Twin Buildings and Hypergroups II

Christopher P. French
Grinnell College
(joint work with Paul-Hermann Zieschang)

Combinatorics around q-Onsager algebra Kranjska Gora, Slovenia June 2025

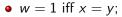
Buildings

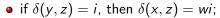
Let W be a Coxeter group with generating set I. For $p \in W$, I(p) is the *length* of p.

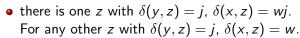
A building with Coxeter group W is a set X (of chambers) together with a Coxeter distance $\delta: X \times X \to W$.

Suppose
$$w \in W$$
, $i, j \in I$, $I(wi) = I(w) + 1$, $I(wj) = I(w) - 1$.

If
$$\delta(x,y) = w$$
, then







A building is *thick* if for each $x \in X$, $i \in I$,

there are at least two chambers y, z with $\delta(x, y) = i = \delta(x, z)$.

We will assume all our buildings are thick.

Then suppose $p, q, r \in W$, $x, y, z \in X$ with

$$\delta(x,y) = r$$
, $\delta(x,z) = p$, $\delta(y,z) = q$.

Then for any $x', y' \in X$ with $\delta(x, y) = r$ there exists $z' \in X$ with

$$\delta(x',z')=p$$
, $\delta(y',z')=q$

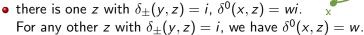
Twin Buildings

A twin building consists of two buildings (X_+, δ_+) , (X_-, δ_-) . (Let $\delta_+(x, y) = \delta_+(x, y)$ when $x, y \in X_+$; let $\delta_+(x,y) = \delta_-(x,y)$ when $x,y \in X_-$. We also need $\delta^0: (X_+ \times X_-) \cup (X_- \times X_+) \to W$.

Suppose
$$w \in W$$
, $i, j \in I$, $I(wi) = I(w) + 1$, $I(wj) = I(w) - 1$.

If
$$\delta^0(x, y) = w$$
, we require

- $\delta^0(v,x) = w^{-1}$:
- if $\delta_+(y,z) = j$, then $\delta^0(x,z) = wj$;



Conjecture 1

Let $p, q, r \in W$, $x, y \in X_-$ and $z \in X_+$ with

$$\delta_{-}(x,y) = r, \delta^{0}(x,z) = p, \delta^{0}(y,z) = q.$$

Given $x', y' \in X_-$ with $\delta_-(x', y') = r$,

must there be a $z' \in X_+$ with

$$\delta^0(x',z')=p, \delta^0(y',z')=q?$$

(If so, then twin buildings give rise to twin Coxeter hypergroups.)

Suppose
$$\delta^{0}(x, y) = w$$
, $i, j \in I$, $I(iw) = I(w) + 1$, $I(jw) = I(w) - 1$.

The axioms imply:

- If $\delta_{\pm}(z,x) = j$, then $\delta_{\pm}(z,y) = jw$
- There is one z with $\delta_{\pm}(z,x)=i$, $\delta^0(z,y)=iw$. For any other z with $\delta_{\pm}(z,x)=i$, we have $\delta^0(z,y)=w$.

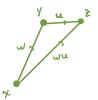
properties of twin buildings

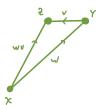
Also, suppose $u,v,w\in W$, $x\in X_-$, $y\in X_+$, $\delta^0(x,y)=w$, and

$$I(wu) = I(w) + I(u), I(wv) = I(w) - I(v),$$
and

Then

- There is a unique $z \in X_+$ with $\delta_+(y,z) = u$, $\delta^0(x,z) = wu$
- If $\delta_+(y,z) = v$ for some $z \in X_+$, then $\delta^0(x,z) = wv$.





opposites

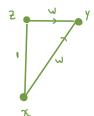
Suppose
$$x \in X_-, y \in X_+, \delta^0(x, y) = w$$
.

Then we can find z with $\delta(y,z) = w^{-1}$ (so $\delta(z,y) = w$.)

Then since
$$I(ww^{-1}) = I(w) - I(w^{-1})$$
, $\delta^0(x, z) = 1$.

When $\delta^0(x,z) = 1$, we say x,z are opposite chambers.

So, for any $x \in X_-$, we can find an opposite chamber $z \in X_+$.

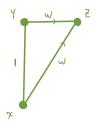


Let $x \in X_{-}$ and $w \in W$.

Choose $y \in X_+$ with $\delta^0(x,y) = 1$.

Since
$$I(1w) = I(w) = I(1) + I(w)$$
,

there is one $z \in X_+$ with $\delta^0(x,z) = w$.

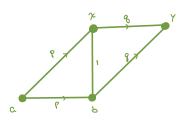


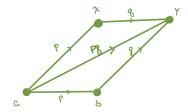
Twin Apartment Lemma Suppose

- $a, b \in X_-, x, y \in X_+,$
- $\delta_{-}(a,b) = p, \ \delta_{+}(x,y) = q,$
- $\delta^0(a,x) = p$, $\delta^0(b,x) = 1$, $\delta^0(b,y) = q$

We claim $\delta^0(a, y) = pq$.

This is true if q = 1, since then x = y.





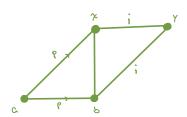
Consider the case I(q) = 1, so $q = i \in I$.

•
$$a, b \in X_-, x, y \in X_+,$$

•
$$\delta_{-}(a,b) = p$$
, $\delta_{+}(x,y) = i$,

•
$$\delta^0(a,x) = p$$
, $\delta^0(b,x) = 1$, $\delta^0(b,y) = i$

If I(pi) = I(p) - 1, we must have $\delta^0(a, y) = pi$.



If
$$I(pi) = I(p) + 1$$
, $\exists ! z \in X_+$ with $\delta_+(x, z) = i$, $\delta^0(a, z) = pi$.

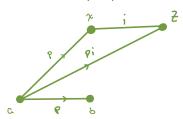
Then
$$\delta^0(z,a) = (pi)^{-1} = ip^{-1}$$
, $\delta_-(a,b) = p$.

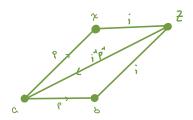
Since
$$I(ip^{-1}p) = 1 = I(ip^{-1}) - I(p), \ \delta^0(z,b) = i.$$

So
$$\delta^0(b,z)=i$$
.

But there is only one $y \in X_+$ with $\delta_+(x,y) = i$, $\delta^0(b,y) = i$.

So,
$$z = y$$
, so $\delta^0(a, z) = pi$.





Assume the lemma when $I(q) \le n$. Suppose I(qi) = I(q) + 1 and

•
$$a, b \in X_-$$
, $x, z \in X_+$,

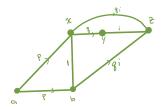
•
$$\delta_{-}(a,b) = p$$
, $\delta_{+}(x,z) = qi$,

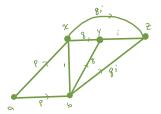
•
$$\delta^0(a,x) = p$$
, $\delta^0(b,x) = 1$, $\delta^0(b,z) = qi$

There is one y with $\delta_+(x,y)=q$, $\delta_+(y,z)=i$.

Since
$$\delta^0(b,z) = qi$$
 and $\delta_+(z,y) = i$, $\delta^0(b,y) = q$.

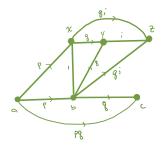
By induction, $\delta^0(a, y) = pq$.

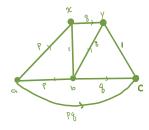




We can find c with $\delta_{-}(b,c)=q$, $\delta_{-}(a,c)=pq$.

We have
$$\delta^0(y, b) = q^{-1}$$
, and $I(qq^{-1}) = I(q) - I(q^{-1})$ so $\delta^0(y, c) = 1$, so $\delta^0(c, y) = 1$.

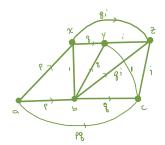




Also,
$$\delta^{0}(z, b) = (qi)^{-1} = iq^{-1}$$
 and $\delta_{-}(b, c) = q$.

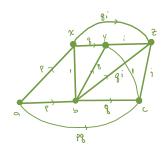
Since
$$I(iq^{-1}q) = 1 = I(iq^{-1}) - I(q)$$
,

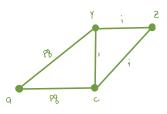
$$\delta^0(z,c) = i$$
, so $\delta^0(c,z) = i$.



Now
$$\delta_{-}(a,c) = pq$$
, $\delta_{+}(y,z) = i$, $\delta^{0}(a,y) = pq$, $\delta^{0}(c,z) = i$, and $\delta^{0}(c,y) = 1$.

By the case when I(q) = 1, we get $\delta^0(a, z) = pqi$





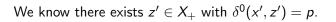
Suppose l(r) = 0. Then r = 1.

Let $p, q \in W$, $x, y \in X_-$ and $z \in X_+$ with

$$\delta_{-}(x,y)=r, \quad \delta^{0}(x,z)=p, \quad \delta^{0}(y,z)=q.$$

Since r = 1, x = y, so q = p.

Let
$$x', y' \in X_-$$
 with $\delta_-(x', y') = r = 1$. (So $x' = y'$).



Then
$$\delta^{0}(y',z') = \delta^{0}(x',z') = p = q$$
.

Conjecture for I(r) = 1

Let $p, q \in W$, $x, y \in X_-$ and $z \in X_+$ with

$$\delta_{-}(x,y)=r, \quad \delta^{0}(x,z)=p, \quad \delta^{0}(y,z)=q.$$

Suppose $x', y' \in X_-$ with $\delta_-(x', y') = r$.

Case 1: l(rq) = l(q) - 1. Since $\delta^0(y, z) = q$ and $\delta_-(x, y) = r$, we must have $p = \delta^0(x, z) = rq$.

Now just choose z' with $\delta^0(y',z')=q$. Since $\delta_-(x',y')=r$, we must have $\delta^0(x',z')=rq$.

So,
$$\delta^0(x',z')=p$$
.

$$I(rq) = I(q) + 1$$

Case 2:
$$l(rq) = l(q) + 1$$

Then
$$p = \delta^0(z, x) \in \{q, rq\}$$

Case 2a: p = rq. Choose z' with $\delta^0(x', z') = p = rq$.

Since
$$\delta_{-}(y', x') = r$$
 and $I(q) = I(rq) - 1$, $\delta^{0}(y', z') = q$.

Case 2b: l(rq) = l(q) + 1 and p = q.

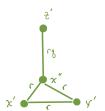
Since X_- is thick, choose $x'' \in X_-$ with $x'' \neq x'$, $\delta_-(y', x'') = r$.

Then $\delta_-(x'',y')=r^{-1}=r$ and $\delta_-(y',x')=r^{-1}=r$, and $x'\neq x''$ so we must have $\delta_-(x'',x')=r$.

Choose $z' \in X_+$ so $\delta^0(x'', z') = rq$.

Since
$$\delta_-(x'',x')=r=\delta_-(x'',y')$$
 and $I(q)=I(rq)-1$,

$$\delta^{0}(x',z') = \delta^{0}(y',z') = q = p.$$

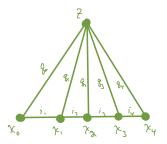


Let $i_1, i_2, \ldots, i_k \in I$ such that $i_1 i_2 \ldots i_k$ has length k.

A sequence $q_0,q_1,\ldots,q_t\in W$ is a harp over i_1,k_2,\ldots,i_k if there exists $x_0,x_1,x_2,\ldots,x_k\in X_-,z\in X_+$ such that $\delta_-(x_{t-1},x_t)=i_t \text{ for } 0\leq t\leq k$

$$\delta_{-}(x_{t-1},x_t) = I_t \text{ for } 0 \le t \le k$$

and $\delta^{0}(x_t,z) = q_t \text{ for } 0 \le t \le k$.



Universal harps

We say a harp q_0, q_1, \ldots, q_t over i_1, i_2, \ldots, i_k is universal if

for any sequence
$$x_0, x_1, \ldots, x_k \in X_-$$
 with

$$\delta_{-}(x_{t-1}, x_t) = i_t \text{ for } 1 \leq t \leq k$$

there exists $z \in X$ such that

$$\delta^0(x_t, z) = q_t \text{ for } 0 \le t \le k.$$

Harp Conjecture: Every harp is universal.

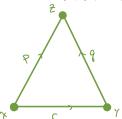
Harp conjecture \implies Conjecture 1

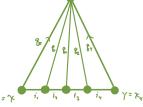
Suppose given
$$x, y, \in X_-, z \in X_+$$
 with $\delta_-(x, y) = r, \delta^0(x, z) = p, \delta^0(y, z) = q.$

Let
$$k = l(r)$$
. Fix i_1, i_2, \ldots, i_k with $r = i_1 i_2 \ldots i_k$.

Choose $x = x_0, x_1, \dots, x_k = y$ such that $\delta(x_{t-1}, x_t) = i_t$ for each t.

Let
$$q_t = \delta^0(x_t, r)$$
 for $1 \le t \le k$,
so q_0, q_1, \dots, q_k is a harp over i_1, i_2, \dots, i_k .





Harp conjecture \implies Conjecture 1

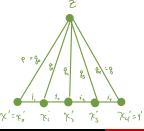
Now suppose $x', y' \in X_-$ with $\delta_-(x', y') = r$.

Choose $x' = x'_0, x'_1, \dots, x'_k = y'$ such that $\delta(x'_{t-1}, x'_t) = i_t$ for each t.

Since every harp is universal,

we can choose z' such that $\delta^0(x'_t,z')=q_t$ for all t.

Then
$$\delta^0(x',z') = q_0 = p$$
 and $\delta^0(y',z') = q_k = q$.



Non-repeating harps

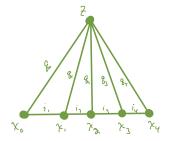
Suppose q_0, q_1, \ldots, q_k is a harp over i_1, i_2, \ldots, i_k .

For each
$$t$$
, $\delta^0(x_t, z) = q_t$ and $\delta_-(x_{t-1}, x_t) = i_t$, so we have $q_t \in \{q_{t-1}, i_t q_{t-1}\}$,

A harp is non-repeating if $q_t \neq q_{t-1}$ for $1 \leq t \leq k$.

so
$$q_t = i_t q_{t-1}$$
 for $1 \le t \le k$.

so
$$q_{t-1} = i_t q_t$$
 for $1 \le t \le k$.



Non-repeating harps

Let $i_1,i_2,\ldots,i_k\in I$, and suppose $r:=i_1i_2\ldots i_k$ has length k. Let q_0,q_1,\ldots,q_k be a non-repeating harp over i_1,i_2,\ldots,i_k . Then $q_{k-1}=i_kq_k,$ $q_{k-2}=i_{k-1}q_{k-1}=i_{k-1}i_kq_k,$ $q_t=i_{t+1}i_{t+2}\cdots i_kq_k \text{ for all } t$

Harp conjecture for non-repeating harps

Theorem: Suppose given $i_1, i_2, \ldots, i_k \in I$ with $I(i_1 i_2 \ldots i_k) = k$. Suppose $q \in W$.

Let $q_k = q$, and for t < k, let $q_t = i_{t+1}i_{t+2}\cdots i_kq$.

Let $x_0, x_1, \dots, x_k \in X_-$, where $\delta_-(x_{t-1}, x_t) = i_t$ for $1 \le t \le k$.

Then there exists $z \in X_+$ such that $\delta^0(x_t, z) = q_t$ for each t.

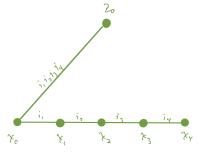
So, every non-repeating harp is universal.

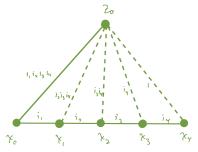
Proof of harp conjecture for non-repeating harps

Choose $z_0 \in X_+$ so $\delta^0(x_0, z_0) = i_1 i_2 \dots i_k$.

Then since
$$\delta_{-}(x_1, x_0) = i_1$$
 and $\delta^{0}(x_0, z_0) = i_1 i_2 \dots i_k$, $\delta^{0}(x_1, z_0) = i_2 \dots i_k$.

Similarly, $\delta^0(x_t, z_0) = i_{t+1} \dots i_k$ for each t.





Proof of harp conjecture for non-repeating harps

We have $z_0 \in X_+$ with $\delta^0(x_t, z_0) = i_{t+1} \cdots i_k$ for each t.

In particular, $\delta^0(x_k, z_0) = 1$.

There is a unique z with $\delta(z_0, z) = q$ and $\delta^0(x_k, z) = q$.

By the twin apartment lemma,

$$\delta^0(x_t,z) = i_{t+1} \cdots i_k q = q_t$$
 for each t .

