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A picture I1s worth a thousand words
















THE 2-HOMOGENEOQUS PROPERTY (NOMURA, 1994)

It provides a rich combinatorial structure in bipartite DRGs often

approached via algebraic methods.







THEOREM (NOMURA, 1995)

Let[ be aZ-homogeneous bipartite distance-regular graph with
valency k and diameter d. Then, the following hold:
| is the complete bipartite graph Ky ;

®
o [ isthe 2d-cycle Oy;

o [ isthe hypercube H(d, 2);
®

®

®

[ is the complement of a 2 X (k + 1)-grid;

| is a Hadamard graph of valency k = 4y;
[ hasarray {k,k—1,k—c,c,1;1,¢c,k—c, k—1,k}, where
c=y(y+1), k=yly’+3y+1),andy > 0:

o the b-dimensional hypercube H(5,2) (y = 1),
o the double cover of the Higman-Sims graph (y = 2).










Local Distance-Regularity in Y
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Local Distance-Regularity in Y’
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Distance-biregular graphs (DBRGS)

o Letl bea (Y, Y')-bipartite DBRG (Distance-Biregular Graph).
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REMARK

We can express the intersection numbers of a (Y, Y’) DBRG in
an alternative way, represented as the following two-line array:

bo; <, &, ... cp-1, <D
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Absence of 2-Homogeneity in DBRGS




EXTEND THE
2-HOMOGENEOUS
_ CONDITION!
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THE 2-Y-HOMOGENEOUS CONDITION




AN IMPORTANT SCALAR




The scalar y;(x, y, 2)

Let [ bea (Y, Y’)-DBRG.

O Suppose that every vertex in Y has eccentricity D > 3.

O Fix aninteger iwith 1 < i< D.

O Choose a pair of vertices (x, y) such thatx € Yand y € [ 5(x) C V.
O Consider all vertices z € [ i(x, y).

O For each such triple (x, y, z), define a quantity y;(x, y, 7).

/\

f}/i(xa Y, Z)




DEFINITION

Fori (1 < i< D)andforx € Y,y € [7(x)and z & [ ;(x, y),
define:

Al y) N Eia(2)] i Taix, y) +
Vilx, y, z) = |
0, it ix, y)




A special case: the scalar yq(x, y, 2)

Wl(xa Y, Z) =1

Ve eY, Vy € I's(x),
Vz € Fl’l(ili,y).

F
o Fix a pair of vertices (x, y) with ~ps—— — o

x & Yandy €l x) C V. 1 :
o Notice that ['11(x, y) + <. J\. jL
O Foravertex z € [ 11(x, y), the ‘

set[11(x,y)NTo(z —{Z}







DEFINITION

Let [ be a (Y, Y/)-DBRG with D > 3. Fix an integer i with
2 < i< D. What conditions on [ ensure that y;(x,y, 2) is

constant across all triples (x, y, z) with x € Y, y € [ ,(x), and
zeliix y)




DEFINITION

We say that [ is 2-Y-homogeneous if, for every integer ( with
2 < i < D—1, and for all vertices x € Y, y & [>(x), and

z € Iilx, y), the value of y; = yi(x, y, z) is independent of the
specific choice of x, y, and z.




The intersection diagrams of rank 2

Let [ be a (Y, Y/)-bipartite graph.

O Suppose that every vertex in Y has eccentricity D > 3.

O Fix aninteger iwith 1 < i< D.

O Choose a pair of vertices (x, y) such thatx € Yand y € [ 5(x) C V.
O Forintegersiand j, definethesetl;; = 1;;(x,y)=1:x)N1(y).
o Consider all vertices z € [ i(x, y).




The scalar yi(x, y, z) when | ; i(x, y) = @

DEFINITION
Fori (1 < i< D)andforx € Y,y €l ,(x)and z € [ ;;(x, y), define
vilx,y, z) = 0.




The scalar yi(x, y, z) when [ i(x, y) = &

DEFINITION
Fori (1 < i< D)andforx € Y,y €l ,(x)and z € [ ;;(x, y), define
vilx. y, 2) = [T1alx, y) N T (2)].




The 2-Y-homogeneous condition

DEFINITION

We say that [ is 2-Y-homogeneous if, for every integer i with 2 <
( < D—1,andforallverticesx € Y,y € [ (x),andz & [ ;i(x, y),
the value of y; = y;(x, y, z) is independent of the specific choice
of x, y, and z.
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Example: the 3-cube H(3, 2)

Let [ be the 3-cube with parts iR and 8.
Every vertex in [ has eccentricity equal to 3.

AN

| is 2-(R-homogeneous with y(R) = 1.
| is 2-8B-homogeneous with y»(B) = 1.




REMARK

Let [ be a bipartite (Y, Y')-DRG. If [ is 2-Y-homogeneous then
[ is 2-Y’-homogeneous. In this case, the scalars y;(Y) = y;(V)

forall2 < i< D —1.




Example: the subdivision of the Petersen graph

The Petersen graph The subdivision of the Petersen graph
@
I'=(X,R) ["=(XUR,R

The subdivision graph " of the Petersen graph I is the (X, R)-bipartite
graph obtained from ' by replacing each of its edges by a path of length 2.

The Petersen graph is a distance-regular graph and its subdivision graph is
distance-biregular. J




Example: the subdivision of the Petersen graph

Let [ be the subdivision of the Petersen graph with parts (R and @.
Every red vertex in [ has eccentricity equal to b.




Example: the subdivision of the Petersen graph

Let [ be the subdivision of the Petersen graph with parts (R and .
Every blue vertex in [ has eccentricity equal to 6.

[ is not 2-8B-homogeneous.



REMARK

The 2-Y-homogeneous property in a (Y, Y’) DBRG is strongly
affected by the selection of the initial vertex x from part Y, which

plays a key role in the computation of y;(x, y, 7).




Main Motivation

o Letl bea(Y, Y’)-DBRG.
O Suppose that every vertex in Y has eccentricity D > 3.

What are the necessary and sufficient conditions for [ to be
2-Y-homogeneous?




Understanding the Z2-Y-homogeneous condition

(Y, Y")-bipartite graphs where every vertex in Y has the same eccentricity

2-Y -homogeneous




Understanding the Z2-Y-homogeneous condition

(Y, Y")-bipartite graphs where every vertex in Y has the same eccentricity
2-Y -homogeneous

Nomura, 1995.




Main Motivation




PROBLEM
Classify 2-Y-homogeneous distance-biregular graphs.




CASE by > 3



The scalars p5 (Y) and Ai(Y)

DEFINITION

For every integer i (2 < i < D —1), let the scalar p ; := p (V)
be defined as follows:

C bi(cip1 — 1) + cilbi1 — 1)

If (1S even,
. o
P2V = (. — N b —
l( i+ ) l( i—1 ) e adlel
L %,

DEFINITION

Define for every integer i (1 < i < min{D—1,D"—1}) the
scalar A;(Y) as follows:

(bimg — V(e — 1) = ph (V)(ch — 1) if i is even,

Ai(Y) = [ ( ;_1 _ 1)(cf+1 —1) — P‘z,i(Y)(Cﬁ — 1) ifiis odd.



A local condition

THEOREM (FERNANDEZ, PENJIC, 2023)

Let [ be a (Y, Y')-DBRG with D > 3 and b > 3. Pick a vertex
x € Y. Fixanintegeri (2 < i < min{D—1,D"—1}). The
following (1)-(2) are equivalent:

1. The scalar A;(Y) = 0.

2. Forallx,y € Y withd(x,y) =2and z & [ ;;(x, y), the scalar
Vi(x, y, z) does not depend on the choice of the triple (x, y, 7).

Suppose (1)-(2) hold. Then,

Vilx, y, z) = 1

—

~—

ci(bi—1 —1) If (1S even

bi(cix1r — 1) + ci(bi—1 — 1) |
(b —1) i

If (15 odd.

bi(cly — 1)+ c/(bl_; — 1)



COROLLARY (FERNANDEZ, PENJIC, 2023)

Let [ be a (Y, Y/)-DBRG with D > 3 and bj > 3. Pick a vertex
x € Y. The following (1)-(2) are equivalent:

1. The number A((Y) =02 < i< min{D—1,D" —1}).

2. [ is 2-Y-homogeneous.




2-Y-HOMOGENEOUS DBRGS WITH ¢, = 1




2-Y-homogeneous DBRG with ¢} = 1

Let [ be a 2-Y-homogeneous DBRG with D > 3 and ¢}, = 1.

o Suppose that by > 3.
o Then, thescalars Aj(Y) =012 <i<min{D—1,D"—1}).

o Given that ¢; = 1, the expressions for A;(Y) can be significantly
simplified for each i in this range.
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THE SCALARS A((Y) 2 < i < min{D —1,D" —1})

(bi—1 — T)(cixqr — 1) ifiiseven,

Al(Y) = [ (b4 —1)(cl.q —1) ifiisodd.




Let [ be a 2-Y-homogeneous DBRG with D > 3 and ¢} = 1.

O The case D' < D is not possible!
o Therefore, D' > Dand min{D —1,0'—1} =D —1.
o It follows that the scalar Ap_1(Y) = 0.

O However, evaluating explicitly, we obtain
Ap—1(Y) = (by — 2)(bj — 1) = 0, which yields a contradiction.




THEOREM (WORK IN PROGRESS)
There does not exist a Z2-Y-homogeneous DBRG with D > 3,

by > 3and ¢, = 1.




Let [ be a 2-Y-homogeneous DBRG with D > 3 and ¢} = 1.

o Hence, we conclude that by < 2.
o Since D > 3, it follows that by = by — 1 > 0.
o Therefore, the only possibility is by = 2.




THEOREM (MOHAR, SHAWE-TAYLOR, 1985)

A graph [ with vertices of valency 2 is DBRG if and only if [ is
a complete bipartite graph K, (m > 1) or [ is the subdivision

graph of a minimal (k, g)-cage graph, where k, g > 3.




THEOREM (WORK IN PROGRESS)

A 2-Y-homogeneous DBRG [ with D > 3 and ¢, = 1 is the
subdivision graph of a minimal («, g)-cage graph (k, g > 3) with

vertex set X, edge set R, and parts Y = X and Y’ = R.




The converse also holds!

THEOREM (F.,PENJIC, 2023.)

Let [" be a minimal (k, g)-cage graph (k, g > 3) with vertex set
X, edge set R. Then, the subdivision graph [ of [ is a DBRG with
parts Y = X and Y/ = R, which is 2-Y-homogeneous.
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[ is 2-Y-homogeneouswithy; =02 < i< D —1).



THEOREM (VVORK IN PROGRESS)

Let [ be a (Y, Y)-distance-biregular graph with D > 3. Then,
the following statements are equivalent:
1. [ is 2-Y-homogeneous with ¢; = 1.

2. | is the subdivision graph of a minimal («, g)-cage graph
(k, g > 3) with vertex set X, edge set (R, and parts ¥ = X,
Y = R.

3. [ is 2-Y-homogeneous with by = 2.




2-Y-HOMOGENEOUS DBRGS WITH ¢ = 2







THEOREM (VVORK IN PROGRESS)

Let [ denote a 2-Y-homogeneous distance-biregular graph with

D>3.1fc, =2then D € {3,4}.




2-Y-HOMOGENEOUS DBRGS WITH ¢ > 3




Bounding the Diameter via Inequalities

Let [ be a 2-Y-homogeneous (Y, Y’)-distance-biregular graph with
¢, >3and D > 3.

O There exist constants ¢ > 3, s > 3,and g > 2 such that:
g(s —2) + |2 + s(g — 2)]
g(g —1) |
o Under these assumptions, the inequality c3 — b3 > 0 holds,
implying b3 < c¢3.

3 — b3y =

LEMMA (F., PENJIC, 2023)

Let [ be a (Y, Y')-distance-biregular graph. If i + j < D and i + j
is even, then ¢; < b;.

O Applying the lemma with { = j = 3, we obtain ¢3 < b3 when
D > 6, which contradicts the earlier conclusion that b3 < ¢3.



THEOREM (F., PENJIC, 2023)

Let [ denote a 2-Y-homogeneous distance-biregular graph with

D> 3.1fc), >3then D € {3,4,5}.




There does

not exist
such a graph

with D=5

.
N

\
\/"_., \ A



THEOREM (F., SEPIC, RUKAVINA, 20257)

Let [ denote a 2-Y-homogeneous distance-biregular graph with

D>3.1fc >3then D € {3,4}.



THEOREM (F,, SEPIC, RUKAVINA, 2025T)

Let[ denote a 2-Y-homogeneous distance-biregular graph with

D> 3.1fc), >3then D € {3,4}.

THEOREM (VVORK IN PROGRESS)

Let[ denote a 2-Y-homogeneous distance-biregular graph with

D>3.1fcy=2then D € {3,4}.




THEOREM (WORK IN PROGRESS)

Every 2-Y-homogeneous distance-biregular graph with ¢ > 2

must have eccentricity D = 3 or D = 4.




2-Y-HOMOGENEOUS DBRGS WITH ¢, > 2:
(1) THEcASED =4 aNnD D' = 3

(2) THECASE D = D' =4

(3) THE cASE D = 3



4

The case
D=4 and




THEOREM (F., RUKAVINA, 2022.)

There does not exist a Z2-Y-homogeneous distance-biregular

graph with D = 4 and D = 3.







THEOREM (F.,, MAKSIMOVIC, PENJIC, RUKAVINA, 2025 )

Let [ denote a (Y, Y/)-DBRG with D = D" = 4and ¢; > 2
Then, [ is 2-Y-homogeneous if and only if there exist positive
integers ¢ > s > 2 such that [ has the following intersection

array:

c(c+s—2) . c+s—1

s—1
c(c+s—1)







THEOREM (F.,, MAKSIMOVIC, PENJIC, RUKAVINA, 20257 )

There does not exist a 2-Y-homogeneous (Y, Y')-DBRG with

D=D"=4andd, > 3.







THEOREM (F.,, MAKSIMOVIC, PENJIC, RUKAVINA, 20257 )

Let [ denotea (Y, Y’)-DBRGwith D = D" = 4and ¢, > 2. Then,
[ is 2-Y-homogeneous if and only if there exist an even integer
¢ > 4 such that [ has the following intersection array:

c2: 1, ¢, c+1, c?
c+ 2; 1, 2, @ c+2 |




Europ. J. Combinatorics (1994) 18, 223-238

Distance Biregular Bipartite Graphs

C. DELORME

I, 4, 5, 16
1, 2, 10, 6




Denniston (1969) and van den Akker (1990)

These graphs
are known to exist
when c is a power,

Of 2. A e




van den Akker (1990)




Open Problem

|dentify all values /4
of ¢ for which such

agraphcanbe 7\
constructed.




THEOREM (VAN DEN AKKER, 1990.)

A graph [ is the point-block incidence graph of a trasversal
design TDs(c + 2, ¢)ifand only if " isa (Y, Y')-DBRG with the
following intersection array:

c2: 1, ¢, c+1, c?
c+ 2; 1, 2, @ c+2 |




THEOREM (WORK IN PROGRESS.)

Let [ be a (Y, Y')-DBRG. The following are equivalent:
1. [ is 2-Y-homogeneous with D = 4.

2. | is the point-block incidence graph of a trasversal design
I'Ds(c + 2, c), for some even integer ¢ > 4.




== i T I
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THEOREM (F., PENJIC, 2023.)

Let [ denote a (Y, Y’)-DBRG with D = 3. The following are
equivalent:
1. | is 2-Y-homogeneous.

2. b1 = ().
3. |I2(x)| = deg(x) forall x € Y.




Combinatorial structure of | when D = 3.

The point-block (2, B)-incidence graph of a 3-(v, k, A) design.



QS-design




THEOREM (F., RUKAVINA, 2022)

Let [ denote a (Y, Y/)-DBRG. The following are equivalent:
1. [ is 2-Y-homogeneous with D = 3.

2. | is the incidence graph of a quasi-symmetric 3-(v, k, A) design
with x = 0, y > 0, where the following cases may occur:

o ) is a Hadamard 3-design with v = 4(A+ 1) and k = 2(A 4+ 1).
o v=A+1)HA+51+5)and k = (A+ 1)(A+2).
o v=496 k=40and A = 3.




WE DID IT!




THEOREM (WORK IN PROGRESS)

Let [ denotea (Y, Y’)-DBRG. Then, [ is 2-Y-homogeneous if and
only if one of the following holds:
1. I is the subdivision graph of a minimal («, g)-cage graph
(k, g > 3) with vertex set X, edge set R, and parts Y = X,
Y = R.
2. | is the point-block (P, B)-incidence graph of a trasversal
design [ [s(c + 2, ¢), for some even integer ¢ > 4, and parts

Y =0,Y =@8.

3. [ isthe (P, B)-incidence graph of a quasi-symmetric 3-design
withx =0,y > 0,and parts Y = @, Y/ = B.




WHY DOES

THIS
MATTER?




TERWILLIGER ALGEBRAS OF DBRGS









EXAMPLE (WORK IN PROGRESS)

Let [ be a (Y, Y’)-DBRG, and fix a vertex x & VY. Define
[ := T(x). Suppose that [ is the point-block (&, B)-incidence
graph of a transversal design [ [x(c 4+ 2, c¢), for some even

integer ¢ > 4, where the parts are given by ¥ = & and
Y = @B. Then [ has, up to isomorphism, exactly one irreducible
[ -module with endpoint i for each 0 < { < 2, and each such
module Is thin.




Happy Birthday, Paul'







