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Coherent algebras (D. Higman) = Cellular algebras
(Weisfeiler-Leman)

Notation.

Let A,B ∈ MΩ(F) be arbitrary matrices. We denote by

AB (or A · B) the usual matrix product;

A ◦ B the Schur-Hadamard (component-wise) product, i.e.
(A ◦ B)αβ := AαβBαβ;

A> the transposed of A;

IΩ the identity matrix;

JΩ the all one matrix.

Proposition

The algebra (MΩ(F), ◦) is a commutative associative algebra with
identity JΩ. It is isomorphic to Fn where n = |Ω|2.
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Idempotents

Let (A, ?) be finite dimensional algebra over field F.

e ∈ A, e 6= 0 is called ?-idempotent iff e ? e = e;

idempotents e, f are orthogonal if e ? f = f ? e = 0;

idempotent e is minimal if it is not a sum e = e1 + e2 of
pairwise orthogonal idempotents e1, e2;

a matrix E ∈ MΩ(F) is ·-idempotent iff it’s similar to a
(0, 1)-diagonal matrix;

a matrix E ∈ MΩ(F) is ◦-idempotent iff it’s (0, 1)-matrix, that
is E = A(S) is the adjacency matrix of some S ⊆ Ω2, where

A(S)αβ :=

{
1 (α, β) ∈ S ;
0 (α, β) 6∈ S

Exercise. Prove that a symmetric matrix is · and ◦ idempotent iff
it’s (0, 1)-diagonal matrix.
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Coherent (cellular) algebras.

Definition.

A subspace A ≤ MΩ(F) is called a coherent (or cellular) algebra if
it contains IΩ, JΩ and is closed with respect to ·, ◦,>. The
numbers dim(A) and |Ω| are called the rank and the degree of A.

Examples

〈IΩ, JΩ〉 - the trivial CA;

MΩ(F) - the discrete CA.

Proposition

Let X = (Ω, C) be a coherent configuration. Then the linear span
F[C] := 〈A(C )〉C∈C is a coherent algebra of dimension |C|. It is
called the adjacency (or Bose-Mesner) algebra of X .
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Adjacency algebra of a coherent configuration.

The basis A(C ),C ∈ C is called the standard basis of F[C]. The
structure constants of the algebra F[C] with respect to the
standard basis coincide with the intersection numbers of X , i.e.

A(S)A(T ) =
∑
R∈C

cRSTA(R)

Notice that the standard basis matrices A(S),S ∈ C are
(0, 1)-matrices, or, equivalently, they are minimal ◦-idempotents.

Theorem

Every coherent algebra A ≤ MΩ(F) has a unique basis consisting
of minimal ◦-idempotents which are pairwise orthogonal. If
char(F) = 0 then A is the adjacency algebra of a uniquely
determined coherent configuration.
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Proof of the Theorem

Since A is a ◦-subalgebra of (MΩ(F), ◦) ∼= (Fn, ◦), n = |Ω|2, we
start with the following

Lemma

Let A be a k-dimensional subalgebra of (Fn, ◦). Then there exists
a unique basis A1, ...,Ak of A consisting of minimal, pairwise
orthogonal, ◦-idempotents. Each ◦-idemoptent of A is a
(0, 1)-linear combination of A1, ...,Ak and A1 + ...+ Ak is the unit
of A.



Proof of the Theorem (the end)

Ai = A(Ri ),Ri ⊆ Ω2;

i 6= j =⇒ Ai ◦ Aj = 0 =⇒ Ri ∩ Rj = ∅;∑k
i=1 Ai = JΩ =⇒

⋃
i Ri = Ω2;

IΩ =
∑

i Ai =⇒ 1Ω =
⋃

i Ri ;

A>i = Aj =⇒ R∗i = Rj ;

AiAj =
∑

k c
k
ijAk for some ckij ∈ F;

(AiAj)αβ = ckij where k is defined by (α, β) ∈ Rk ;

if char(F) = 0, then
(AiAj)αβ = |αRi ∩ Rjβ| =⇒ |αRi ∩ Rjβ| = ckij .
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Isomorphisms between coherent algebras

Definition

Given two coherent algebras A ≤ MΩ(F),A′ ≤ MΩ′(F), a linear
bijection L : A → A′ is called an (algebraic) isomorphism iff

L(XY ) = L(X )L(Y );

L(X ◦ Y ) = L(X ) ◦ L(Y );

L(X>) = L(X )>.

Proposition

Let L : F[C]→ F[C̃] be an algebraic isomorphism between the
adjacency algebras of co.co.s C and C̃. Then there exists a
bijection ϕ : C → C̃ such that L(A(C )) = A(Cϕ) and cTRS = c̃T

ϕ

RϕSϕ .

Vice versa, any bijection ϕ : C → C̃ satisfying the above equations
extends uniquely up to an algebraic isomorphism between F[C] and
F[C̃]. We’ll call it an algebraic isomorphism between the co.co.s.
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Properties of algebraic isomorphisms

Proposition

Let ϕ : C → C̃ be an algebraic isomorphism between the co.co.s
X = (Ω, C) and X̃ = (Ω̃, C̃). Then

(RS)ϕ = RϕSϕ for any R,S ∈ C∪

for each fiber ∆ of X there exists a unique fiber ∆′ of X ′ such
that (1∆)ϕ = 1∆′ , that is ϕ induces a bijection between fibres;

S ∈ C =⇒ D(Sϕ) = D(S)ϕ,R(Sϕ) = R(S)ϕ;

|nCϕ | = |nC | for each C ∈ C;

|∆ϕ| = |∆| for any ∆ ∈ Φ(X );



Isomorphisms between coherent algebras

Proposition

For each f ∈ Iso(X ,X ′) the mapping f ∗ is an algebraic
isomorphism between the configurations. In this case we say that
f ∗ is an algebraic isomorphism induced by a combinatorial one.

All algebraic automorphisms of a co.co. X = (Ω, C) form a group
(a subgroup of Sym(C)) denoted as Alg(X ) or Alg(C). Notice that
Iso(X )/Aut(X ) ↪→ Alg(X ).

Proposition

Let A ≤ Alg(X ). Then the subspace
Q[C]A := {x ∈ Q[C] | ∀a∈A xa = x}

is a coherent algebra. The corresponding coherent conguration is
denoted as CA. It is called an algebraic fusion of C.



Coherent closure.

Proposition. Let X = (Ω, C) and X ′ = (Ω, C′) be coherent
configurations. Then

F[C] ⊆ F[C′] ⇐⇒ C v C′;
F[C] ∩ F[C′] = F[C ∧ C′] =⇒ C ∧ C′ is a coherent
configuration.

Notice that the sum of coherent algebras is not necessarily
coherent algebra.

Proposition

Let A1, ...,Am ∈ MΩ(F) be an arbitrary sequence of matrices. The
intersection of all coherent algebras containing A1, ...,Am is a
coherent algebra too, called the coherent closure of A1, ...,Am and
denoted as 〈〈A1, ...,Am〉〉.



Computing coherent closure by WL-algortihm.

Definition

Given a sequence M1, ...,Mk ∈ MΩ(F) of matrices. We define a
partition P(M1, ...,Mk) of Ω2 via the following equivalence relation

(α, β) ∼ (γ, δ) ⇐⇒ ∀1≤i≤k (Mi )αβ = (Mi )γδ

Proposition

If X = (Ω, C) is a coherent configuration, then P(M1, ...,Mk) v C
for any tuple M1, ...,Mk ∈ F[C].

Proposition. Let X = (Ω, C) be a co.co. and S ` Ω2. Then

S v C =⇒ Y(S) v C (follows from Y(S) v Y(C) and
Y(C) = C)
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Computing coherent closure by WL algortihm.

Input: A1, ...,Ak ∈ MΩ(F),

Output: the coherent closure 〈〈A1, ...,Ak〉〉;
Compute S0 := P(A1, ...,Ak ,A

>
1 , ...,A

>
k , IΩ);

Starting from S := S0 apply WL-stabilization procedure
S → Y(S) until S = Y(S).

Theorem

The WL-algorithm produces the coherent closure of the matrices
A1, ...,Ak .

Proof. Let C denote the underlying coherent configuration of
〈〈A1, ...,Ak〉〉, i.e. 〈〈A1, ...,Ak〉〉 = Q[C]. Then



A1, ...,Ak ,A
>
1 , ...,A

>
k , IΩ ∈ Q[C] =⇒ S0 v C

Let Si := Y(Si−1), i = 1, ...,m be the sequence of parititions
generated by WL-algorithm (thus |Sm+1| = |Sm|);

since S∗i−1 = Si−1 and 1Ω ∈ S∪i−1, we obtain

S∗i = Si , Si−1 v Si =⇒ 1Ω ∈ S∪i ,Sm+1 = Sm;

Si−1 v C =⇒ Si v C;

Sm v C =⇒ Sm = C.



Canonical ordering

Proposition

Let ~S = (S1, ...,Sm) and ~T = (T1, ...,Tm) be ordered partitions of
Ω2 and ∆2 resp. Let 〈〈 ~S〉〉 = (P1, ...,Pk) and 〈〈~T 〉〉 = (Q1, ...,Q`)
be the canonical ordering of the coherent closures produced by
WL-algorithm. If there exists an isomorphism f : Ω→ ∆ such that
S f
i = Ti , then k = ` and P f

i = Qi , i = 1, ..., k . In particular, the
mapping Pi 7→ Qi is an algebraic isomorphism between the co.co.s
〈〈S〉〉 and 〈〈T 〉〉.

Reformulation of the GI

Given an algebraic isomoprhism between the coherent
configurations S and T . Find whether it is induced by a
combinatorial one.



Association schemes.

Association scheme.

A pair (Ω, S) where S ` Ω2 is an association scheme
(=homogeneous coherent configuration) iff

1Ω ∈ S;

S∗ = S;

Y(S) = S

Recall that the intersection numbers are

∀S,R,T∈S ∀(α,β)∈T |αS ∩ Rβ| = cTRS .

The number nS := c1Ω
SS∗ = |ωS | is called the valency of S .



Elementary properties of schemes.

Proposition

the set S∪ is closed w.r.t. boolean operations;

1Ω,Ω
2 ∈ S∪;

(S∪)∗ = S∪;

S is closed w.r.t. relational product =⇒ ∀`∈N∀S∈S S` ∈ S∪;

each relation R ∈ S∪ is regular;

for any S ∈ S there exists m s.t. 1Ω ⊆ Sm;

for any S ∈ S there exists m s.t. S∗ ⊆ Sm;
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Elementary properties of schemes.

Definition

A scheme is called symmetric (antisymmetric) if every S 6= 1Ω is
symmetric ( anti-symmetric, resp.). A scheme is called
commutative if its adjacency algebra is commutative.

Proposition

A symmetric scheme is always commutative.

Proposition

Let (Ω,S) be a scheme. Then∑
S∈S nS = |Ω|;

2 ≤ |S| ≤ |Ω|;
|S| = 2 ⇐⇒ S = {1Ω,Ω

2 \ 1Ω};
|S| = |Ω| ⇐⇒ ∀S∈SnS = 1
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Primitive and Imprimitive schemes

Definition

A scheme (Ω,S) is called imprimitive if S∪ contains a non-trivial
and non-discrete equivalence relation E . The equivalence classes
ωE , ω ∈ Ω form a partition of Ω called imprimitivity system of S.

Proposition

If E ∈ S∪ is an equivalence. Then |Ω/E | · nE = |Ω|.

Proposition

The following are equivalent

S is imprimitive;

∃ S ∈ S,S 6= 1Ω s.t S+ 6= Ω2;

∃ T ⊂ S, 1 < |T | < |S| s. t. 〈A(T )〉T∈T is a subalgebra of
Q[S]



Schurian schemes

Recall that a scheme (Ω,S) is schurian iff there exists
G ≤ Sym(Ω) s.t. S = Inv(G ).

G is transitive on Ω;

ωS is an orbit of Gω for each ω ∈ Ω and S ∈ S;

the mapping S 7→ {g ∈ G |ωg ∈ ωS} is a bijection between
the basic relations of S and double cosets of Gω.

a rescaling of the above mapping is an isomorphism between
the adjacency algebra F[S] and the Hecke algebra
F(Gω\G/Gω);

G is primitive iff Inv(G ) is primitive.


