k+1} = 0$ for odd $k = 2\ell + 1$
- $w_{k+1} = {2\ell \choose \ell} (q+q^{-1})^{-2\ell} (y+y^{-1})$ for even $k=2\ell$
- $w_{-k} = 0$ for odd $k = 2\ell + 1$
- $w_{-k} = {2\ell \choose \ell} (q + q^{-1})^{-2\ell} (x + x^{-1})$ for even $k = 2\ell$
- $ilde{g}_k = {2\ell \choose \ell} (q+q^{-1})^{-2\ell} (q-q^{-3}) (xy+x^{-1}y^{-1})$ for odd $k=2\ell+1$
- $ilde{g}_k = -inom{2\ell}{\ell}(q+q^{-1})^{1-2\ell}(q^2-q^{-2})$ for even $k=2\ell$
- $g_k = {2\ell \choose \ell} (q+q^{-1})^{-2\ell} (q^3-q^{-1}) (xy^{-1}+x^{-1}y)$ for odd $k=2\ell+1$
- $g_k = -\binom{2\ell}{\ell} (q+q^{-1})^{1-2\ell} (q^2-q^{-2})$ for even $k=2\ell$

The Lu-Wang elements of O_q

The $B_{1,r}$ elements

Theorem 5

For $r \in \mathbb{Z}$, the map p sends

$$B_{1,r} \mapsto \frac{y(xy)^r + y^{-1}(x^{-1}y^{-1})^r}{q^{1/2}(q-q^{-1})}.$$

The $B_{1,r}$ elements

Theorem 5

For $r \in \mathbb{Z}$, the map p sends

$$B_{1,r} \mapsto \frac{y(xy)^r + y^{-1}(x^{-1}y^{-1})^r}{q^{1/2}(q - q^{-1})}.$$

This is because $B_{1,r}$ is merely a scalar multiple of $B_{r\delta+\alpha_1}$ (for $r \geq 0$) or $B_{(-r-1)\delta+\alpha_0}$ (for r < 0).

Next we have Θ'_n

Recall that Θ'_n (as an element of O_q) is a scalar multiple of $B_{n\delta}$. This gives us the following theorem.

Next we have Θ'_n

Recall that Θ'_n (as an element of O_q) is a scalar multiple of $B_{n\delta}$. This gives us the following theorem.

Theorem 6

For $n \ge 1$, the map p sends

$$\Theta'_{n} \mapsto \frac{1}{q - q^{-1}} \left(q^{-n} [n+1]_{q} (xy)^{n} + q^{n} [n+1]_{q} (xy)^{-n} \right.$$

$$\left. + \sum_{\ell=1}^{n-1} (1 + q^{4\ell-2n}) (xy)^{n-2\ell} \right).$$

$$= \frac{1}{q - q^{-1}} \left(q^{-n} [n+1]_{q} (xy)^{n} + q^{n} [n+1]_{q} (xy)^{-n} \right.$$

$$\left. + \frac{(xy)^{n-1} - (xy)^{1-n}}{xy - (xy)^{-1}} + \frac{(yx)^{n-1} - (yx)^{1-n}}{yx - (yx)^{-1}} \right).$$

Next we have Θ'_n

Recall that Θ'_n (as an element of O_a) is a scalar multiple of $B_{n\delta}$. This gives us the following theorem.

Theorem 6

For n > 1, the map p sends

$$\Theta'_{n} \mapsto \frac{1}{q - q^{-1}} \left(q^{-n} [n+1]_{q} (xy)^{n} + q^{n} [n+1]_{q} (xy)^{-n} \right.$$

$$\left. + \sum_{\ell=1}^{n-1} (1 + q^{4\ell-2n}) (xy)^{n-2\ell} \right).$$

$$= \frac{1}{q - q^{-1}} \left(q^{-n} [n+1]_{q} (xy)^{n} + q^{n} [n+1]_{q} (xy)^{-n} \right.$$

$$\left. + \frac{(xy)^{n-1} - (xy)^{1-n}}{xy - (xy)^{-1}} + \frac{(yx)^{n-1} - (yx)^{1-n}}{yx - (yx)^{-1}} \right).$$

The Θ' elements – 2 of 2

Theorem 6A

For $n \ge 1$, the map p sends

$$\Theta'_{n} \mapsto \frac{1}{q - q^{-1}} \left(q^{-n} [n+1]_{q} (xy)^{n} + q^{n} [n+1]_{q} (xy)^{-n} + \frac{(xy)^{n-1} - (xy)^{1-n}}{xy - (xy)^{-1}} + \frac{(yx)^{n-1} - (yx)^{1-n}}{yx - (yx)^{-1}} \right).$$

The Θ_n Elements – a slight detour

While the p-images of the Θ_n elements of O_q can be identified using the definition of Θ_n , it is more reasonable to use generating functions.

Lemma 13 (See (Lu and Wang 2021, Lemma 2.9).)

$$\Theta(t) = \frac{1 - t^2}{1 - q^{-2}t^2}\Theta'(t).$$

The Θ_n Elements – a slight detour

While the p-images of the Θ_n elements of O_q can be identified using the definition of Θ_n , it is more reasonable to use generating functions.

Lemma 13 (See (Lu and Wang 2021, Lemma 2.9).)

$$\Theta(t) = \frac{1 - t^2}{1 - q^{-2}t^2} \Theta'(t).$$

This formula allows us to "traverse three sides of the square":

$$\begin{array}{ccc}
\Theta'_n & \longrightarrow & \Theta'(t) \\
\downarrow & & \downarrow \\
\Theta_n & \longleftarrow & \Theta(t)
\end{array}$$

The images of $\Theta'(t)$ and $\Theta(t)$

Using partial fractions and some algebra, we routinely find a nice form for the p-image of the generating function $\Theta'(t)$.

The images of $\Theta'(t)$ and $\Theta(t)$

Using partial fractions and some algebra, we routinely find a nice form for the p-image of the generating function $\Theta'(t)$.

Theorem 7

The map *p* sends

$$\Theta'(t) \mapsto \frac{(1-q^2t^2)(1-q^{-2}t^2)}{(1-xyt)(1-yxt)(1-x^{-1}y^{-1}t)(1-y^{-1}x^{-1}t)}.$$

By the formula from the last slide, the map p sends

$$\Theta(t) \mapsto \frac{(1-q^2t^2)(1-t^2)}{(1-xyt)(1-yxt)(1-x^{-1}y^{-1}t)(1-y^{-1}x^{-1}t)}.$$

The image of Θ_n

A similar partial fraction decomposition gives the image of Θ_n .

The image of Θ_n

A similar partial fraction decomposition gives the image of Θ_n .

Theorem 9

For $n \ge 1$, the map p sends

$$\Theta_{n} \mapsto [n+1]_{q} \frac{(qyx)^{n} + (qyx)^{-n}}{q - q^{-1}}
+ \frac{q + q^{-1}}{q - q^{-1}} q^{1-n} \sum_{\ell=1}^{n-1} (qyx)^{n-2\ell}
= \frac{[n+1]_{q}}{q - q^{-1}} \frac{(qyx)^{n+1} - (qyx)^{-n-1}}{qyx - (qyx)^{-1}}
- \frac{q^{2}[n-1]_{q}}{q - q^{-1}} \frac{(qyx)^{n-1} - (qyx)^{1-n}}{qyx - (qyx)^{-1}}.$$

The Final Stage – The H'_n and H_n elements

Our last goal is to find the *p*-images of the elements H'_n and H_n of O_q

The Final Stage – The H'_n and H_n elements

Our last goal is to find the *p*-images of the elements H'_n and H_n of O_q Recall the formulas

$$\exp\left((q-q^{-1})H'(t)\right)=\Theta'(t),\qquad \exp\left((q-q^{-1})H(t)\right)=\Theta(t),$$
 or, alternatively,

$$H'(t)=(q-q^{-1})^{-1}\log(\Theta'(t)), \qquad H(t)=(q-q^{-1})^{-1}\log(\Theta(t))$$
 where log is the formal natural logarithm

$$\log(1-z) = -\sum_{n=1}^{\infty} \frac{z^n}{n}.$$

The Final Stage – The H'_n and H_n elements

Our last goal is to find the *p*-images of the elements H'_n and H_n of O_q Recall the formulas

$$\exp\left((q-q^{-1})H'(t)\right)=\Theta'(t),\qquad \exp\left((q-q^{-1})H(t)\right)=\Theta(t),$$
 or, alternatively,

$$H'(t) = (q-q^{-1})^{-1} \log(\Theta'(t)), \qquad H(t) = (q-q^{-1})^{-1} \log(\Theta(t))$$
 where log is the formal natural logarithm

$$\log(1-z) = -\sum_{n=1}^{\infty} \frac{z^n}{n}.$$

These formulas routinely give the p-images of the generating functions H'(t) and H(t).

The Images of H'(t) and H(t)

Theorem 10

The map *p* sends

$$H'(t) \mapsto \frac{\log(1-xy) + \log(1-yx) + \log(1-x^{-1}y^{-1})}{q-q^{-1}} + \frac{\log(1-y^{-1}x^{-1}) - \log(1-q^2t^2) - \log(1-q^{-2}t^2)}{q-q^{-1}}$$

$$H(t) \mapsto \frac{\log(1-xy) + \log(1-yx) + \log(1-x^{-1}y^{-1})}{q-q^{-1}} + \frac{\log(1-y^{-1}x^{-1}) - \log(1-q^2t^2) - \log(1-t^2)}{q-q^{-1}}.$$

The images of H'_n and H_n

If we expand out the logarithm Taylor Series, we obtain the p-images of H'_n and H_n , which have convenient closed forms.

The images of H'_n and H_n

If we expand out the logarithm Taylor Series, we obtain the p-images of H'_n and H_n , which have convenient closed forms.

Theorem 11

For $n \ge 1$, the map p sends

$$H'_n \mapsto rac{(q^n + q^{-n}) ig((qyx)^n + (qyx)^{-n} ig) - 2 \delta_{n,ev} (q^n + q^{-n})}{n(q - q^{-1})}.$$

The images of H'_n and H_n

If we expand out the logarithm Taylor Series, we obtain the p-images of H'_n and H_n , which have convenient closed forms.

Theorem 11

For $n \ge 1$, the map p sends

$$H'_n \mapsto \frac{(q^n + q^{-n})((qyx)^n + (qyx)^{-n}) - 2\delta_{n,ev}(q^n + q^{-n})}{n(q - q^{-1})}.$$

For $n \ge 1$, the map p sends

$$H_n \mapsto \frac{(q^n + q^{-n})((qyx)^n + (qyx)^{-n}) - 2\delta_{n,ev}(q^n + 1)}{n(q - q^{-1})}.$$

Can these images in T_q be used to write these elements of O_q in terms of W_0 and W_1 ?

- Can these images in T_q be used to write these elements of O_q in terms of W_0 and W_1 ?
- 2 More specifically, can we express H_n and H'_n in terms of W_0 and W_1 ? Preliminary investigation shows that Chebyshev polynomials are involved.

- Can these images in T_q be used to write these elements of O_q in terms of W_0 and W_1 ?
- 2 More specifically, can we express H_n and H'_n in terms of W_0 and W_1 ? Preliminary investigation shows that Chebyshev polynomials are involved.
- 3 The map p factors through a quotient of the universal Askey-Wilson algebra. What do the images of the aforementioned elements of O_q look like in the universal AW algebra (denoted Δ_q)?

- Can these images in T_q be used to write these elements of O_q in terms of W_0 and W_1 ?
- 2 More specifically, can we express H_n and H'_n in terms of W_0 and W_1 ? Preliminary investigation shows that Chebyshev polynomials are involved.
- 3 The map p factors through a quotient of the universal Askey-Wilson algebra. What do the images of the aforementioned elements of O_q look like in the universal AW algebra (denoted Δ_q)?
- 4 For more details, consider my papers:

```
arxiv:2304.09326 ((Goff 2024)), arxiv:2504.13362
```

