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Coherent algebras (D. Higman) = Cellular algebras
(Weisfeiler-Leman)

Let A, B € Mq(FF) be arbitrary matrices. We denote by
m AB (or A- B) the usual matrix product;

m Ao B the Schur-Hadamard (component-wise) product, i.e.
(Ao B)ap = AapBag;

m AT the transposed of A;

m /g the identity matrix;

m Jg the all one matrix.
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The algebra (Mq([F), o) is a commutative associative algebra with
identity Jq. It is isomorphic to F” where n = |Q|2.
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Let (A, x) be finite dimensional algebra over field F.

mec A e=#0is called x-idempotent iff e x e = ¢;

m idempotents e, f are orthogonal if exf =f xe =0;

m idempotent e is minimal if it is not a sum e = e; + & of
pairwise orthogonal idempotents ey, e;

m a matrix E € Mq(F) is --idempotent iff it's similar to a
(0, 1)-diagonal matrix;

m a matrix E € Mq(F) is o-idempotent iff it's (0, 1)-matrix, that
is E = A(S) is the adjacency matrix of some S C Q2, where

1 (a,B)€S;
AlB)as "{ 0 (8)¢S

Exercise. Prove that a symmetric matrix is - and o idempotent iff
it's (0, 1)-diagonal matrix.
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Coherent (cellular) algebras.

Definition.

A subspace A < Mq(F) is called a coherent (or cellular) algebra if
it contains lg, Jo and is closed with respect to -,0, T. The
numbers dim(.A) and |Q| are called the rank and the degree of A.

Examples

m (lq, Jq) - the trivial CA;
m Mq(F) - the discrete CA.

Proposition

Let X = (2,C) be a coherent configuration. Then the linear span
F[C] := (A(C))cec is a coherent algebra of dimension |C|. It is
called the adjacency (or Bose-Mesner) algebra of X'.



Adjacency algebra of a coherent configuration.

The basis A(C), C € C is called the standard basis of F[C]. The
structure constants of the algebra F[C] with respect to the
standard basis coincide with the intersection numbers of X, i.e.

A(S)A(T) =) ErARR
ReC

Notice that the standard basis matrices A(S),S € C are
(0, 1)-matrices, or, equivalently, they are minimal o-idempotents.
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The basis A(C), C € C is called the standard basis of F[C]. The
structure constants of the algebra F[C] with respect to the
standard basis coincide with the intersection numbers of X, i.e.

A(S)A(T) =) ErARR
ReC

Notice that the standard basis matrices A(S),S € C are
(0, 1)-matrices, or, equivalently, they are minimal o-idempotents.

Theorem

Every coherent algebra A < Mq(F) has a unique basis consisting
of minimal o-idempotents which are pairwise orthogonal. If
char(F) = 0 then A is the adjacency algebra of a uniquely
determined coherent configuration.



Proof of the Theorem

Since A is a o-subalgebra of (Mq(F), o) = (F",0), n = |Q/?, we
start with the following

Let A be a k-dimensional subalgebra of (F”,0). Then there exists
a unique basis Ay, ..., Ax of A consisting of minimal, pairwise
orthogonal, o-idempotents. Each o-idemoptent of A is a

(0, 1)-linear combination of Ay, ..., Ax and A1 + ... + Ak is the unit
of A.
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Ai = A(R), R € Q?;
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Proof of the Theorem (the end)

A = A(R), R C Q2

i #j = A,'OAJ':O — R,'ﬂRj:@;

Vi Ai=Jo = Ui R =%

lo=> ;A = lo=U;R:;

AI—-l—:Aj - R?:Rj;

AiAi =D cl-fAk for some c,-f c I,

(AiAj)ap = céf where k is defined by (o, 3) € Ry;

m if char(F) =0, then
(AiA))as = [oRi N RiB| = |aRi N R = ck.
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Given two coherent algebras A < Mq(F), A" < Mq/(F), a linear
bijection L : A — A’ is called an (algebraic) isomorphism iff

m L(XY) = LX)L(Y);
mL(XoY)=L(X)oL(Y);
mL(XT)=L(X)T.

Proposition

Let L : F[C] — F[C] be an algebraic isomorphism between the
adjacency algebras of co.co.s C and C. Then there exists a
bijection ¢ : C — C such that L(A(C)) = A(C¥) and glls = Eloen.
Vice versa, any bijection ¢ : C — C~satisfying the above equations
extends uniquely up to an algebraic isomorphism between F[C] and
F[C]. We'll call it an algebraic isomorphism between the co.co.s.



Properties of algebraic isomorphisms

Let p:C— c be an algebraic isomorphism between the co.co.s
= (Q,C) and X = (Q,C). Then

m (RS)? = R?S¥ for any R, S € C”

m for each fiber A of X there exists a unique fiber A’ of X’ such
that (1a)? = 1A, that is ¢ induces a bijection between fibres;

mScC = D(5%)=D(5)%, R(5%) = R(S)¥;

m |nce| = |n¢| for each C € C;

m |A¥| = |A| for any A € (X);



Isomorphisms between coherent algebras

Proposition

For each f € Iso(X, X’) the mapping f* is an algebraic
isomorphism between the configurations. In this case we say that
f* is an algebraic isomorphism induced by a combinatorial one.

All algebraic automorphisms of a co.co. X = (€,C) form a group
(a subgroup of Sym(C)) denoted as Alg(X’) or Alg(C). Notice that
Iso(X)/ Aut(X') — Alg(X).

Proposition

Let A < Alg(X'). Then the subspace

Q) = {x € QIC] | Vaca x* = x}
is a coherent algebra. The corresponding coherent conguration is
denoted as CA. It is called an algebraic fusion of C.



Coherent closure.

Proposition. Let X = (2,C) and X’ = (€2,(’) be coherent
configurations. Then

m F[C]CF[C'] <= CCEC
m F[CINF[C'] =F[CAC'] = CACis a coherent
configuration.

Notice that the sum of coherent algebras is not necessarily
coherent algebra.

Proposition

Let Ay, ..., A € Mq(F) be an arbitrary sequence of matrices. The
intersection of all coherent algebras containing A1, ..., A is a
coherent algebra too, called the coherent closure of Ay, ..., A, and
denoted as (A1, ..., Am)).



Computing coherent closure by WL-algortihm.

Given a sequence My, ..., My € Mq(F) of matrices. We define a
partition P(M4, ..., My) of Q2 via the following equivalence relation

(@, 8) ~ (7,9) <= Vici<k (Mi)ap = (Mi)ys
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Computing coherent closure by WL-algortihm.

Given a sequence My, ..., My € Mq(F) of matrices. We define a
partition P(M4, ..., My) of Q2 via the following equivalence relation

(o, 8) ~ (7,0) <= Vi<i<k (Mi)ap = (Mi)ys

Proposition

If X = (€,C) is a coherent configuration, then P(My, ..., M) CC
for any tuple My, ..., M € F[C].

Proposition. Let X = (Q,C) be a co.co. and S I Q2. Then

SCC = bl(S) C C (follows from bl(S) C bl(C) and
bI(C) =C)



Computing coherent closure by WL algortihm.

m Input: Aq, ..., Ax € Mq(F),
m Output: the coherent closure (A1, ..., Ak));
m Compute Sp := P(A1, ..., A, Al ..., AZ, la);

m Starting from S := Sy apply WL-stabilization procedure
S — bI(S) until S = bI(S).

Theorem

The WL-algorithm produces the coherent closure of the matrices
A1, Ax.

Proof. Let C denote the underlying coherent configuration of
(Av s A, i€ (Ao Ag) = QIC. Then



m AL AGA] LA I EQC] = S CC

m Let S;:=bl(Si—1),i =1, ..., m be the sequence of parititions
generated by WL-algorithm (thus |Smi1| = [Sml);

m since S ; = Sj_1 and 1g € S |, we obtain

S =8, SL1ESi = 1g € 87,8mi1 = Sm;

mS 1EC = S LCC;
S, CC = S§,=C. O



Canonical ordering

Proposition

Let S = (51,...,Sm) and T = (T1,..., Tm) be ordered partitions of
02 and A2 resp. Let (SY) = (P, ..., Px) and (T) = (Q1, ..., Q)
be the canonical ordering of the coherent closures produced by
WL-algorithm. If there exists an isomorphism f : Q — A such that
S,f = T;, then k =/ and P,f = Q;,i =1,....,k. In particular, the
mapping P; — Q; is an algebraic isomorphism between the co.co.s

{(S) and (7).

Reformulation of the Gl

Given an algebraic isomoprhism between the coherent
configurations S and 7. Find whether it is induced by a
combinatorial one.



Association schemes.

Association scheme.

A pair (2, S) where S - Q? is an association scheme
(=homogeneous coherent configuration) iff
mlgES;
S =SG;
m bl(S)=8

Recall that the intersection numbers are
T
Vs.RTes Y(a,p)eT [aS N RB| = cgs.

The number ng := cég* = |wS] is called the valency of S.



Elementary properties of schemes.

m the set SV is closed w.r.t. boolean operations;



Elementary properties of schemes.

m the set SV is closed w.r.t. boolean operations;
m 1g, Q% e SY;



Elementary properties of schemes.

m the set SV is closed w.r.t. boolean operations;
m 1g, GZ & SY:
= (SU)* _ SU;



Elementary properties of schemes.

m the set SV is closed w.r.t. boolean operations;
m 1g, GZ & SY:
= (SU)* _ SU;

m S is closed w.r.t. relational product



Elementary properties of schemes.

m the set SV is closed w.r.t. boolean operations;

m 1g, Q% e SY;

u (SU)* = SU,

m S is closed w.r.t. relational product = VyenVses S¢ € SY;



Elementary properties of schemes.

m the set SV is closed w.r.t. boolean operations;

m 1g, Q% e SY;

u (SU)* = SU,

m S is closed w.r.t. relational product = VyenVses S¢ € SY;

m each relation R € SY is regular;



Elementary properties of schemes.

m the set SV is closed w.r.t. boolean operations;
m1g,0%cSY,;

u (SU)* = SU,

m S is closed w.r.t. relational product = VyenVses S¢ € SY;
m each relation R € SV is regular;

m for any S € S there exists ms.t. 19 C S™;



Elementary properties of schemes.

m the set SV is closed w.r.t. boolean operations;

m 19, Q% e SY;

u (SU)* = SU,

m S is closed w.r.t. relational product = VyenVses S¢ € SY;
m each relation R € SY is regular;

m for any S € S there exists ms.t. 19 C S™;

m for any S € S there exists m s.t. S* C S,



Elementary properties of schemes.

m the set SV is closed w.r.t. boolean operations;

m 19, Q% e SY;

u (SU)* = SU,

m S is closed w.r.t. relational product = VyenVses S¢ € SY;
m each relation R € SY is regular;

m for any S € S there exists ms.t. 19 C S™;

m for any S € S there exists m s.t. S* C S,

mSeSY = St=ux,5esY;



Elementary properties of schemes.

m the set SV is closed w.r.t. boolean operations;

m 19, Q% e SY;

u (SU)* = SU,

m S is closed w.r.t. relational product = VyenVses S¢ € SY;
m each relation R € SY is regular;

for any S € S there exists ms.t. 1o C S,

for any S € S there exists ms.t. S* C S™;

SesY = St=ux,5esY;

S e S8Y = ST is an equivalence relation on Q
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Elementary properties of schemes.

Definition

A scheme is called symmetric (antisymmetric) if every S # 1q is
symmetric ( anti-symmetric, resp.). A scheme is called
commutative if its adjacency algebra is commutative.

Proposition

A symmetric scheme is always commutative.

Proposition
Let (Q2,S) be a scheme. Then
m D sesns = Qf;
= 2< S| <)
S| =2 = S§={1g,0%\ 1a};
n S| =0 <> Vsesns =1



Primitive and Imprimitive schemes

Definition
A scheme (Q,S) is called imprimitive if S¥ contains a non-trivial

and non-discrete equivalence relation E. The equivalence classes
wE,w € Q form a partition of Q called imprimitivity system of S.

Proposition

If E € SY is an equivalence. Then |Q/E| - ng = Q.

Proposition

The following are equivalent
m S is imprimitive;
m3S5SeS,S#1gstSt#£Q%
m 3T CS,1<|T|<|S|s. t. (A(T))7TeT is a subalgebra of
Q[S]



Schurian schemes

Recall that a scheme (€2, S) is schurian iff there exists
G < Sym(Q) s.t. S = Inv(G).

m G is transitive on Q;

m wS is an orbit of G, foreach we Q2 and S € S;

m the mapping S — {g € G |w® € wS} is a bijection between
the basic relations of S and double cosets of G,,.

m a rescaling of the above mapping is an isomorphism between
the adjacency algebra F[S] and the Hecke algebra
F(G,\G/Gy);

m G is primitive iff Inv(G) is primitive.



