Bipartite Coherent Configurations

Sabrina Lato

Umeå Universitet

sabrina.lato@umu.se

23 June 2025

Distance-Regular Graphs

Definition

Let G be a graph with diameter d. Then G is distance-regular if for any vertex u and any v at distance i from u for some $0 \le i \le d$, the numbers of vertices

$$c_i := |\{w \sim v : d(u, w) = i - 1\}|,$$

$$a_i := \left| \left\{ w \sim v : d\left(u, w\right) = i \right\} \right|,$$

and

$$b_i := |\{w \sim v : d(u, w) = i + 1\}|$$

are independent of the choice of u and v.

Locally Distance-Regular Vertices

Definition

Let G be a graph with vertex u of eccentricity e. Then u is **locally distance-regular** if for any vertex v at distance i from u for some $0 \le i \le e$, the numbers of vertices

$$c_i := |\{w \sim v : d(u, w) = i - 1\}|,$$

 $a_i := |\{w \sim v : d(u, w) = i\}|,$

and

$$b_i := |\{w \sim v : d(u, w) = i + 1\}|$$

are independent of the choice of v.

Distance-Biregular Graphs

Definition

Let G be a bipartite graph. Then G is distance-biregular if for any vertex u and any v at distance i from u for some $0 \le i \le e$, the numbers of vertices

$$c_i := |\{w \sim v : d(u, w) = i - 1\}|$$

and

$$b_i := |\{w \sim v : d(u, w) = i + 1\}|$$

depend only on the cell of the bipartition that u lies in.

Theorem (Godsil and Shawe-Taylor)

Let G be a graph where every vertex is locally distance-regular. Then G is either distance-regular or distance-biregular.

- Complete bipartite graphs
- Bipartite distance-regular graphs

- Complete bipartite graphs
- Bipartite distance-regular graphs
- (Tits 1959) Generalized polygons

- Complete bipartite graphs
- Bipartite distance-regular graphs
- (Tits 1959) Generalized polygons
- (Kirkman 1847) Steiner systems
- (Bose 1942) Affine resolvable designs
- (Goethals and Seidel 1970) Sporadic quasi-symmetric design related to Golay code
- (Witt 1944) Sporadic quasi-symmetric design related to Witt design

Examples

- Complete bipartite graphs
- Bipartite distance-regular graphs
- (Tits 1959) Generalized polygons
- (Kirkman 1847) Steiner systems
- (Bose 1942) Affine resolvable designs
- (Goethals and Seidel 1970) Sporadic quasi-symmetric design related to Golay code
- (Witt 1944) Sporadic quasi-symmetric design related to Witt design
- (Bose 1963) Partial geometries

- (Delorme 1983) Infinite family related to a cone in affine space
- (Delorme 1983) Infinite family related maximal arcs in affine space

- (Delorme 1983) Infinite family related maximal arcs in affine space
- (Mohar and Shawe-Taylor 1985) Subdivision graphs of Moore graphs and generalized polygons

- (Delorme 1983) Infinite family related to a cone in affine space
- (Delorme 1983) Infinite family related maximal arcs in affine space
- (Mohar and Shawe-Taylor 1985) Subdivision graphs of Moore graphs and generalized polygons
- (Van Den Akker 1990) Sporadic example related to Hall-Janko-Wales graph

- (Delorme 1983) Infinite family related to a cone in affine space
- (Delorme 1983) Infinite family related maximal arcs in affine space
- (Mohar and Shawe-Taylor 1985) Subdivision graphs of Moore graphs and generalized polygons
- (Van Den Akker 1990) Sporadic example related to Hall-Janko-Wales graph
- (Fernández, Ihringer, Lato, and Munemasa 2025+) Sporadic example generalizing Delorme's maximal arc family
- (Fernández, Ihringer, Lato, and Munemasa 2025+) Infinite family coming from subgraphs of Delorme's maximal arc family or an independent construction using hyperovals.

Definition

The i-distance adjacency matrix A_i of a graph G is the matrix indexed by the vertices of G with u, v-entry equal to one if d(u, v) = i and zero otherwise.

Definition

The i-distance adjacency matrix A_i of a graph G is the matrix indexed by the vertices of G with u, v-entry equal to one if d(u, v) = i and zero otherwise.

$$A_i^T = A_i$$

The i-distance adjacency matrix A_i of a graph G is the matrix indexed by the vertices of G with u, v-entry equal to one if

 $A_i^T = A_i$

d(u, v) = i and zero otherwise.

 $A_0 = I$

The i-distance adjacency matrix A_i of a graph G is the matrix indexed by the vertices of G with u, v-entry equal to one if d(u, v) = i and zero otherwise.

- $\blacksquare A_i^T = A_i$
- $A_0 = I$
- If G is connected with diameter d, then

$$\sum_{i=0}^{d} A_i = 1$$

$$A^{2} = \begin{pmatrix} 3 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 3 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 3 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 3 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 3 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 3 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 3 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 3 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 3 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 3 & 2 \end{pmatrix}$$

Distance-Regular Graphs

Definition

Let G be a graph with diameter d. It is distance-regular if G has d+1 distinct eigenvalues and there exists a sequence of polynomials F_0, \ldots, F_d such that, for all $0 \le i \le d$, the polynomial Fi has degree i and

$$F_i(A) = A_i$$
.

$$A = \begin{pmatrix} 0 & N \\ N^T & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & N \\ N^T & 0 \end{pmatrix}$$

$$A^{2i} = \begin{pmatrix} (NN^T)^i & 0 \\ 0 & (N^TN)^i \end{pmatrix}$$

$$A^{2i+1} = \begin{pmatrix} 0 & (NN^T)^i N \\ (N^TN)^i N^T & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & N \\ N^T & 0 \end{pmatrix}$$

$$A^{2i} = \begin{pmatrix} (NN^T)^i & 0 \\ 0 & (N^TN)^i \end{pmatrix}$$

$$A^{2i+1} = \begin{pmatrix} 0 & (NN^T)^i N \\ (N^TN)^i N^T & 0 \end{pmatrix}$$

$$A_{2i} = \begin{pmatrix} X_i & 0 \\ 0 & Y_i \end{pmatrix}$$

$$A_{2i+1} = \begin{pmatrix} 0 & N_{2i+1} \\ N_{2i+1}^T & 0 \end{pmatrix}.$$

$$X_{1} = NN^{T} - 3I$$

$$N_{3} = NN^{T}N - 4N$$

$$X_{2} = \left(NN^{T}\right)^{2} - 6NN^{T} + 6I$$

$$N_{5} = \frac{1}{2}\left(\left(NN^{T}\right)^{2}N - 7NN^{T}N + 10N\right)$$

$$Y_{1} = N^{T}N - 2I$$

$$N_{3} = N^{T}NN - 4N^{T}$$

$$Y_{2} = (N^{T}N)^{2} - 5N^{T}N + 2I$$

$$N_{5} = 1/2 ((N^{T}N)^{2}N^{T} - 7N^{T}NN^{T} + 10N^{T})$$

$$Y_{3} = 1/4 ((N^{T}N)^{3} - 9(N^{T}N)^{2} + 20N^{T}N - 4I)$$

Distance-Biregular Graphs

Definition

Let $G = (\beta, \gamma)$ be a bipartite graph with diameter d. It is **distance-biregular** if G has d + 1 distinct eigenvalues and there exists two sequences of polynomials $F_0^{\beta}, \dots, \overline{F}_d^{\beta}$ and $F_0^{\gamma}, \dots, F_d^{\gamma}$ such that

$$F_{2i}^{\beta}\left(NN^{T}\right) = X_{i},$$

$$F_{2i}^{\gamma}\left(N^{T}N\right) = Y_{i},$$

$$F_{2i+1}^{\beta}\left(NN^{T}\right)N = N_{2i+1},$$

and

$$\textit{F}_{2i+1}^{\gamma}\left(\textit{N}^{\textit{T}}\textit{N}\right)\textit{N}^{\textit{T}} = \textit{N}_{2i+1}^{\textit{T}}.$$

Bipartite Coherent Configurations

Association Schemes

Definition

A set of 01-matrices A_0, \ldots, A_d form a symmetric association scheme if

- $\blacksquare A_0 = I$:
- \blacksquare $A_i^T = A_i$ for $0 \le i \le d$; and
- \blacksquare $A_i A_i \in \text{Span} \{A_0, \dots, A_d\}$ for $0 \le i, j \le d$.

Association Schemes

Definition

A set of 01-matrices A_0, \ldots, A_d form a symmetric association scheme if

- $\blacksquare A_0 = I$:
- \blacksquare $A_i^T = A_i$ for 0 < i < d; and
- \blacksquare $A_i A_i \in \text{Span} \{A_0, \dots, A_d\}$ for $0 \le i, j \le d$.

Definition

An association scheme is P-polynomial if for all $0 \le i \le d$, there is a polynomial F_i of degree i such that $F_i(A_1) = A_i$.

Theorem (Bose-Mesner)

A symmetric association scheme has a dual basis E_0, \ldots, E_d satisfying:

- $\blacksquare E_0 = \frac{1}{4}J;$
- $\sum_{i=0}^{d} E_i = I;$
- \blacksquare $E_i^T = E_i$ for $0 \le i \le d$; and
- $E_i \circ E_i \in \text{span} \{E_0, ..., E_d\}$ for $0 \le i, j \le d$.
- \blacksquare $E_i E_i = \delta_{ii} E_i$

Coherent Configuration

Definition (Higman)

A set C of 01-matrices forms a coherent configuration if:

- There exists $S \subseteq \mathcal{C}$ such that $\sum_{M \in S} M = I$;
- $\blacksquare \sum_{M \in \mathcal{C}} M = J;$
- $M^T \in \mathcal{C}$: and
- For all $M_1, M_2 \in \mathcal{C}$, we have $M_1 M_2 \in \operatorname{Span}(\mathcal{C})$.

We can think of this in terms of $f \times f$ block matrices

$$\left\{A_0^{ij}, A_1^{ij}, \dots, A_{d_{ij}}^{ij}\right\}_{i,j=1}^f$$
.

Suda studied fibre-symmetric coherent configurations where there exist matrices $\{E_r^{ij}\}$ satisfying:

$$E_0^{ij} = \frac{1}{\sqrt{x_i x_j}} J;$$

Bipartite Coherent Configurations

- The set $\{E_r^{ij}\}$ is a basis of Span $(\{A_r^{ij}\})$ as a vector space;
- $lackbox{ } \left(E_r^{ij}\right)^T=E_r^{ji}; \text{ and }$

$$E_r^{ij}E_s^{j'h}=\delta_{i,j'}\delta_{r,s}E_r^{ih}.$$

Definition (Lato)

A collection

$$C = \left\{ \begin{pmatrix} X_i & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \bigcup \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & Y_j \end{pmatrix} \bigcup \begin{pmatrix} \mathbf{0} & N_h \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \bigcup \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ N_h^T & \mathbf{0} \end{pmatrix} \right\}$$

Bipartite Coherent Configurations

is a bipartite coherent configuration if it satisfies

- $X_0 = I \text{ and } Y_0 = I;$
- $\blacksquare \sum_{M \in \mathcal{C}} M = J;$
- For all $M_1, M_2 \in \mathcal{C}$, we have $M_1 M_2 \in \operatorname{Span}(\mathcal{C})$;
- \blacksquare $N_i N_i^T = N_i N_i^T$ and $N_i^T N_i = N_i^T N_i$;
- lacksquare $\left\{N_iN_j^T\right\}\cup\left\{I\right\}$ spans the span of $\left\{X_i\right\}$ and $\left\{N_i^TN_j\right\}\cup\left\{I\right\}$ spans the span of $\{Y_i\}$.

Theorem (Lato)

A bipartite coherent configuration \mathcal{C} has a dual basis

$$\mathcal{B} = \left\{ \begin{pmatrix} L_i & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \bigcup \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & R_j \end{pmatrix} \bigcup \begin{pmatrix} \mathbf{0} & D_h \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \bigcup \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ D_h^T & \mathbf{0} \end{pmatrix} \right\}$$

Bipartite Coherent Configurations

satisfying

$$lacksquare$$
 $L_0=rac{1}{|eta|},\ R_0=rac{1}{|\gamma|}J,\ ext{and}\ D_0=rac{1}{\sqrt{|eta\gamma|}}J;$

- For all $M_1, M_2 \in \mathcal{C}$, we have $M_1 \circ M_2 \in \operatorname{Span}(\mathcal{B})$;
- $L_iL_i = \delta_{ii}L_i$ and $R_iR_i = \delta_{ii}R_i$; and
- \blacksquare $D_i D_i^T = \delta_{ij} L_i$ and $D_i^T D_i = \delta_{ij} R_i$.

- Distance-biregular graphs
- Quasi-symmetric designs
- Strongly-regular designs (certain partial geometric designs or $1\frac{1}{2}$ -designs

Let A be an association scheme. Then there exist eigenvalues $\{P_{rs}\}_{r,s=0}^d$ such that for $0 \le r \le d$, we have

$$A_r = \sum_{s=0}^d P_{rs} E_s.$$

Let A be an association scheme. Then there exist eigenvalues $\{P_{rs}\}_{r=0}^d$ such that for $0 \le r \le d$, we have

$$A_r = \sum_{s=0}^d P_{rs} E_s.$$

Definition

An association scheme is P-polynomial if there exists an ordering A_0, \ldots, A_d such that for all 0 < r < d, there is a polynomial F_r of degree r such that for $0 \le s \le d$, we have $F_r(P_{1s}) = P_{rs}$.

Let A be an association scheme. Then there exist dual eigenvalues $\{Q_{rs}\}_{r,s=0}^d$ such that for $0 \le r \le d$, we have

$$E_r = \sum_{s=0}^d Q_{rs} A_s.$$

Definition

An association scheme is Q-polynomial if there exists an ordering E_0, \ldots, E_d such that for all 0 < r < d, there is a polynomial G_r of degree r such that for $0 \le s \le d$, we have $G_r(Q_{1s}) = Q_{rs}$.

Coherent Configuration

Definition (Higman)

A set C of 01-matrices forms a coherent configuration if:

- There exists $S \subseteq \mathcal{C}$ such that $\sum_{M \in S} M = I$;
- $\blacksquare \sum_{M \in \mathcal{C}} M = J;$
- $M^T \in \mathcal{C}$: and
- For all $M_1, M_2 \in \mathcal{C}$, we have $M_1 M_2 \in \operatorname{Span}(\mathcal{C})$.

We can think of this in terms of $f \times f$ block matrices

$$\left\{A_0^{ij}, A_1^{ij}, \dots, A_{d_{ij}}^{ij}\right\}_{i,j=1}^f$$
.

 $E_0^{ij} = \frac{1}{\sqrt{x_i x_i}} J;$

■ The set
$$\{E_r^{ij}\}$$
 is a basis of Span $(\{A_r^{ij}\})$ as a vector space;

$$lackbox{ } \left(E_r^{ij}\right)^T=E_r^{ji}; \text{ and }$$

$$E_r^{ij}E_s^{j'h}=\delta_{j,j'}\delta_{r,s}E_r^{ih}.$$

Let C be a coherent configuration satisfying Suda's conditions.

Then for $1 \le i, j \le f$, there exist dual eigenvalues $\left\{Q_{rs}^{ij}\right\}_{r=0}^{d}$ such that for 0 < r < d, we have

$$E_r^{ij} = \sum_{s=0}^d Q_{rs}^{ij} A_s^{ij}.$$

Let C be a coherent configuration satisfying Suda's conditions.

Then for $1 \leq i,j \leq f$, there exist dual eigenvalues $\left\{Q_{rs}^{ij}
ight\}_{s=0}^d$ such that for 0 < r < d, we have

$$E_r^{ij} = \sum_{s=0}^d Q_{rs}^{ij} A_s^{ij}.$$

Definition (Suda)

A coherent configuration is Q-polynomial if for all $1 \le i, j \le f$, there exists an ordering $E_0^{ij}, \ldots, E_d^{ij}$ such that for all $0 \le r \le d$, there is a polynomial G_r^{ij} of degree r such that for $0 \le s \le d$, we have $G_r^{ij}\left(Q_{1s}^{ij}\right)=Q_{rs}^{ij}$.

Let C be a coherent configuration satisfying Suda's conditions.

Then for $1 \leq i, j \leq f$, there exist eigenvalues $\left\{P_{rs}^{ij}\right\}_{r=0}^{d}$ such that for $0 \le r \le d$, we have

$$A_r^{ij} = \sum_{s=0}^a P_{rs}^{ij} E_s^{ij}.$$

Let C be a coherent configuration satisfying Suda's conditions. Then for $1 \leq i, j \leq f$, there exist eigenvalues $\left\{P_{rs}^{ij}\right\}_{s=0}^d$ such that for 0 < r < d, we have

$$A_r^{ij} = \sum_{s=0}^d P_{rs}^{ij} E_s^{ij}.$$

Definition (Naive Attempt)

A coherent configuration is P-polynomial if for all $1 \le i, j \le f$, there exists an ordering $A_0^{ij}, \ldots, A_d^{ij}$ such that for all $0 \le r \le d$, there is a polynomial F_r^{ij} of degree r such that for $0 \le s \le d$, we have $F_r^{ij}\left(P_{1s}^{ij}\right) = P_{rs}^{ij}$.

Let $G = (\beta, \gamma)$ be a bipartite graph with diameter d. It is **distance-biregular** if G has d + 1 distinct eigenvalues and there exists two sequences of polynomials $F_0^{\beta}, \dots, F_d^{\beta}$ and $F_0^{\gamma}, \dots, F_d^{\gamma}$ such that

$$F_{2i}^{\beta} \left(NN^{T} \right) = X_{i},$$

$$F_{2i}^{\gamma} \left(N^{T} N \right) = Y_{i},$$

$$F_{2i+1}^{\beta} \left(NN^{T} \right) N = N_{2i+1},$$

and

$$F_{2i+1}^{\gamma}\left(N^{T}N\right)N^{T}=N_{2i+1}^{T}.$$

$$E_r^{ij}E_s^{j'h}=\delta_{j,j'}\delta_{r,s}E_r^{ih}.$$

$$E_r^{ij}E_s^{j'h}=\delta_{j,j'}\delta_{r,s}E_r^{ih}.$$

$$E_r^{ij}E_s^{ji}=\delta_{r,s}E_r^{ii}.$$

P-polynomial coherent configuration

Definition (Lato)

A coherent configuration is P-polynomial if for all 1 < i < f, there exists an ordering

$$\left\{A_{0}^{i1}, \dots, A_{d_{i1}}^{i1}, A_{0}^{i2}, \dots, A_{d_{if}}^{if}\right\}$$

such that for all $0 \le r \le d$, there is a polynomial F_r^i of degree rsuch that for $0 \le s \le d$, we have $F_r^i\left(P_{1s}^{ij}\right) = P_{rs}^{ij}$.

Theorem (Lato)

If C is a P-polynomial coherent configuration, then it is formed from the distance adjacency matrices of a distance-regular or distance-biregular graph.

A collection

$$C = \left\{ \begin{pmatrix} X_i & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \bigcup \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & Y_j \end{pmatrix} \bigcup \begin{pmatrix} \mathbf{0} & N_h \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \bigcup \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ N_h^T & \mathbf{0} \end{pmatrix} \right\}$$

is a bipartite coherent configuration if it satisfies

- $X_0 = I \text{ and } Y_0 = I$;
- $\blacksquare \sum_{M \in \mathcal{C}} M = J;$
- For all $M_1, M_2 \in \mathcal{C}$, we have $M_1 M_2 \in \operatorname{Span}(\mathcal{C})$;
- \blacksquare $N_i N_i^T = N_i N_i^T$ and $N_i^T N_i = N_i^T N_i$;
- $lacksquare \left\{ N_i N_j^T \right\} \cup \left\{ I \right\}$ spans the span of $\left\{ X_i \right\}$ and $\left\{ N_i^T N_j \right\} \cup \left\{ I \right\}$ spans the span of $\{Y_i\}$.