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Motivation of the problem

Definition
A blocking set in an incidence structure is a set of points which
intersects each line.

In hypergraph terminology, they are called 1-covers. Considered
also in configurations.
First, blocking sets were studied in projective planes.

Proposition
In Πq any blocking set has at least q + 1 points. In case of equality,
the blocking set is a line.

In projective planes, a blocking set is called trivial if it contains a
line.
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Some early results

For projective planes we have the following results (Bruen’s bound).

Theorem (Bruen; Pelikán)

For a non-trivial blocking set of Πq we have |B| ≥ q +
√
q + 1, and

in case of equality we have a subplane of order
√
q (Baer subplane).

For the plane PG(2, q) much better results are known.

Theorem (Blokhuis)

Let B be a non-trivial blocking set of PG(2, q). If q is a prime,
then |B| ≥ 3(p + 1)/2. If q = ph, is not a prime and h is odd, then
|B| ≥ q +

√
pq + 1.
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Small blocking sets

For general planes Πq, Bruen’s bound is improved by 1
(BIERBRAUER), by 2 only for special blocking sets (of Rédei type)
by DRAKE, KITTO.

Definition
A blocking set in PG(2, q) is small, if its size is ≤ 3(q + 1)/2.

Small minimal blocking sets have some structure: there is an e
such that lines intersect them in 1 modulo pe points (SzT), and the
largest such e divides h if q = ph (SZIKLAI).
There are also examples of small blocking sets coming from linear
sets. LUNARDON, POLVERINO, POMPEO. Many other people,
including MICHEL LAVRAUW study linear sets (there is a Belgian
and an Italian group).
Big open question (SZIKLAI): are all small minimal blocking sets
linear?
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Upper bounds

Definition
A blcking set is minimal if it contains no proper subset which is a
blocking set: geometrically, this means that there is a tangent at
each point.

Theorem (BRUEN-THAS)

The size of a minimal blocking set in Πq is at most q
√
q + 1.

For q a square, it can be sharp (in case of equality, we have a
unital; lines meet it in 1 or

√
q pts).

For q not a square it can be slightly improved, see Cossidente,
Gács, Mengyán, Siciliano, SzT, Weiner.

Proposition
Let s denote the fractional part of

√
q and let B be a minimal

blocking set in Πq, q ≥ 53. Then |B| ≤ q
√
q + 1− 1

4s(1− s)q.
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More results in this direction

We remark that in the previous proposition for q = 5, the vertexless
triangle is the largest minimal blocking set. Essentially, the result is
true also for q < 53, except for q = 26.
The upper bound is extended to sets having a tangent at each of
its points (so-called tangency sets, see later), by Illés, SzT, Wettl
(related to a question of Gyárfás on the strong chromatic index of
graphs).
The upper bound can also be proved using interlacing eigenvalues
(HAEMERS).
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Examples of (large min.) blocking sets

There are some constructions for blocking sets of size between
3(q + 1)/2 and 3q but relatively few larger examples are known
(especially when q is not a square), for example when q is prime. In
that case the largest examples come from cliques in the Paley
graph (for q ≡ 1 modulo 4). The examples have size far from q

√
q,

q4/3 for q a cube.
A beautiful result of GÁCS shows that for Rédei type blocking sets
the size is at least roughly 5q/3, if q is a prime. There are very
good results for Rédei type blocking set: BLOKHUIS, BALL,
BROUWER, STORME, SzT; BALL.
One natural question is then to find the second largest minimal
blocking set. Not much is known about it. BLOKHUIS, METSCH:
in PG(2, q) there are no min.bl.set of size q

√
q.

What to expect? Add a point to the (classical) unital and delete its
feet (the points where the tangents meet the unital). This way we
can get min. bl. sets of size q

√
q −√q + 2.
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Some open questions

Let me mention some open questions about possible sizes of
minimal blocking set. In some cases the answer is not known even
for PG(2, q).

1 (Erdős) Is there a constant C such that there is a blocking set
in any Πq meeting every line in at most C points?

2 Improve the combinatorial bounds on the smallest and the
largest minimal blocking set!

3 Given a constant C , is there a minimal blocking set of size
roughly Cq in PG(2, q)?

4 Given an exponent 1 < s < 3/2, is there a minimal blocking
set of size roughly qs in PG(2, q)?
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Partial unitals

A set U of points in the projective plane of order q is called a
partial unital, if (1) every point of U lies on at least one tangent
line, (2) no line contains more than

√
q + 1 points of U, and (3)

there is at least one line meeting U in
√
q + 1 points.

Theorem (BALL)

If a partial unital in PG(2, q) has more than q
√
q + 1−√q points,

then it must be a subset of a unital.

So, we cannot get (very) large minimal blocking sets by locally
modifying unitals.
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Our main result

We will only work in Galois planes of square order, namely in
PG(2, q2).

Theorem (WEINER, SZT)

Let B be a point set of size at most p3 + 1− (p − 3)/2 in
PG(2, p2), p > 67. Suppose that through each point of B there
pass at least one 1-secant (tangent), in other words B is a tangeny
set. Then B can be embedded in a unital.

We can also extend the result for general q = ph, p > 7, h > 1
(with the same difference (p − 3)/2).
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Combinatorial properties

Let B be a set of points in PG(2, q2). Furthermore, let
`1, `2, . . . , `q4+q2+1 be the lines of PG(2, q2) and let ni = |`i ∩ B|,
i = 1, 2, . . . , q4 + q2 + 1, be their intersection numbers with B .
The standard double counting arguments give the following
equations for the integers ni :
(1)

∑
i ni = |B|(q2 + 1),

(2)
∑

i ni (ni − 1) = |B|(|B| − 1).
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Further combinatorial properties

Lemma

Let B be a set of q3 + 1− ε points in PG(2, q2). Then∑
i

(ni − (q + 1))2 = q5 + (ε+ 1)q2 + 2εq + ε2. (1)

Definition

The point set B is a tangency set, if there exists at least one line (a
tangent) containing exactly one point from B . If we choose
precisely one tangent line at each point of B then we call them the
guaranteed tangents.
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Line-intersections

Lemma

Let B be a set of q3 + 1− ε points in PG(2, q2). Assume that B is
a tangency set and suppose also that `1, `2, . . . , `|B| are the
1-secants guaranteed by Definition 12. Then∑

|B|<i

(ni − (q + 1))2 = 2εq2 + 2εq + ε2. (2)

When ε is not too large, this means that except the “compulsory"
1-secants, most of the lines contain exactly (q + 1) points from B .
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Stability of k modulo p sets in PG(2, p)

Result (WEINER, SZT; JCT A, 2018)

Let M be a multiset in PG(2, q), 17 < q, so that the number of
lines intersecting it in not k mod p points is δ, where
δ < (b√qc+ 1)(q + 1− b√qc). Then the number of not k mod p
secants through any point is at most

√
q + 1 or at least q −√q.

Property

LetM be a multiset in PG(2, q), q = ph, where p is prime.
Assume that there are δ lines that intersectM in not k mod p
points. If, through a point Q, there are more than q/2 lines
intersectingM in not k mod p points, then there exists a value
r 6≡ k (mod p) such that more than 2 δ

q+1 + 5 of the lines through
Q meetM in r mod p points.

T. Szőnyi Large blocking sets



The general stability result

Result (WEINER-SZT; JCT A, 2018)

LetM be a multiset in PG(2, q), 17 < q, q = ph, where p is
prime. Assume that the number of lines intersectingM in not k
mod p points is δ, where δ < (b√qc+ 1)(q + 1− b√qc). Assume
furthermore, that Property 15 holds. Then there exists a multiset
M′ with the property that it intersects every line in k mod p points
and the number of different points whose mod p multiplicity is
different inM and inM′ is exactly d δ

q+1e.
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Some comments

In the original paper by Weiner and SzT (JCTA, 2018), the above
result was phrased in a little bit different manner. The number of
points we have to modify in order to obtain the multisetM′ from
M was given by the number of points in (M∪M′) \ (M∩M′),
which is a bit confusing when we speak about multisets.
Since in our paper the order of the plane is denoted by q2, in
Property 15, we have to replace q by q2 everywhere. Similarly, in
Result 14 and Result 16, the bound on δ is q3 + 1. The number of
not k mod p secants through any point is at most q + 1 or at least
q2 − q (Result 14) and the number of modified points in Result 16
is d δ

q2+1e. Remark that we can use the results above when q > 4
(in PG(2, q2)).
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Embedding in a 1 mod p multiset

Proposition

Let B be a point set of size q3 + 1− ε in PG(2, q2), q = ph.
Assume that p ≥ 67 if h = 1 and q > 4 otherwise. Suppose that
2εq2 + 2εq + ε2 < q3 + 1. Assume also that B is a tangency set.
Then there exists a multiset N containing at most 2ε+ 2 different
points, so that adding it to B , we get a multiset B∗ intersecting
every line in 1 mod p points.

We can verify the above Property 15 using the pigeon hole principle.
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Modified points

Definition

The points in N will be called modified points. The multiplicity mP

of a point in N is the multiplicity mentioned in Proposition 17.
Hence B ∪N with multiplicities is the multiset B∗. From now on,
we will assume that for the multiplicity mP of a point P in N , we
have −p−1

2 ≤ mP ≤ p−1
2 .

Corollary

Through a point P ∈ N , there pass at least q2 − 2ε lines, which
are not 1 mod p secants of B . Also, through a point Q 6∈ N , there
pass at most 2ε+ 2 lines, which are not 1 mod p secants of B .
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Bounds on multiplicities

Lemma

Assume that ε < p/2. For the multiplicities mPi
of the points Pi in

N , we have ∑
Pi∈N

m2
Pi
≤ 2ε+ 3.

Hence
∑

Pi∈N |mPi
| ≤ 2ε+ 3.

Lemma

A tangent line to B must be tangent to B∗.

Lemma

The size of B∗ is either q3 + 1 or q3 + 1− p.
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The prime-square case

Theorem

Let B be a tangency set of size p3 + 1− ε in PG(2, p2), p ≥ 67
and 2ε+ 5 ≤ p. Then B is contained in a unital.

A unital is a minimal blocking set and so the next corollary is a
straightforward consequence of Theorem 23.

Corollary

The largest minimal blocking set in PG(2, p2), p ≥ 67, which is not
a unital, has size at most p3 + 1− (p − 3)/2.

In order to prove Theorem 23, we will show that B∗ (from the
previous section) is a unital.

Lemma

There is no point in B∗ with multiplicity less than 0.
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Embedding in a unital

Corollary

The size of B∗ is p3 + 1.

Lemma

The points of B are in B∗.

Lemma

The points of B∗ have multiplicity 1.
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General case: the crucial counting lemma

Lemma

Let P be a point with multiplicity mP in N and denote the lines
through P by ei , i = 1, . . . , q + 1. Lines intersect B∗ in 1 mod p
points, hence |ei ∩ B∗| = q + 1 + rip for some integer ri . Assume
that for the index set J ⊂ {1, . . . , q + 1},

∑
j∈J |rj | = A. If

A ≥ |J|, then
(1)

∑
j∈J(q + 1− |B ∩ ej |)2 ≥

A(p − |mP |)2 − 2(p − |mP |)(p − 2− |mP |),
(2)

∑
j∈J(q + 1− |B ∩ ej |)2 ≥ (A− n)(p − |mP |)2, where n is the

number of lines ri containing at least one point from N \ {P}.
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Another useful counting lemma

Lemma

Let P be a point with multiplicity mP in N and denote the lines
through P by ei , i = 1, . . . , q + 1. Lines intersect B∗ in 1 mod p
points, hence |ei ∩ B∗| = q + 1 + rip for some integer ri . Let aP be
1 if P ∈ B and 0 otherwise, and let L be the set of tangent lines
which was guaranteed by Definition 12. Then

(1)
∑

i :ri<0,ei /∈L |ri | ≥
|mP |q2

p , when mP ≤ −1,

(2)
∑

i :ri>0,ei /∈L |ri | ≥
(mP+aP−1)q2−q−p

p , when mP + aP ≥ 2.
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General case: the steps

Proposition

The points in N have multiplicity 1 and N ∩ B = ∅.

Theorem

Let B be a tangency set of size q3 + 1− ε, in PG(2, q2), 0 < ε,
q = ph, p > 7, h > 1 and 2ε+ 5 ≤ p. Then B is contained in a
unital.

Corollary

The largest minimal blocking set in PG(2, q2), q = ph, p > 7,
h > 1, which is not a unital, has size at most
q3 + 1− (p − 3)/2.
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The end

Thank you for your attention!
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