Extending the 2-homogeneous property to distance-biregular graphs

23 June 2025, Kranjska Gora, Slovenia

Combinatorics around the q-Onsager algebra

Blas Fernández

blas.fernandez@famnit.upr.si

A picture is worth a thousand words

DRG DBRG

The 2-homogeneous property (Nomura, 1994)

It provides a rich combinatorial structure in bipartite DRGs often approached via algebraic methods.

THEOREM (NOMURA, 1995)

Let Γ be a 2-homogeneous bipartite distance-regular graph with valency k and diameter d. Then, the following hold:

- \circ Γ is the complete bipartite graph $K_{k,k}$;
- \circ Γ is the 2d-cycle C_{2d} ;
- \circ Γ is the hypercube H(d, 2);
- \circ Γ is the complement of a 2 \times (k+1)-grid;
- \circ Γ is a Hadamard graph of valency $k=4\gamma$;
- ο Γ has array $\{k, k-1, k-c, c, 1; 1, c, k-c, k-1, k\}$, where $c = \gamma(\gamma + 1)$, $k = \gamma(\gamma^2 + 3\gamma + 1)$, and $\gamma > 0$:
 - the 5-dimensional hypercube H(5, 2) ($\gamma = 1$),
 - the double cover of the Higman-Sims graph ($\gamma = 2$).

Local Distance-Regularity in Y

Local Distance-Regularity in Y'

Distance-biregular graphs (DBRGs)

 \circ Let Γ be a (Y, Y')-bipartite **DBRG** (Distance-Biregular Graph).

Distance-biregular graphs (DBRGs)

 \circ Let Γ be a (Y, Y')-bipartite **DBRG** (Distance-Biregular Graph).

Γ

REMARK

We can express the intersection numbers of a (Y, Y') DBRG in an alternative way, represented as the following two-line array:

$$\begin{bmatrix} b_0; & c_1, & c_2, & \dots & c_{D-1}, & c_D \\ b'_0; & c'_1, & c'_2, & \dots & c_{D'-1}, & c'_D \end{bmatrix}$$

 $(0 \le i \le D)$

 $(0 \le i \le D')$

Absence of 2-Homogeneity in DBRGs

The 2-Y-homogeneous condition

AN IMPORTANT SCALAR

The scalar $\gamma_i(x, y, z)$

Let Γ be a (Y, Y')-DBRG.

- \circ Suppose that every vertex in Y has eccentricity $D \geq 3$.
- \circ Fix an integer i with $1 \le i \le D$.
- Choose a pair of vertices (x, y) such that $x \in Y$ and $y \in \Gamma_2(x) \subseteq Y$.
- \circ Consider all vertices $z \in \Gamma_{i,i}(x,y)$.
- For each such triple (x, y, z), define a quantity $\gamma_i(x, y, z)$.

The scalar $\gamma_i(x$, y , z)

Let Γ be a (Y, Y')-DBRG.

 \circ Suppose that every vertex in Y has eccentricity $D \geq 3$.

~ Fix an integer i with 1 / i / D

DEFINITION

For i (1 $\leq i \leq D$) and for $x \in Y$, $y \in \Gamma_2(x)$ and $z \in \Gamma_{i,i}(x,y)$, define:

$$\gamma_i(x,y,z) = \begin{cases} |\Gamma_{1,1}(x,y) \cap \Gamma_{i-1}(z)|, & \text{if } \Gamma_{i,i}(x,y) \neq \emptyset, \\ 0, & \text{if } \Gamma_{i,i}(x,y) = \emptyset. \end{cases}$$

•

A special case: the scalar $\gamma_1(x, y, z)$

- Fix a pair of vertices (x, y) with $x \in Y$ and $y \in \Gamma_2(x) \subseteq Y$.
- Notice that $\Gamma_{1,1}(x,y) \neq \emptyset$.
- For a vertex $z \in \Gamma_{1,1}(x,y)$, the set $\Gamma_{1,1}(x,y) \cap \Gamma_0(z) = \{z\}$.

DEFINITION

Let Γ be a (Y,Y')-DBRG with $D \geq 3$. Fix an integer i with $2 \leq i \leq D$. What conditions on Γ ensure that $\gamma_i(x,y,z)$ is constant across all triples (x,y,z) with $x \in Y$, $y \in \Gamma_2(x)$, and $z \in \Gamma_{i,i}(x,y)$?

DEFINITION

We say that Γ is 2-Y-homogeneous if, for every integer i with $2 \le i \le D-1$, and for all vertices $x \in Y$, $y \in \Gamma_2(x)$, and $z \in \Gamma_{i,i}(x,y)$, the value of $\gamma_i = \gamma_i(x,y,z)$ is independent of the specific choice of x, y, and z.

The intersection diagrams of rank 2

Let Γ be a (Y, Y')-bipartite graph.

- \circ Suppose that every vertex in Y has eccentricity $D \geq 3$.
- Fix an integer i with $1 \le i \le D$.
- Choose a pair of vertices (x, y) such that $x \in Y$ and $y \in \Gamma_2(x) \subseteq Y$.
- \circ For integers i and j, define the set $\Gamma_{i,j} := \Gamma_{i,j}(x,y) = \Gamma_i(x) \cap \Gamma_j(y)$.
- Consider all vertices $z \in \Gamma_{i,i}(x,y)$.

The scalar $\gamma_i(x, y, z)$ when $\Gamma_{i,i}(x, y) = \emptyset$

DEFINITION

For i (1 $\leq i \leq D$) and for $x \in Y$, $y \in \Gamma_2(x)$ and $z \in \Gamma_{i,i}(x,y)$, define $\gamma_i(x,y,z) = 0$.

The scalar $\gamma_i(x, y, z)$ when $\Gamma_{i,i}(x, y) \neq \varnothing$

DEFINITION

For i (1 $\leq i \leq D$) and for $x \in Y$, $y \in \Gamma_2(x)$ and $z \in \Gamma_{i,i}(x,y)$, define $\gamma_i(x,y,z) = |\Gamma_{1,1}(x,y) \cap \Gamma_{i-1}(z)|$.

The 2-Y-homogeneous condition

DEFINITION

We say that Γ is **2-**Y-homogeneous if, for every integer i with $2 \le i \le D-1$, and for all vertices $x \in Y$, $y \in \Gamma_2(x)$, and $z \in \Gamma_{i,i}(x,y)$, the value of $\gamma_i = \gamma_i(x,y,z)$ is independent of the specific choice of x, y, and z.

Example: the 3-cube H(3, 2)

Let Γ be the 3-cube with parts \mathcal{R} and \mathcal{B} . Every vertex in Γ has eccentricity equal to 3.

 Γ is 2- \Re -homogeneous with $\gamma_2(\Re)=1$.

 Γ is 2- \mathcal{B} -homogeneous with $\gamma_2(\mathcal{B})=1$.

Example: the 3-cube H(3, 2)

Let Γ be the 3-cube with parts \mathcal{R} and \mathcal{B} . Every vertex in Γ has eccentricity equal to 3.

REMARK

Let Γ be a bipartite (Y, Y')-DRG. If Γ is 2-Y-homogeneous then Γ is 2-Y'-homogeneous. In this case, the scalars $\gamma_i(Y) = \gamma_i(Y')$ for all $2 \le i \le D-1$.

 Γ is 2- \Re -homogeneous with $\gamma_2(\Re)=1$.

 Γ is 2- \mathcal{B} -homogeneous with $\gamma_2(\mathcal{B}) = 1$.

The Petersen graph

The subdivision of the Petersen graph

$$\Gamma' = (X \cup \mathcal{R}, \mathcal{R}')$$

The subdivision graph Γ' of the Petersen graph Γ is the (X, \mathcal{R}) -bipartite graph obtained from Γ by replacing each of its edges by a path of length 2.

The Petersen graph is a distance-regular graph and its subdivision graph is distance-biregular.

Let Γ be the subdivision of the Petersen graph with parts \mathcal{R} and \mathcal{B} . Every red vertex in Γ has eccentricity equal to 5.

 Γ is 2- \Re -homogeneous with $\gamma_i(\Re) = 0$ (2 $\leq i \leq 4$).

Let Γ be the subdivision of the Petersen graph with parts \mathcal{R} and \mathcal{B} . Every blue vertex in Γ has eccentricity equal to 6.

 Γ is not 2- \mathcal{B} -homogeneous.

Let Γ be the subdivision of the Petersen graph with parts $\mathcal R$ and $\mathcal B$. Every blue vertex in Γ has eccentricity equal to 6.

REMARK

The 2-Y-homogeneous property in a (Y, Y') DBRG is strongly affected by the selection of the initial vertex x from part Y, which plays a key role in the computation of $\gamma_i(x, y, z)$.

 Γ is not 2- ${\mathscr B}$ -homogeneous.

Main Motivation

- \circ Let Γ be a (Y, Y')-DBRG.
- \circ Suppose that every vertex in Y has eccentricity $D \geq 3$.

PROBLEM

What are the necessary and sufficient conditions for Γ to be 2-Y-homogeneous?

Understanding the 2-Y-homogeneous condition

Understanding the 2-Y-homogeneous condition

Main Motivation

Main Motivation

PROBLEM

Classify 2-Y-homogeneous distance-biregular graphs.

Case $b_0' \geq 3$

The scalars $p_{2,i}^i(Y)$ and $\Delta_i(Y)$

DEFINITION

For every integer i ($2 \le i \le D-1$), let the scalar $p_{2,i}^i := p_{2,i}^i(Y)$ be defined as follows:

$$p_{2,i}^{i}(Y) = \begin{cases} \frac{b_i(c_{i+1} - 1) + c_i(b_{i-1} - 1)}{c_2} & \text{if } i \text{ is even,} \\ \frac{b'_i(c'_{i+1} - 1) + c'_i(b'_{i-1} - 1)}{c_2} & \text{if } i \text{ is odd.} \end{cases}$$

DEFINITION

Define for every integer i (1 $\leq i \leq \min\{D-1, D'-1\}$) the scalar $\Delta_i(Y)$ as follows:

$$\Delta_i(Y) = \begin{cases} (b_{i-1} - 1)(c_{i+1} - 1) - p_{2,i}^i(Y)(c_2' - 1) & \text{if } i \text{ is even,} \\ (b_{i-1}' - 1)(c_{i+1}' - 1) - p_{2,i}^i(Y)(c_2' - 1) & \text{if } i \text{ is odd.} \end{cases}$$

A local condition

Theorem (Fernández, Penjić, 2023)

Let Γ be a (Y, Y')-DBRG with $D \geq 3$ and $b'_0 \geq 3$. Pick a vertex $x \in Y$. Fix an integer i $(2 \leq i \leq \min\{D-1, D'-1\})$. The following (1)–(2) are equivalent:

- 1. The scalar $\Delta_i(Y) = 0$.
- 2. For all $x, y \in Y$ with $\partial(x, y) = 2$ and $z \in \Gamma_{i,i}(x, y)$, the scalar $\gamma_i(x, y, z)$ does not depend on the choice of the triple (x, y, z). Suppose (1)–(2) hold. Then,

$$\gamma_{i}(x, y, z) = \begin{cases} \frac{c_{2}c_{i}(b_{i-1} - 1)}{b_{i}(c_{i+1} - 1) + c_{i}(b_{i-1} - 1)} & \text{if } i \text{ is even,} \\ \frac{c_{2}c'_{i}(b'_{i-1} - 1)}{b'_{i}(c'_{i+1} - 1) + c'_{i}(b'_{i-1} - 1)} & \text{if } i \text{ is odd.} \end{cases}$$

A local condition

Theorem (Fernández, Penjić, 2023)

Let Γ be a (Y, Y')-DBRG with $D \geq 3$ and $b'_0 \geq 3$. Pick a vertex $x \in Y$. Fix an integer i $(2 \leq i \leq \min\{D-1, D'-1\})$. The following (1)–(2) are equivalent:

Corollary (Fernández, Penjić, 2023)

Let Γ be a (Y, Y')-DBRG with $D \ge 3$ and $b'_0 \ge 3$. Pick a vertex $x \in Y$. The following (1)–(2) are equivalent:

- 1. The number $\Delta_i(Y) = 0 \ (2 \le i \le \min \{D 1, D' 1\})$.
- 2. Γ is 2-Y-homogeneous.

$$\gamma_{i}(x, y, z) = \begin{cases} \frac{\overline{b_{i}(c_{i+1} - 1)} + c_{i}(b_{i-1} - 1)}{b_{i}(c_{i+1} - 1) + c_{i}(b'_{i-1} - 1)} & \text{if } i \text{ is even} \\ \frac{c_{2}c'_{i}(b'_{i-1} - 1)}{b'_{i}(c'_{i+1} - 1) + c'_{i}(b'_{i-1} - 1)} & \text{if } i \text{ is odd.} \end{cases}$$

2-Y-homogeneous DBRGs with $c_2'=1$

2-Y-homogeneous DBRG with $c_2' = 1$

Let Γ be a 2-Y-homogeneous DBRG with $D \ge 3$ and $c_2' = 1$.

- Suppose that $b_0' \ge 3$.
- Then, the scalars $\Delta_i(Y) = 0 \ (2 \le i \le \min\{D 1, D' 1\})$.
- Given that $c'_2 = 1$, the expressions for $\Delta_i(Y)$ can be significantly simplified for each i in this range.

2-Y-homogeneous DBRG with $c_2'=1$

Let Γ be a 2-Y-homogeneous DBRG with $D \geq 3$ and $c_2' = 1$.

- Suppose that $b_0' \ge 3$.
- Then, the scalars $\Delta_i(Y) = 0 \ (2 \le i \le \min\{D 1, D' 1\})$.

The scalars $\Delta_i(Y)$ $(2 \le i \le \min\{D-1,D'-1\})$

$$\Delta_i(Y) = \begin{cases} (b_{i-1} - 1)(c_{i+1} - 1) & \text{if } i \text{ is even,} \\ (b'_{i-1} - 1)(c'_{i+1} - 1) & \text{if } i \text{ is odd.} \end{cases}$$

Let Γ be a 2-Y-homogeneous DBRG with $D \ge 3$ and $c_2' = 1$.

- The case D' < D is not possible!
- Therefore, $D' \ge D$ and $\min\{D 1, D' 1\} = D 1$.
- It follows that the scalar $\Delta_{D-1}(Y) = 0$.
- O However, evaluating explicitly, we obtain $\Delta_{D-1}(Y) = (b_0'-2)(b_0'-1) = 0$, which yields a contradiction.

Let Γ be a 2-Y-homogeneous DBRG with $D \geq 3$ and $c_2' = 1$.

- The case D' < D is not possible!
- Therefore, $D' \ge D$ and $\min\{D 1, D' 1\} = D 1$.
- It follows that the scalar $\Delta_{D-1}(Y) = 0$.
- O However, evaluating explicitly, we obtain $\Delta_{D-1}(Y) = (b'_0 2)(b'_0 1) = 0$, which yields a contradiction.

THEOREM (WORK IN PROGRESS)

There does not exist a 2-Y-homogeneous DBRG with $D \geq 3$, $b_0' \geq 3$ and $c_2' = 1$.

Let Γ be a 2-Y-homogeneous DBRG with $D \ge 3$ and $c_2' = 1$.

- \circ Hence, we conclude that $b_0' \leq 2$.
- Since $D \ge 3$, it follows that $b_1 = b'_0 1 > 0$.
- Therefore, the only possibility is $b'_0 = 2$.

Let Γ be a 2-Y-homogeneous DBRG with $D \geq 3$ and $c_2' = 1$.

- \circ Hence, we conclude that $b_0' \leq 2$.
- Since $D \ge 3$, it follows that $b_1 = b'_0 1 > 0$.
- \circ Therefore, the only possibility is $b_0'=2$.

THEOREM (MOHAR, SHAWE-TAYLOR, 1985)

A graph Γ with vertices of valency 2 is DBRG if and only if Γ is a complete bipartite graph $K_{2,n}$ $(n \ge 1)$ or Γ is the subdivision graph of a minimal (κ, g) -cage graph, where $\kappa, g \ge 3$.

Let Γ be a 2-Y-homogeneous DBRG with $D \geq 3$ and $c_2' = 1$.

- \circ Hence, we conclude that $b_0' \leq 2$
- Since $D \ge 3$, it follows that $b_1 = b'_0 1 > 0$.
- \circ Therefore, the only possibility is $b_0'=2$.

THEOREM (WORK IN PROGRESS)

A 2-Y-homogeneous DBRG Γ with $D \geq 3$ and $c_2' = 1$ is the subdivision graph of a minimal (κ, g) -cage graph $(\kappa, g \geq 3)$ with vertex set X, edge set \mathcal{R} , and parts Y = X and $Y' = \mathcal{R}$.

The converse also holds!

THEOREM (F., PENJIĆ, 2023.)

Let Γ' be a minimal (κ, g) -cage graph $(\kappa, g \geq 3)$ with vertex set X, edge set \mathcal{R} . Then, the subdivision graph Γ of Γ' is a DBRG with parts Y = X and $Y' = \mathcal{R}$, which is 2 - Y-homogeneous.

 Γ is 2-Y-homogeneous with $\gamma_i = 0$ (2 $\leq i \leq D-1$).

The converse also holds!

THEOREM (F., PENJIĆ, 2023.)

Let Γ' be a minimal (κ, g) -cage graph $(\kappa, g \geq 3)$ with vertex set THEOREM (WORK IN PROGRESS)

Let Γ be a (Y, Y')-distance-biregular graph with $D \geq 3$. Then, the following statements are equivalent:

- 1. Γ is 2-Y-homogeneous with $c_2'=1$.
- 2. Γ is the subdivision graph of a minimal (κ, g) -cage graph $(\kappa, g \geq 3)$ with vertex set X, edge set \mathcal{R} , and parts Y = X, $Y' = \mathcal{R}$.
- 3. Γ is 2-Y-homogeneous with $b'_0=2$.

 Γ is 2-Y-homogeneous with $\gamma_i = 0$ (2 $\leq i \leq D-1$).

2-Y-homogeneous DBRGs with $c_2'=2$

THEOREM (WORK IN PROGRESS)

Let Γ denote a 2-Y-homogeneous distance-biregular graph with $D \geq 3$. If $c_2' = 2$ then $D \in \{3, 4\}$.

2-Y-homogeneous DBRGs with $c_2' \ge 3$

Bounding the Diameter via Inequalities

Let Γ be a 2-Y-homogeneous (Y, Y')-distance-biregular graph with $c_2 \ge 3$ and $D \ge 3$.

• There exist constants $c \ge 3$, $s \ge 3$, and $g \ge 2$ such that:

$$c_3 - b_3 = \frac{g(s-2) + c[2 + s(g-2)]}{g(g-1)}.$$

• Under these assumptions, the inequality $c_3 - b_3 > 0$ holds, implying $b_3 < c_3$.

LEMMA (F., PENJIĆ, 2023)

Let Γ be a (Y, Y')-distance-biregular graph. If $i + j \leq D$ and i + j is even, then $c_i \leq b_j$.

• Applying the lemma with i = j = 3, we obtain $c_3 \le b_3$ when $D \ge 6$, which contradicts the earlier conclusion that $b_3 < c_3$.

Bounding the Diameter via Inequalities

Let Γ be a 2-Y-homogeneous (Y, Y')-distance-biregular graph with $c_2' \geq 3$ and $D \geq 3$.

• There exist constants $c \ge 3$, $s \ge 3$, and $q \ge 2$ such that

$$c_3 - b_3 = \frac{g(s-2) + c[2 + s(g-2)]}{c(s-1)}$$
.

THEOREM (F., PENJIĆ, 2023)

Let Γ denote a 2-Y-homogeneous distance-biregular graph with $D \geq 3$. If $c_2' \geq 3$ then $D \in \{3, 4, 5\}$.

Lemma (F., Penjić, 2023)

Let Γ be a (Y, Y')-distance-biregular graph. If $i + j \leq D$ and i + j is even, then $c_i \leq b_j$.

• Applying the lemma with i = j = 3, we obtain $c_3 \le b_3$ when $D \ge 6$, which contradicts the earlier conclusion that $b_3 < c_3$.

There does not exist

THEOREM (F., ŠEPIĆ, RUKAVINA, 2025⁺)

Let Γ denote a 2-Y-homogeneous distance-biregular graph with $D \geq 3$. If $c_2' \geq 3$ then $D \in \{3, 4\}$.

There does

THEOREM (F., ŠEPIĆ, RUKAVINA, 2025⁺)

Let Γ denote a 2-Y-homogeneous distance-biregular graph with $D \ge 3$. If $c_2' \ge 3$ then $D \in \{3, 4\}$.

with D = 5

THEOREM (WORK IN PROGRESS)

Let Γ denote a 2-Y-homogeneous distance-biregular graph with $D \ge 3$. If $c_2' = 2$ then $D \in \{3, 4\}$.

There does not exist

THEOREM (WORK IN PROGRESS)

Every 2-Y-homogeneous distance-biregular graph with $c_2' \ge 2$ must have eccentricity D=3 or D=4.

- 2-Y-homogeneous DBRGs with $c_2' \ge 2$:
- (1) The case D=4 and $D^\prime=3$
- (2) The case $D=D^\prime=4$
- (3) The case D=3

THEOREM (F., RUKAVINA, 2022.)

There does not exist a 2-Y-homogeneous distance-biregular graph with D=4 and D'=3.

$$D'=3$$

THEOREM (F., MAKSIMOVIĆ, PENJIĆ, RUKAVINA, 2025⁺.)

Let Γ denote a (Y,Y')-DBRG with D=D'=4 and $c_2'\geq 2$. Then, Γ is 2-Y-homogeneous if and only if there exist positive integers $c>s\geq 2$ such that Γ has the following intersection array:

$$\frac{c(c+s-2)}{s-1}; \qquad 1, \quad c, \quad c+s-1, \quad \frac{c(c+s-2)}{s-1} \\ c+s; \qquad 1, \quad s, \quad \frac{c(c+s-1)}{s}, \quad c+s$$

THEOREM (F., MAKSIMOVIĆ, PENJIĆ, RUKAVINA, 2025⁺.)

There does not exist a 2-Y-homogeneous (Y, Y')-DBRG with D=D'=4 and $c_2'\geq 3$.

$C_2 = 2$ $C_2 = 2$ $C_3 = 2$ $C_4 = 2$ $C_5 = 2$ $C_6 = 2$ $C_7 = 2$ $C_8 = 2$ C_8

THEOREM (F., MAKSIMOVIĆ, PENJIĆ, RUKAVINA, 2025⁺.)

Let Γ denote a (Y, Y')-DBRG with D = D' = 4 and $c_2' \geq 2$. Then, Γ is 2-Y-homogeneous if and only if there exist an even integer $c \geq 4$ such that Γ has the following intersection array:

$$\begin{vmatrix} c^2; & 1, & c, & c+1, & c^2 \\ c+2; & 1, & 2, & \frac{c(c+1)}{2}, & c+2 \end{vmatrix}$$

Distance Biregular Bipartite Graphs

C. DELORME

16,	1,	4,	5,	16
6,	1,	2,	10,	6

Denniston (1969) and van den Akker (1990)

van den Akker (1990)

Open Problem

Denniston (1969) and van den Akker (1990)

THEOREM (VAN DEN AKKER, 1990.)

A graph Γ is the point-block incidence graph of a trasversal design $TD_3(c+2,c)$ if and only if Γ is a (Y,Y')-DBRG with the following intersection array:

$$\begin{vmatrix} c^2; & 1, & c, & c+1, & c^2 \\ c+2; & 1, & 2, & \frac{c(c+1)}{2}, & c+2 \end{vmatrix}$$

Denniston (1969) and van den Akker (1990)

These graphs

THEOREM (WORK IN PROGRESS.)

Let Γ be a (Y, Y')-DBRG. The following are equivalent:

- 1. Γ is 2-Y-homogeneous with D=4.
- 2. Γ is the point-block incidence graph of a trasversal design $TD_3(c+2,c)$, for some even integer $c \geq 4$.

THEOREM (F., PENJIĆ, 2023.)

Let Γ denote a (Y, Y')-DBRG with D=3. The following are equivalent:

- 1. Γ is 2-Y-homogeneous.
- 2. $b_1 = c_2$.
- 3. $|\Gamma_2(x)| = \deg(x)$ for all $x \in Y$.

Combinatorial structure of Γ when D=3.

The point-block $(\mathcal{P}, \mathcal{B})$ -incidence graph of a 3- (v, k, λ) design.

QS-design

Theorem (f., Rukavina, 2022)

Let Γ denote a (Y, Y')-DBRG. The following are equivalent:

- 1. Γ is 2-Y-homogeneous with D=3.
- 2. Γ is the incidence graph of a quasi-symmetric 3- (v, k, λ) design with x=0, y>0, where the following cases may occur:
 - \mathcal{D} is a Hadamard 3-design with $v = 4(\lambda + 1)$ and $k = 2(\lambda + 1)$.
 - $v = (\lambda + 1)(\lambda^2 + 5\lambda + 5)$ and $k = (\lambda + 1)(\lambda + 2)$.
 - v = 496, k = 40 and $\lambda = 3$.

THEOREM (WORK IN PROGRESS)

Let Γ denote a (Y, Y')-DBRG. Then, Γ is 2-Y-homogeneous if and only if one of the following holds:

- 1. Γ is the subdivision graph of a minimal (κ, g) -cage graph $(\kappa, g \geq 3)$ with vertex set X, edge set \mathcal{R} , and parts Y = X, $Y' = \mathcal{R}$.
- 2. Γ is the point-block $(\mathcal{P}, \mathcal{B})$ -incidence graph of a trasversal design $TD_3(c+2,c)$, for some even integer $c \geq 4$, and parts $Y=\mathcal{P}, Y'=\mathcal{B}$.
- 3. Γ is the $(\mathcal{P}, \mathcal{B})$ -incidence graph of a quasi-symmetric 3-design with x = 0, y > 0, and parts $Y = \mathcal{P}$, $Y' = \mathcal{B}$.

TERWILLIGER ALGEBRAS OF DBRGS

EXAMPLE (WORK IN PROGRESS)

Let Γ be a (Y,Y')-DBRG, and fix a vertex $x \in Y$. Define T := T(x). Suppose that Γ is the point-block $(\mathcal{P},\mathcal{B})$ -incidence graph of a transversal design $TD_3(c+2,c)$, for some even integer $c \geq 4$, where the parts are given by $Y = \mathcal{P}$ and $Y' = \mathcal{B}$. Then Γ has, up to isomorphism, exactly one irreducible T-module with endpoint i for each $0 \leq i \leq 2$, and each such module is thin.

