Cayley schemes and Schur rings

M. Muzychuk

Ben-Gurion University of the Negev, Israel

10th PhD Summer School in Discrete Mathematics , Rogla Slovenia, June 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thin (regular) schemes.

Definition

A scheme (Ω, S) is called thin if $n_S = 1$ for each $S \in S$.

Thin (regular) schemes.

Definition

A scheme (Ω, S) is called thin if $n_S = 1$ for each $S \in S$.

Proposition

A scheme (Ω, S) is thin iff S is a regular subgroup of Sym (Ω) .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thin (regular) schemes.

Definition

A scheme (Ω, S) is called thin if $n_S = 1$ for each $S \in S$.

Proposition

A scheme (Ω, S) is thin iff S is a regular subgroup of Sym (Ω) .

Proposition

The schemes $(H, H_R), (H, H_L)$ are pairwise isomorphic thin schemes. They commute elementwise and

$$lnv(H_R) = H_L, lnv(H_L) = H_R,Aut(H_L) = H_R, Aut(H_R) = H_L,lso(H_L) = H_R Aut(H), lso(H_R) = H_L Aut(H)$$

Cayley schemes

Defintion

An association scheme which is a fusion of $(H; H_L)$ is called a Cayley scheme over H.

If (H, S) is a Cayley scheme over H, then each basic relation $S \in S$ is a Cayley graph with generating set $Se = \{h \in H \mid (h, e) \in S\}$. Notice that $Se = (eS)^{(-1)} = \{h^{-1} \mid h \in Se\}$.

Proposition. Let (H, \mathcal{R}) be a Cayley scheme. Then the set

 $\mathcal{S} := \{ Re \, | \, R \in \mathcal{R} \}$ is a partition of H with the following properties

• $\{e\} \in \mathcal{S};$

•
$$S \in S \implies S^{(-1)} \in S;$$

• for any triple $R, S, T \in S$ and any $t \in T$ the number $c_{RS}^T := |S \cap R^{(-1)}t|$ does not depend on a choice $t \in T$.

Definition. A partition S of H is called Schur partition iff

it satifies the above conditions, that is

- $\{e\} \in \mathcal{S};$
- $S \in S \implies S^{(-1)} \in S;$
- for any triple $R, S, T \in S$ and any $t \in T$ the number $c_{RS}^T := |S \cap R^{(-1)}t|$ does not depend on a choice $t \in T$.

Notice that
$$|S \cap R^{(-1)}t| = \{(x, y) \in R \times S \mid xy = t\}.$$

Proposition

Let S be a partition of H. A partition $Cay(H, S) := \{Cay(H, S) | S \in S\}$ is an association scheme iff S is a Schur partition.

Schur partitions and Schur rings (algebras)

Notation

- R[H] the group algebra over a unitary ring R.
- If $x = \sum_{h \in H} x_h h \in R[H]$, $y = \sum_{h \in H} y_h h \in R[H]$, then their group product (convolution) is $xy = \sum_{h,f \in H} x_h y_f(hf)$;
- Schur-Hadamard product $x \circ y = \sum_{h \in H} (x_h y_h) h$;
- o-idemotents have a form $\underline{S} := \sum_{s \in S} s$ where $S \subseteq H$, they are called simple quantities;
- {h} is abbreviated as h;
- if $S \vdash H$, then $\underline{S} := \langle \underline{S} | S \in S$ };
- for each $m \in \mathbb{Z}$ and $x \in R[H]$ we denote $x^{(m)} := \sum_{h \in H} x_h h^m$;

Schur partitions and Schur rings (algebras)

Proposition

Let $S \vdash H$ be s.t. $\{e\} \in S$ and $S^{(-1)} = S$. Then S is a Schur partition iff the linear span $\langle \underline{S} \rangle$ is a subalgebra of $\mathbb{Q}[H]$.

Definition

A subalgebra $\mathcal{A} \leq \mathbb{Q}[H]$ is called a Schur ring/algebra over H if there exists a Schur partition $\mathcal{S} \vdash H$ such that $\mathcal{A} = \langle \underline{\mathcal{S}} \rangle$. The elements of \mathcal{S} are called basic sets of \mathcal{A} while the elements of \mathcal{S}^{\cup} are called \mathcal{A} -(sub)sets.

Theorem

A vector space $\mathcal{A} \leq \mathbb{Q}[H]$ is a Schur ring iff $e, \underline{H} \in \mathcal{A}$ and \mathcal{A} closed w.r.t. convolution, \circ and (-1).

Generating S-ring

Proposition

If
$$\mathcal{A} = \langle \underline{\mathcal{S}} \rangle$$
 and $\mathcal{B} = \langle \underline{\mathcal{T}} \rangle$ are S-rings, then
• $\mathcal{A} \subseteq \mathcal{B} \iff \mathcal{S} \sqsubseteq \mathcal{T}$;

The intersection of all S-rings containing elements $x, y, z, ... \in \mathbb{Q}[H]$ is denoted as $\langle\!\langle x, y, z, ... \rangle\!\rangle$.

Theorem

Let $S \subseteq H$ be an arbitrary subset. Let $\mathcal{A} = \langle \langle \underline{S} \rangle \rangle$ be a Schur ring generated by \underline{S} and \mathcal{S} the corresponding S-paritition (that is $\langle \underline{S} \rangle = \mathcal{A}$). Then $\langle \langle Cay(H, S) \rangle \rangle = Cay(H, \mathcal{S})$ and $S \in \mathcal{S}^{\cup}$.

Proposition (Schur-Wielandt principle)

Let $f : \mathbb{Q} \to \mathbb{Q}$ be an arbitrary function. Then for any element $x = \sum_{h \in H} x_h h$ of an S-ring \mathcal{A} the element $f[x] := \sum_{h \in H} f(x_h) h$ also belongs to \mathcal{A} .

In the case when $f = \delta_r, r \in \mathbb{Q}$ (the Kronecker delta-function) we obtain the following

Corollary

Let \mathcal{A} be an S-ring over H and $x = \sum_{h \in H} x_h h$. If $x \in \mathcal{A}$ then for any $r \in Q$ the simple quantity $\delta_r[x] = \frac{\{h \in H \mid x_h = r\}}{\{h \in H \mid x_h = r\}}$ belongs to \mathcal{A} (equivalently, $\{h \in H \mid x_h = r\}$ is an $\overline{\mathcal{A}}$ -subset).

It's better to write $\underline{S} = \{1, 4, 7\}$ as $\underline{S} = c + c^4 + c^7$ where $c^8 = 1$.

It's better to write $\underline{S} = \underline{\{1, 4, 7\}}$ as $\underline{S} = c + c^4 + c^7$ where $c^8 = 1$. Then $\underline{S}^2 = 3c^0 + c^2 + c^6 + 2c^5 + 2c^3 \in \langle\!\langle \underline{S} \rangle\!\rangle \implies 1 = c^0 \in \langle\!\langle \underline{S} \rangle\!\rangle$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

It's better to write
$$\underline{S} = \{\underline{1, 4, 7}\}$$
 as $\underline{S} = c + c^4 + c^7$ where $c^8 = 1$.
Then $\underline{S}^2 = 3c^0 + c^2 + c^6 + 2c^5 + 2c^3 \in \langle\!\langle \underline{S} \rangle\!\rangle \implies 1 = c^0 \in \langle\!\langle \underline{S} \rangle\!\rangle$,
 $\underline{T} := c^5 + c^3, \underline{R} = c^2 + c^6 \in \langle\!\langle \underline{S} \rangle\!\rangle \implies \underline{R}^2 = 2c^0 + 2c^4 \in \langle\!\langle \underline{S} \rangle\!\rangle$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

It's better to write
$$\underline{S} = \{\underline{1, 4, 7}\}$$
 as $\underline{S} = c + c^4 + c^7$ where $c^8 = 1$.
Then $\underline{S}^2 = 3c^0 + c^2 + c^6 + 2c^5 + 2c^3 \in \langle\!\langle \underline{S} \rangle\!\rangle \implies 1 = c^0 \in \langle\!\langle \underline{S} \rangle\!\rangle,$
 $\underline{T} := c^5 + c^3, \underline{R} = c^2 + c^6 \in \langle\!\langle \underline{S} \rangle\!\rangle \implies \underline{R}^2 = 2c^0 + 2c^4 \in \langle\!\langle \underline{S} \rangle\!\rangle$
 $\implies c^4 \in \langle\!\langle \underline{S} \rangle\!\rangle \implies \langle\!\langle \underline{S} \rangle\!\rangle = \langle c^0, c + c^7, c^2 + c^6, c^3 + c^5 \rangle.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

It's better to write
$$\underline{S} = \{\underline{1, 4, 7}\}$$
 as $\underline{S} = c + c^4 + c^7$ where $c^8 = 1$.
Then $\underline{S}^2 = 3c^0 + c^2 + c^6 + 2c^5 + 2c^3 \in \langle\!\langle \underline{S} \rangle\!\rangle \implies 1 = c^0 \in \langle\!\langle \underline{S} \rangle\!\rangle,$
 $\underline{T} := c^5 + c^3, \underline{R} = c^2 + c^6 \in \langle\!\langle \underline{S} \rangle\!\rangle \implies \underline{R}^2 = 2c^0 + 2c^4 \in \langle\!\langle \underline{S} \rangle\!\rangle$
 $\implies c^4 \in \langle\!\langle \underline{S} \rangle\!\rangle \implies \langle\!\langle \underline{S} \rangle\!\rangle = \langle c^0, c + c^7, c^2 + c^6, c^3 + c^5 \rangle.$
Thus $\langle\!\langle \text{Cay}(\mathbb{Z}_8, \{1, 4, 7\}) \rangle\!\rangle = \text{Cay}(\mathbb{Z}_8, \{\{0\}, \{1, 7\}, \{2, 6\}, \{3, 5\}\}).$
In other words, the right hand side is the coherent closure of the
graph depictered below.

The following list was generated by the computer program COCO (thanks to Misha Klin).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\{0\}, \{1, 2, 3, 4, 5, 6, 7\}; \\ \{0\}, \{1, 3, 5, 7\}, \{2, 6, 4\}; \\ \{0\}, \{1, 3, 5, 7, 2, 6\}, \{4\}; \\ \{0\}, \{1, 3, 5, 7\}, \{2, 6\}, \{4\}; \\ \{0\}, \{1, 3, 5, 7\}, \{2\}, \{6\}, \{4\}; \\ \{0\}, \{1, 5\}, \{3, 7\}, \{2\}, \{6\}, \{4\}; \\ \{0\}, \{1, 5\}, \{3, 7\}, \{2, 6\}, \{4\}; \\ \{0\}, \{1, 3\}, \{5, 7\}, \{2, 6\}, \{4\}; \\ \{0\}, \{1, 7\}, \{3, 5\}, \{2, 6\}, \{4\}; \\ \{0\}, \{1, 7\}, \{3, 5\}, \{2, 6\}, \{4\}; \\ \{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}; \\ \}$$

Proposition

Let $F \leq \operatorname{Aut}(H) \leq \operatorname{Sym}(H)$. Then the orbit partition $\operatorname{Orb}(F, H)$ is a Schur partition. The corresponding S-ring coincides with $\mathbb{Q}[H]^F$.

Partial cases

- F = Inn(H) ⇒ Z(ℚ[H]) is an S-ring. Its basic sets coincide with conjugacy classes of H. Fusion S-rings of Z(ℚ[H]) are in one-to-one correspondence with supercharacters introduced recently by Isaacs et. el.
- let *R* be a ring, H = (R, +) and $K \le R^{\times}$. The corresponding S-ring $\mathbb{Q}[H]^{K}$ is called cyclotomic. Its basic sets have a form $Kr, r \in R$.

Proposition (subgroup S-rings)

 \mathcal{L} be a sublattice of a subgroup lattice of H which contains $\{e\}$ and H. If any two subgroup $K, L \in \mathcal{L}$ are permutable, then $\langle \underline{L} \rangle_{L \in \mathcal{L}}$ is a Schur ring.

Hecke algebras

Let $K \leq H$ be an abritrary subgroup and $S = \{KhK \mid h \in H\}$ be a partition of H into double cosets of K. The linear span \underline{S} is known as Hecke algebra w.r.t. K. It is closed w.r.t. $(-1), \circ, \cdot$ but doesn't contain 1.

Properties of S-rings

Proposition

Let S be a Schur partition of H and Cay(H, S) the corresponding Cayley scheme. Then $Cay(H, S)^{\cup} = Cay(H, S^{\cup})$ and

 \blacksquare the set \mathcal{S}^{\cup} is closed w.r.t. boolean operations;

•
$$\{e\}, H \in \mathcal{S}^{\cup};$$

•
$$(\mathcal{S}^{\cup})^* = \mathcal{S}^{\cup};$$

■ *S* is closed w.r.t. group product;

$$S \in \mathcal{S}^{\cup} \implies \langle S
angle \in \mathcal{S}^{\cup};$$

A relation $E = Cay(H, S), S \in S^{\cup}$ is an equivalence iff S is a subgroup of H.

Definition

A subgroup $F \leq H$ is called an A-subgroup if $\underline{F} \in A$. An S-ring is called primitive iff $\{e\}, H$ are the only A-subgroups.

Theorem (Schur)

Let *H* be a group and $H_R \leq G \leq \text{Sym}(H)$. Then the orbits of G_e form an S-partition.

Proof.

Set S := Inv(G). Then $H_R \leq G \implies S \sqsubseteq Inv(H_R) = H_L$. Thus S is a Cayley scheme. Hence $eS = \{eS \mid S \in S\}$ is a Schur partition of H. Since S is schurian, $eS = Orb(G_e, H)$.

An S-partition is called Schurian if it has a form $Orb(G_e, H)$ for some G, $H_R \leq G \leq Sym(H)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Schur)

Let G = AH be a factorization into a subgroup product with $A \cap H = \{e\}$. Then the subalgebra

$$\mathbf{C}_{\mathbb{Q}[H]}(\underline{A}) := \{ x \in \mathbb{Q}[H] \, | \, x\underline{A} = \underline{A}x \}.$$

is a Schur ring the basic sets of which have the form $AhA \cap H$.

A concrete example

A simple group $PSL_3(2)$ has a decomposition into a product AH where $A \cong D_8$ and $H \cong F_{21}$. The corresponding S-ring over H has rank six and its Cayley scheme is isomorphic to a flag scheme of a projective plane of order 2.

Let $S \vdash H$ and $T \vdash K$ be two S-partitions of groups H and K resp. The S-rings $\mathcal{A} := \langle \underline{S} \rangle, \mathcal{B} := \langle \underline{T} \rangle$ are

- Cayley isomorphic, notation ≅_{Cay}, if there exists a group isomorphism f : H → K s.t. S^f = T;
- combinatorially isomorphic if the schemes Cay(H,S) and Cay(K,T) are isomorphic (as schemes);
- algebraically isomorphic if the schemes Cay(*H*, *S*) and Cay(*K*, *T*) are algebraically isomorphic.

In what follows we abbreviate

 $\operatorname{Aut}(\mathcal{A}) := \operatorname{Aut}(\operatorname{Cay}(H, \mathcal{S})), \operatorname{Iso}(\mathcal{A}) := \operatorname{Iso}(\operatorname{Cay}(H, \mathcal{S})).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Isomorphisms between S-rings

Proposition

 $\mathcal{A} \cong_{alg} \mathcal{B}$ iff there exists a bijection $f : \mathcal{S} \to \mathcal{T}$ s.t. $c_{PQ}^{R} = c_{PfQf}^{R^{t}}$.

Proposition

 $\mathcal{A} \cong_{com} \mathcal{B}$ iff there exists a bijection $f : H \to K$ s.t. $(e_H)^t = e_K$ and

- for any $h \in H$ and $S \in S$ it holds that $(hS)^f = h^f S^f$;
- $\bullet \ \mathcal{S}^f = \mathcal{T};$

• $f|_{\mathcal{S}}$ is an algebraic isomorphism between \mathcal{A} and \mathcal{B}

$$\mathcal{A} \cong_{Cay} \mathcal{B} \Rightarrow \mathcal{A} \cong \mathcal{B} \Rightarrow \mathcal{A} \cong_{alg} \mathcal{B}.$$
$$\mathcal{A} \cong_{Cay} \mathcal{B} \notin \mathcal{A} \cong \mathcal{B} \notin \mathcal{A} \cong_{alg} \mathcal{B}.$$

- Let $f : Cay(H, S) \rightarrow Cay(H, T)$ be an isomorphism s.t. f(e) = e;
- then S^f = T where S and T are S-partitions generated by <u>S</u> and <u>T</u> resp.;

• f^* is an algebraic isomorphism between S-rings \underline{S} and \underline{T} .

Klin-Pöschel approach.

How to solve GIP for Cayley graphs over a finite group H.

How to solve GIP for Cayley graphs over a finite group *H*.Find all S-rings over *H*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

■ Find all S-rings over *H*. Let *A*₁, ..., *A*_N be the complete list of them;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

■ Find all S-rings over *H*. Let *A*₁, ..., *A*_N be the complete list of them;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 For all pairs *i*, *j* find the set Φ_{ij} of algebraic isomorphisms between them;

- Find all S-rings over *H*. Let *A*₁, ..., *A*_N be the complete list of them;
- For all pairs *i*, *j* find the set Φ_{ij} of algebraic isomorphisms between them;
- For each $\phi \in \Phi_{ij}$ find a combinatorial isomorphism f between A_i and A_j s.t. $f^* = \phi$ (if such f exists);

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Find all S-rings over *H*. Let *A*₁, ..., *A*_N be the complete list of them;
- For all pairs *i*, *j* find the set Φ_{ij} of algebraic isomorphisms between them;
- For each $\phi \in \Phi_{ij}$ find a combinatorial isomorphism f between A_i and A_j s.t. $f^* = \phi$ (if such f exists);
- Collect all permutations f found on the previous stage. Let P be the set of all those permutations.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Find all S-rings over *H*. Let *A*₁, ..., *A*_N be the complete list of them;
- For all pairs *i*, *j* find the set Φ_{ij} of algebraic isomorphisms between them;
- For each $\phi \in \Phi_{ij}$ find a combinatorial isomorphism f between A_i and A_j s.t. $f^* = \phi$ (if such f exists);
- Collect all permutations f found on the previous stage. Let P be the set of all those permutations.

Proposition

The set *P* constructed above is a solving set for the Cayely graphs over *H*, that is two Cayley graphs Cay(H, S) and Cay(H, T) are isomorphic iff there exists $f \in P$ s.t. $Cay(H, S)^f = Cay(H, T)$.

Example

N	S-partition ${\cal S}$	$ Alg(\mathcal{S}) $	$Iso(\mathcal{S})/Aut(\mathcal{S})$
			transversal
1	$\{0\}, \{1, 2, 3, 4, 5, 6, 7\}$	1	μ_1
2	$\{0\}, \{1,3,5,7\}, \{2,6,4\}$	1	μ_1
3	$\{0\}, \{1, 3, 5, 7, 2, 6\}, \{4\}$	1	μ_1
4	$\{0\}, \{1,3,5,7\}, \{2,6\}, \{4\}$	1	μ_1
5	$\{0\}, \{1, 3, 5, 7\}, \{2\}, \{6\}, \{4\}$	2	μ_1,μ_3
6	$\{0\}, \{1,5\}, \{3,7\}, \{2\}, \{6\}, \{4\}$	4	$\mu_1, \mu_3, \sigma, \sigma\mu_3$
7	$\{0\}, \{1,5\}, \{3,7\}, \{2,6\}, \{4\}$	2	μ_1, μ_3
8	$\{0\}, \{1,3\}, \{5,7\}, \{2,6\}, \{4\}$	2	μ_1, μ_5
9	$\{0\}, \{1,7\}, \{3,5\}, \{2,6\}, \{4\}$	2	μ_1, μ_3
10	$\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}$	4	$\mu_1, \mu_3, \mu_5, \mu_7$

Here $\sigma = (2,6)(3,7)$ and μ_a is an automorphism of \mathbb{Z}_8 : $x \mapsto ax$. Thus $\{\mu_1, \mu_3, \mu_5, \mu_7, \sigma, \sigma\mu_3\}$ is a solving set for \mathbb{Z}_8 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Solving sets for cyclic groups

Theorem

Two S-rings over cyclic groups are algebraically isomorphic iff they coincide.

This implies the following modification of the original Klin-Pöschel approach

- Find all S-rings over Z_n, let A₁,...,A_N be the complete list of them;
- For each A_i find a transversal T_i of $Iso(A_i) / Aut(A_i)$
- Then the union of T_i produces a solving set for \mathbb{Z}_n .

Theorem

Given a number *n*, one can construct a solving set for \mathbb{Z}_n of at most n^3 permutations in time $n^{O(1)}$.

Cl-property (L. Babai, 1976)

Definition

A Cayley (di)graph Cay(H, S) has a Cayley Isomorphism property (CI-property for short) iff Aut(H) is a solving set for Cay(H, S),

$$\forall_{T\subseteq H} \operatorname{Cay}(H,T) \cong \operatorname{Cay}(H,S) \iff \exists_{\varphi \in \operatorname{Aut}(H)} T = S^{\varphi}$$

H is a DCI-group if every subset *S* has CI-property. *H* is a CI-group if every symmetric subset *S* has CI-property. *H* is a $CI^{(2)}$ -group if it has CI-property for all colored Cayley digraphs over *H*.

$$CI^{(2)}$$
 – property \implies DCI-property \implies CI-property

(日本)(同本)(日本)(日本)(日本)

Problem (L. Babai & P. Frankl, 1976)

Which are the CI-groups?

Graph Isomorphism problem for (D)Cl-groups

Proposition

Let \mathfrak{G} be a class of (D)Cl-groups. If $|\operatorname{Aut}(H)| = |H|^c$ for every $H \in \mathfrak{G}$ and some for some constant c, then GIP for Cayley graphs over groups from \mathfrak{G} belongs to **P**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Problem

Given two subsets $S, T \subseteq \mathbb{Z}_p^k$, find whether there exists $\varphi \in \operatorname{Aut}(\mathbb{Z}_p^k)$ such that $S^{\varphi} = T$.

Graph Isomorphism problem for (D)CI-groups

Proposition

Let \mathfrak{G} be a class of (D)Cl-groups. If $|\operatorname{Aut}(H)| = |H|^c$ for every $H \in \mathfrak{G}$ and some for some constant c, then GIP for Cayley graphs over groups from \mathfrak{G} belongs to **P**.

Problem

Given two subsets $S, T \subseteq \mathbb{Z}_p^k$, find whether there exists $\varphi \in \operatorname{Aut}(\mathbb{Z}_p^k)$ such that $S^{\varphi} = T$. Does there exists a polynomial (in p^k) algorithm which answers the above question?

Code equivalence Problem

Two generating subsets $S = \{s_1, ..., s_n\}, T = \{t_1, ..., t_n\} \subseteq \mathbb{Z}_p^k$ are equivalent iff the linear codes with generating matrices $S = (s_1|...|s_n), T = (t_1|...|t_n)$ are permutation equivalent.