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Thin (regular) schemes.

Definition

A scheme (Ω,S) is called thin if nS = 1 for each S ∈ S.

Proposition

A scheme (Ω,S) is thin iff S is a regular subgroup of Sym(Ω).

Proposition

The schemes (H,HR), (H,HL) are pairwise isomorphic thin
schemes. They commute elementwise and

Inv(HR) = HL, Inv(HL) = HR ,
Aut(HL) = HR ,Aut(HR) = HL,

Iso(HL) = HR Aut(H), Iso(HR) = HL Aut(H).
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Cayley schemes

Defintion

An association scheme which is a fusion of (H;HL) is called a
Cayley scheme over H.

If (H,S) is a Cayley scheme over H, then each basic relation S ∈ S
is a Cayley graph with generating set Se = {h ∈ H | (h, e) ∈ S}.
Notice that Se = (eS)(−1) = {h−1 | h ∈ Se}.

Proposition. Let (H,R) be a Cayley scheme. Then the set

S := {Re |R ∈ R} is a partition of H with the following properties

{e} ∈ S;

S ∈ S =⇒ S (−1) ∈ S;

for any triple R,S ,T ∈ S and any t ∈ T the number
cTRS := |S ∩ R(−1)t| does not depend on a choice t ∈ T .



Cayley schemes and Schur partitions

Defintion. A partition S of H is called Schur partition iff

it satifies the above conditions, that is

{e} ∈ S;

S ∈ S =⇒ S (−1) ∈ S;

for any triple R,S ,T ∈ S and any t ∈ T the number
cTRS := |S ∩ R(−1)t| does not depend on a choice t ∈ T .

Notice that |S ∩ R(−1)t| = {(x , y) ∈ R × S | xy = t}.

Proposition

Let S be a partition of H. A partition
Cay(H,S) := {Cay(H, S) |S ∈ S}

is an association scheme iff S is a Schur partition.



Schur partitions and Schur rings (algebras)

Notation

R[H] the group algebra over a unitary ring R.

If x =
∑

h∈H xhh ∈ R[H], y =
∑

h∈H yhh ∈ R[H], then their
group product (convolution) is xy =

∑
h,f ∈H xhyf (hf );

Schur-Hadamard product x ◦ y =
∑

h∈H(xhyh)h;

◦-idemotents have a form S :=
∑

s∈S s where S ⊆ H, they
are called simple quantities;

{h} is abbreviated as h;

if S ` H, then S := 〈S |S ∈ S};
for each m ∈ Z and x ∈ R[H] we denote x (m) :=

∑
h∈H xhh

m;



Schur partitions and Schur rings (algebras)

Proposition

Let S ` H be s.t. {e} ∈ S and S(−1) = S. Then S is a Schur
partition iff the linear span 〈S〉 is a subalgebra of Q[H].

Definition

A subalgebra A ≤ Q[H] is called a Schur ring/algebra over H if
there exists a Schur partition S ` H such that A = 〈S〉. The
elements of S are called basic sets of A while the elements of S∪
are called A-(sub)sets.

Theorem

A vector space A ≤ Q[H] is a Schur ring iff e,H ∈ A and A closed
w.r.t. convolution, ◦ and (−1).



Generating S-ring

Proposition

If A = 〈S〉 and B = 〈T 〉 are S-rings, then

A ⊆ B ⇐⇒ S v T ;

A ∩ B = S ∩ T = 〈S ∧ T 〉

The intersection of all S-rings containing elements
x , y , z , ... ∈ Q[H] is denoted as 〈〈x , y , z , ...〉〉.

Theorem

Let S ⊆ H be an arbitrary subset. Let A = 〈〈S〉〉 be a Schur ring
generated by S and S the corresponding S-paritition (that is
〈S〉 = A). Then 〈〈Cay(H,S)〉〉 = Cay(H,S) and S ∈ S∪.



Generating S-ring

Proposition (Schur-Wielandt principle)

Let f : Q→ Q be an arbitrary function. Then for any element
x =

∑
h∈H xhh of an S-ring A the element f [x ] :=

∑
h∈H f (xh)h

also belongs to A.

In the case when f = δr , r ∈ Q (the Kronecker delta-function) we
obtain the following

Corollary

Let A be an S-ring over H and x =
∑

h∈H xhh. If x ∈ A then for
any r ∈ Q the simple quantity δr [x ] = {h ∈ H | xh = r} belongs to
A (equivalently, {h ∈ H | xh = r} is an A-subset).



Computation of 〈〈S〉〉. A concrete example:
S = {1, 4, 7} ⊆ Z8.

It’s better to write S = {1, 4, 7} as S = c + c4 + c7 where c8 = 1.

Then S2 = 3c0 + c2 + c6 + 2c5 + 2c3 ∈ 〈〈S〉〉 =⇒ 1 = c0 ∈ 〈〈S〉〉,
T := c5 + c3,R = c2 + c6 ∈ 〈〈S〉〉 =⇒ R2 = 2c0 + 2c4 ∈ 〈〈S〉〉
=⇒ c4 ∈ 〈〈S〉〉 =⇒ 〈〈S〉〉 = 〈c0, c + c7, c2 + c6, c3 + c5〉.

Thus 〈〈Cay(Z8, {1, 4, 7})〉〉 = Cay(Z8, {{0}, {1, 7}, {2, 6}, {3, 5}}).
In other words, the right hand side is the coherent closure of the
graph depictered below.

1 2

0 3

7 4

6 5
Cay(Z8, {1, 4, 7})
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Examples: Schur partitions over the group Z8

The following list was generated by the computer program COCO
(thanks to Misha Klin).

{0}, {1, 2, 3, 4, 5, 6, 7};
{0}, {1, 3, 5, 7}, {2, 6, 4} ;
{0}, {1, 3, 5, 7, 2, 6}, {4} ;
{0}, {1, 3, 5, 7}, {2, 6}, {4} ;
{0}, {1, 3, 5, 7}, {2}, {6}, {4} ;
{0}, {1, 5}, {3, 7}, {2}, {6}, {4} ;
{0}, {1, 5}, {3, 7}, {2, 6}, {4} ;
{0}, {1, 3}, {5, 7}, {2, 6}, {4} ;
{0}, {1, 7}, {3, 5}, {2, 6}, {4} ;
{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7} ;



Further examples

Proposition

Let F ≤ Aut(H) ≤ Sym(H). Then the orbit partition Orb(F ,H) is
a Schur partition. The corresponding S-ring coincides with Q[H]F .

Partial cases

F = Inn(H) =⇒ Z(Q[H]) is an S-ring. Its basic sets coincide
with conjugacy classes of H. Fusion S-rings of Z(Q[H]) are in
one-to-one correspondence with supercharacters introduced
recently by Isaacs et. el.

let R be a ring, H = (R,+) and K ≤ R×. The corresponding
S-ring Q[H]K is called cyclotomic. Its basic sets have a form
Kr , r ∈ R.



Further examples

Proposition (subgroup S-rings)

L be a sublattice of a subgroup lattice of H which contains {e}
and H. If any two subgroup K , L ∈ L are permutable, then 〈L〉L∈L
is a Schur ring.

Hecke algebras

Let K ≤ H be an abritrary subgroup and S = {KhK | h ∈ H} be a
partition of H into double cosets of K . The linear span S is known
as Hecke algebra w.r.t. K . It is closed w.r.t. (−1), ◦, · but doesn’t
contain 1.



Properties of S-rings

Proposition

Let S be a Schur partition of H and Cay(H,S) the corresponding
Cayley scheme. Then Cay(H,S)∪ = Cay(H,S∪) and

the set S∪ is closed w.r.t. boolean operations;

{e},H ∈ S∪;

(S∪)∗ = S∪;

S is closed w.r.t. group product;

S ∈ S∪ =⇒ 〈S〉 ∈ S∪;

A relation E = Cay(H,S),S ∈ S∪ is an equivalence iff S is a
subgroup of H.

Definition

A subgroup F ≤ H is called an A-subgroup if F ∈ A. An S-ring is
called primitive iff {e},H are the only A-subgroups.



Schurian S-rings

Theorem (Schur)

Let H be a group and HR ≤ G ≤ Sym(H). Then the orbits of Ge

form an S-partition.

Proof.

Set S := Inv(G ). Then HR ≤ G =⇒ S v Inv(HR) = HL. Thus S
is a Cayley scheme. Hence eS = {eS | S ∈ S} is a Schur partition
of H. Since S is schurian, eS = Orb(Ge ,H).

An S-partition is called Schurian if it has a form Orb(Ge ,H) for
some G , HR ≤ G ≤ Sym(H)



Subgroup factorization and Schur rungs

Theorem (Schur)

Let G = AH be a factorization into a subgroup product with
A ∩ H = {e}. Then the subalgebra

CQ[H](A) := {x ∈ Q[H] | xA = Ax}.

is a Schur ring the basic sets of which have the form AhA ∩ H.

A concrete example

A simple group PSL3(2) has a decomposition into a product AH
where A ∼= D8 and H ∼= F21. The corresponding S-ring over H has
rank six and its Cayley scheme is isomorphic to a flag scheme of a
projective plane of order 2.



Isomorphisms between Schur rings

Let S ` H and T ` K be two S-partitions of groups H and K resp.
The S-rings A := 〈S〉,B := 〈T 〉 are

Cayley isomorphic, notation ∼=Cay , if there exists a group
isomorphism f : H → K s.t. S f = T ;

combinatorially isomorphic if the schemes Cay(H,S) and
Cay(K , T ) are isomorphic (as schemes);

algebraically isomorphic if the schemes Cay(H,S) and
Cay(K , T ) are algebraically isomorphic.

In what follows we abbreviate

Aut(A) := Aut(Cay(H,S)), Iso(A) := Iso(Cay(H,S)).



Isomorphisms between S-rings

Proposition

A ∼=alg B iff there exists a bijection f : S → T s.t. cRPQ = cR
f

P f Q f .

Proposition

A ∼=com B iff there exists a bijection f : H → K s.t. (eH)f = eK
and

for any h ∈ H and S ∈ S it holds that (hS)f = hf S f ;

S f = T ;

f |S is an algebraic isomorphism between A and B

A ∼=Cay B ⇒ A ∼= B ⇒ A ∼=alg B.
A ∼=Cay B 6⇐ A ∼= B 6⇐ A ∼=alg B.



Application to Cayley graph isomorphism problem.

Let f : Cay(H,S)→ Cay(H,T ) be an isomorphism s.t.
f (e) = e;

then S f = T where S and T are S-partitions generated by S
and T resp.;

f ∗ is an algebraic isomorphism between S-rings S and T .



Klin-Pöschel approach.

How to solve GIP for Cayley graphs over a finite group H.

Find all S-rings over H. Let A1, ....,AN be the complete list
of them;

For all pairs i , j find the set Φij of algebraic isomorphisms
between them;

For each φ ∈ Φij find a combinatorial isomorphism f between
Ai and Aj s.t. f ∗ = φ (if such f exists);

Collect all permutations f found on the previous stage. Let P
be the set of all those permutations.

Proposition

The set P constructed above is a solving set for the Cayely graphs
over H, that is two Cayley graphs Cay(H,S) and Cay(H,T ) are
isomorphic iff there exists f ∈ P s.t. Cay(H,S)f = Cay(H,T ).
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Example

N S-partition S |Alg(S)| Iso(S)/Aut(S)
transversal

1 {0}, {1, 2, 3, 4, 5, 6, 7} 1 µ1

2 {0}, {1, 3, 5, 7}, {2, 6, 4} 1 µ1

3 {0}, {1, 3, 5, 7, 2, 6}, {4} 1 µ1

4 {0}, {1, 3, 5, 7}, {2, 6}, {4} 1 µ1

5 {0}, {1, 3, 5, 7}, {2}, {6}, {4} 2 µ1, µ3

6 {0}, {1, 5}, {3, 7}, {2}, {6}, {4} 4 µ1, µ3, σ, σµ3

7 {0}, {1, 5}, {3, 7}, {2, 6}, {4} 2 µ1, µ3

8 {0}, {1, 3}, {5, 7}, {2, 6}, {4} 2 µ1, µ5

9 {0}, {1, 7}, {3, 5}, {2, 6}, {4} 2 µ1, µ3

10 {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7} 4 µ1, µ3, µ5, µ7

Here σ = (2, 6)(3, 7) and µa is an automorphism of Z8: x 7→ ax . Thus

{µ1, µ3, µ5, µ7, σ, σµ3} is a solving set for Z8.



Solving sets for cyclic groups

Theorem

Two S-rings over cyclic groups are algebraically isomorphic iff they
coincide.

This implies the following modification of the original Klin-Pöschel
approach

Find all S-rings over Zn, let A1, ....,AN be the complete list
of them;

For each Ai find a transversal Ti of Iso(Ai )/Aut(Ai )

Then the union of Ti produces a solving set for Zn.

Theorem

Given a number n, one can construct a solving set for Zn of at
most n3 permutations in time nO(1).



CI-property (L. Babai, 1976)

Definition

A Cayley (di)graph Cay(H,S) has a Cayley Isomorphism property
(CI-property for short) iff Aut(H) is a solving set for Cay(H,S),

∀T⊆H Cay(H,T ) ∼= Cay(H,S) ⇐⇒ ∃ϕ∈Aut(H) T = Sϕ.

H is a DCI-group if every subset S has CI-property.
H is a CI-group if every symmetric subset S has CI-property.
H is a CI(2)-group if it has CI-property for all colored Cayley
digraphs over H.

CI(2) − property =⇒ DCI-property =⇒ CI-property

Problem (L. Babai & P. Frankl, 1976)

Which are the CI-groups?



Graph Isomorphism problem for (D)CI-groups

Proposition

Let G be a class of (D)CI-groups. If |Aut(H)| = |H|c for every
H ∈ G and some for some constant c , then GIP for Cayley graphs
over groups from G belongs to P.

Problem

Given two subsets S ,T ⊆ Zk
p , find whether there exists

ϕ ∈ Aut(Zk
p) such that Sϕ = T .

Does there exists a polynomial (in pk) algorithm which answers the
above question?

Code equivalence Problem

Two generating subsets S = {s1, ..., sn},T = {t1, ..., tn} ⊆ Zk
p are

equivalent iff the linear codes with generating matrices
S = (s1|...|sn),T = (t1|...|tn) are permutation equivalent.
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