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Proposition

The schemes (H, Hg), (H, H) are pairwise isomorphic thin
schemes. They commute elementwise and

Inv(HR) = HL, Inv(HL) = HR,
Aut(H[_) = HR,Aut(HR) =H,,
|SO(HL) = Hg Aut(H), |SO(HR) =H, Aut(H).



Cayley schemes

Defintion
An association scheme which is a fusion of (H; Hy) is called a
Cayley scheme over H.

If (H,S) is a Cayley scheme over H, then each basic relation S € S
is a Cayley graph with generating set Se = {h € H|(h,e) € S}.
Notice that Se = (eS)("1) = {h~1 | h € Se}.

Proposition. Let (H,R) be a Cayley scheme. Then the set

S :={Re|R € R} is a partition of H with the following properties
m {e} €S,
mSesS = SsVes;

m for any triple R,S, T € S and any t € T the number
cps ==15N R(=D¢| does not depend on a choice t € T.



Cayley schemes and Schur partitions

Defintion. A partition S of H is called Schur partition iff

it satifies the above conditions, that is
m {e} €S,
mSeS = Ssthes;

m for any triple R,S, T € S and any t € T the number
cps :=|S N R(=1¢| does not depend on a choice t € T.

Notice that |[S N R("Vt| = {(x,y) € R x S|xy = t}.

Proposition

Let S be a partition of H. A partition
Cay(H,S) :={Cay(H,S)|S € S}
is an association scheme iff S is a Schur partition.



Schur partitions and Schur rings (algebras)

m R[H)] the group algebra over a unitary ring R.

mIf x=> .y xnh € R[H],y = > ,cyynh € R[H], then their
group product (convolution) is xy = >, ey Xayr(hf);

m Schur-Hadamard product x oy = >, 1 /(xnys)h;

m o-idemotents have a form S := > __s s where S C H, they
are called simple quantities;

m ﬂ is abbreviated as h;
mif Sk H, then S :=(S|S € S};
m for each m € Z and x € R[H] we denote x(™ := 3", _, x,h™;



Schur partitions and Schur rings (algebras)

Proposition

Let SF H best. {e} € Sand S =S. Then S is a Schur
partition iff the linear span (S) is a subalgebra of Q[H].

Definition

A subalgebra A < Q[H] is called a Schur ring/algebra over H if
there exists a Schur partition S = H such that A = (S). The
elements of S are called basic sets of A while the elements of SV
are called A-(sub)sets.

Theorem

A vector space A < Q[H] is a Schur ring iff e, H € A and A closed
w.r.t. convolution, o and (-1),



Generating S-ring

Proposition

If A= (S) and B = (T) are S-rings, then
mACB < SCT,;
mANB=8SNT =(SAT)

The intersection of all S-rings containing elements
X,¥,Z,... € Q[H] is denoted as ((x,y, z,...)).

Theorem

Let S C H be an arbitrary subset. Let A = ((S)) be a Schur ring
generated by S and S the corresponding S-paritition (that is
(8) = A). Then ((Cay(H, S))) = Cay(H,S) and S € S".




Generating S-ring

Proposition (Schur-Wielandt principle)

Let f: Q — Q be an arbitrary function. Then for any element
X = ey Xnh of an S-ring A the element f[x] := >, f(xp)h
also belongs to A.

In the case when f = §,,r € Q (the Kronecker delta-function) we
obtain the following

Corollary

Let A be an S-ring over H and x = ", _;; xph. If x € A then for
any r € Q the simple quantity d,[x] = {h € H|x, = r} belongs to
A (equivalently, {h € H|x, = r} is an A-subset).
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Computation of ((S). A concrete example:

S=1{1,4,7} C Zs.

It's better to write S = {1,4,7} as S = c + c* + ¢ where ¢® = 1.
Then S? =3c% + 2+ c®+2c° +2c3 € (S) = 1=c0 € (S),
T=+S3R=c2+c0c(S) = R>=2c"+2c* € (S)
= cte(S) = (Sh=(ct+c ?+c8 P+ )

Thus <<CaY(Z& {17 4, 7})>> = CaY(Z& {{0}7 {17 7}7 {25 6}7 {37 5}})
In other words, the right hand side is the coherent closure of the
graph depictered below.

Cay(Zs,{1,4,7})



Examples: Schur partitions over the group Zg

The following list was generated by the computer program COCO
(thanks to Misha Klin).

{0}, {1,2,3,4,5,6,7};

{0}, {1,3,5,7}, {2,6,4};

{0}, {1,3,5,7,2,6}, {4};

{0}, {1,3,5,7}, {2,6}, {4};

{0}, {1,3,5,7}, {2}, {6}, {4};

{0}, {1,5}, {3, 7}, {2}, {6}, {4}:

{0}, {1,5}, {3, 7}, {2,6}, {4}:

{0}, {1,3}, {5,7}, {2,6}, {4};

{0}, {1,7}, {3,5}, {2,6}, {4};

{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7};



Further examples

Let F < Aut(H) < Sym(H). Then the orbit partition Orb(F, H) is
a Schur partition. The corresponding S-ring coincides with Q[H]".

Partial cases

m F =Inn(H) = Z(Q[H]) is an S-ring. Its basic sets coincide
with conjugacy classes of H. Fusion S-rings of Z(Q[H]) are in
one-to-one correspondence with supercharacters introduced
recently by Isaacs et. el.

m let R be a ring, H=(R,+) and K < R*. The corresponding
S-ring Q[H]X is called cyclotomic. lts basic sets have a form
Kr,r € R.




Further examples

Proposition (subgroup S-rings)

L be a sublattice of a subgroup lattice of H which contains {e}
and H. If any two subgroup K, L € L are permutable, then (L)<,
is a Schur ring.

Hecke algebras

Let K < H be an abritrary subgroup and S = {KhK | h € H} be a
partition of H into double cosets of K. The linear span S is known
as Hecke algebra w.r.t. K. It is closed w.r.t. (=1 o, but doesn’t
contain 1.




Properties of S-rings

Proposition
Let S be a Schur partition of H and Cay(H,S) the corresponding
Cayley scheme. Then Cay(H,S)" = Cay(H,S") and

m the set SV is closed w.r.t. boolean operations;

m {e},H e S";

- (SU)* - SY.

m S is closed w.r.t. group product;

mSeSY = (§)esY,
A relation E = Cay(H,S),S € S" is an equivalence iff S is a
subgroup of H.

Definition
A subgroup F < H is called an A-subgroup if £ € A. An S-ring is
called primitive iff {e}, H are the only .A-subgroups.




Schurian S-rings

Theorem (Schur)

Let H be a group and Hg < G < Sym(H). Then the orbits of G,
form an S-partition.

Proof.

Set S :=Inv(G). Then Hr < G = S C Inv(Hg) = H,. Thus S
is a Cayley scheme. Hence eS = {eS|S € S} is a Schur partition
of H. Since S is schurian, eS = Orb(G,, H). O

An S-partition is called Schurian if it has a form Orb(Ge, H) for
some G, Hr < G < Sym(H)



Subgroup factorization and Schur rungs

Theorem (Schur)

Let G = AH be a factorization into a subgroup product with
AN H = {e}. Then the subalgebra

Comi(A) == {x € Q[H] | xA = Ax}.

is a Schur ring the basic sets of which have the form AhAN H.

A concrete example

A simple group PSL3(2) has a decomposition into a product AH
where A= Dg and H = F5;. The corresponding S-ring over H has
rank six and its Cayley scheme is isomorphic to a flag scheme of a
projective plane of order 2.



Isomorphisms between Schur rings

Let SF H and T F K be two S-partitions of groups H and K resp.
The S-rings A := (S), B := (T) are

m Cayley isomorphic, notation =c,,, if there exists a group
isomorphism f : H — K s.t. St =T

m combinatorially isomorphic if the schemes Cay(H,S) and
Cay(K, T) are isomorphic (as schemes);

m algebraically isomorphic if the schemes Cay(H, S) and
Cay(K,T) are algebraically isomorphic.

In what follows we abbreviate

Aut(A) := Aut(Cay(H, S)), Iso(A) := Iso(Cay(H, S)).



Isomorphisms between S-rings

A =,z B iff there exists a bijection f : S — T s.t. c,";Q = cPfo

Proposition

A =com B iff there exists a bijection f : H — K s.t. (ey)f = ek

and
m forany he€ H and S € S it holds that (hS)f = hfsf.
n ST =T;

m f|s is an algebraic isomorphism between 4 and B

AZc,y B=>A=2B=> A=, B.
AZcoy BEAZB &= A=, B.



Application to Cayley graph isomorphism problem.

m Let f: Cay(H,S) — Cay(H, T) be an isomorphism s.t.
f(e)=e;

m then Sf = 7 where S and T are S-partitions generated by S
and T resp.;

m " is an algebraic isomorphism between S-rings S and 7.



Klin-Poschel approach.

How to solve GIP for Cayley graphs over a finite group H.
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Klin-Poschel approach.

How to solve GIP for Cayley graphs over a finite group H.
m Find all S-rings over H. Let Aj,...., Ay be the complete list
of them;
m For all pairs i,/ find the set ®;; of algebraic isomorphisms
between them:;
m For each ¢ € ®j; find a combinatorial isomorphism f between
Aj and Aj s.t. f* = ¢ (if such f exists);

m Collect all permutations f found on the previous stage. Let P
be the set of all those permutations.

Proposition

The set P constructed above is a solving set for the Cayely graphs
over H, that is two Cayley graphs Cay(H,S) and Cay(H, T) are
isomorphic iff there exists f € P s.t. Cay(H,S) = Cay(H, T).



Example

N S-partition S |Alg(S)] | Iso(S)/ Aut(S)
transversal

1 {0}, {1,2,3,4,5,6,7} 1 11

2 {0}, {1,3,5,7}, {2,6,4} 1 41

3 {0}, {1,3,5,7,2,6}, {4} 1 1

4 {0}, {1,3,5,7}, {2,6}, {4} 1 H1

5 {0}7 {1’3’5)7}7 {2}v {6}7 {4} 2 M1, U3

6 {0}, {1,5}, {3, 7}, {2}, {6}, {4} 4 M1, 43,0, 043
7 {O}v {1’5}’ {377}7 {276}7 {4} 2 M1, 43

8 {0}, {1,3}, {5, 7}, {2,6}, {4} 2 M1, HUs

9 {O}v {1’7}’ {375}7 {276}7 {4} 2 M1, 43

10 {0}7 {1}7 {2}7 {3}7 {4}7 {5}7 {6}a {7} 4 H1, 13, U5, B7

Here o = (2,6)(3,7) and p, is an automorphism of Zg: x +— ax. Thus
{p1, 13, ps, b7, 0, oz} is a solving set for Zsg.



Solving sets for cyclic groups

Theorem
Two S-rings over cyclic groups are algebraically isomorphic iff they
coincide.
This implies the following modification of the original Klin-Poschel
approach

m Find all S-rings over Z,, let A1, ...., Ay be the complete list
of them;

m For each A; find a transversal T; of Iso(.A;)/ Aut(A;)
m Then the union of T; produces a solving set for Z,.

Theorem

Given a number n, one can construct a solving set for Z, of at
most n® permutations in time n°W).



Cl-property (L. Babai, 1976)

Definition
A Cayley (di)graph Cay(H, S) has a Cayley Isomorphism property
(Cl-property for short) iff Aut(H) is a solving set for Cay(H, S),

Vrcn Cay(H, T) = Cay(H,S) <= Focau(ny T = S7.

H is a DCl-group if every subset S has Cl-property.

H is a Cl-group if every symmetric subset S has Cl-property.
H is a CI@-group if it has Cl-property for all colored Cayley
digraphs over H.

CI® — property = DCl-property = Cl-property

Problem (L. Babai & P. Frankl, 1976)
Which are the Cl-groups?



Graph Isomorphism problem for (D)Cl-groups

Proposition

Let & be a class of (D)Cl-groups. If | Aut(H)| = |H|€ for every
H € & and some for some constant ¢, then GIP for Cayley graphs
over groups from & belongs to P.

Problem
Given two subsets S, T C Z’;, find whether there exists
¢ € Aut(ZK) such that S¥ = T.



Graph Isomorphism problem for (D)Cl-groups

Proposition

Let & be a class of (D)Cl-groups. If | Aut(H)| = |H|€ for every
H € & and some for some constant ¢, then GIP for Cayley graphs
over groups from & belongs to P.

Problem

Given two subsets S, T C Z’;, find whether there exists

¢ € Aut(ZK) such that S¥ = T.

Does there exists a polynomial (in p) algorithm which answers the
above question?

Code equivalence Problem

Two generating subsets S = {s1,...,sp}, T = {t1, ..., tn} C Z’g are
equivalent iff the linear codes with generating matrices
S = (s1]...Isn), T = (t1]...|tn) are permutation equivalent.



