Graph Isomorphism problem, Weisfeiler-Leman algorithm and coherent configurations

M. Muzychuk

Ben-Gurion University of the Negev, Israel

10th PhD Summer School in Discrete Mathematics , Rogla Slovenia, June 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Coherent algebras (D. Higman) = Cellular algebras (Weisfeiler-Leman)

Notation.

Let $A, B \in M_{\Omega}(\mathbb{F})$ be arbitrary matrices. We denote by

- AB (or $A \cdot B$) the usual matrix product;
- $A \circ B$ the Schur-Hadamard (component-wise) product, i.e. $(A \circ B)_{\alpha\beta} := A_{\alpha\beta}B_{\alpha\beta};$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- A^{\top} the transposed of A;
- I_{Ω} the identity matrix;
- J_{Ω} the all one matrix.

Coherent algebras (D. Higman) = Cellular algebras (Weisfeiler-Leman)

Notation.

Let $A, B \in M_{\Omega}(\mathbb{F})$ be arbitrary matrices. We denote by

- AB (or $A \cdot B$) the usual matrix product;
- $A \circ B$ the Schur-Hadamard (component-wise) product, i.e. $(A \circ B)_{\alpha\beta} := A_{\alpha\beta}B_{\alpha\beta};$
- A^{\top} the transposed of A;
- I_{Ω} the identity matrix;
- J_{Ω} the all one matrix.

Proposition

The algebra $(M_{\Omega}(\mathbb{F}), \circ)$ is a commutative associative algebra with identity J_{Ω} . It is isomorphic to \mathbb{F}^n where $n = |\Omega|^2$.

Let (\mathcal{A}, \star) be finite dimensional algebra over field \mathbb{F} .

Let (\mathcal{A}, \star) be finite dimensional algebra over field \mathbb{F} . • $e \in \mathcal{A}, e \neq 0$ is called \star -idempotent iff $e \star e = e$;

Let (\mathcal{A}, \star) be finite dimensional algebra over field \mathbb{F} .

• $e \in \mathcal{A}, e \neq 0$ is called *-idempotent iff $e \star e = e$;

• idempotents e, f are orthogonal if $e \star f = f \star e = 0$;

Let (\mathcal{A}, \star) be finite dimensional algebra over field \mathbb{F} .

- $e \in \mathcal{A}, e \neq 0$ is called *-idempotent iff $e \star e = e$;
- idempotents e, f are orthogonal if $e \star f = f \star e = 0$;
- idempotent e is minimal if it is not a sum e = e₁ + e₂ of pairwise orthogonal idempotents e₁, e₂;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let (\mathcal{A}, \star) be finite dimensional algebra over field \mathbb{F} .

- $e \in \mathcal{A}, e \neq 0$ is called *-idempotent iff $e \star e = e$;
- idempotents e, f are orthogonal if $e \star f = f \star e = 0$;
- idempotent e is minimal if it is not a sum e = e₁ + e₂ of pairwise orthogonal idempotents e₁, e₂;
- a matrix E ∈ M_Ω(𝔅) is --idempotent iff it's similar to a (0,1)-diagonal matrix;

Let (\mathcal{A}, \star) be finite dimensional algebra over field \mathbb{F} .

• $e \in \mathcal{A}, e \neq 0$ is called *-idempotent iff $e \star e = e$;

- idempotents e, f are orthogonal if $e \star f = f \star e = 0$;
- idempotent e is minimal if it is not a sum e = e₁ + e₂ of pairwise orthogonal idempotents e₁, e₂;
- a matrix E ∈ M_Ω(𝔅) is --idempotent iff it's similar to a (0,1)-diagonal matrix;
- a matrix E ∈ M_Ω(𝔅) is ◦-idempotent iff it's (0, 1)-matrix, that is E = A(S) is the adjacency matrix of some S ⊆ Ω², where

$$A(S)_{\alpha\beta} := \begin{cases} 1 & (\alpha,\beta) \in S; \\ 0 & (\alpha,\beta) \notin S \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let (\mathcal{A}, \star) be finite dimensional algebra over field \mathbb{F} .

• $e \in \mathcal{A}, e \neq 0$ is called *-idempotent iff $e \star e = e$;

- idempotents e, f are orthogonal if $e \star f = f \star e = 0$;
- idempotent e is minimal if it is not a sum e = e₁ + e₂ of pairwise orthogonal idempotents e₁, e₂;
- a matrix E ∈ M_Ω(𝔅) is --idempotent iff it's similar to a (0,1)-diagonal matrix;
- a matrix $E \in M_{\Omega}(\mathbb{F})$ is \circ -idempotent iff it's (0, 1)-matrix, that is E = A(S) is the adjacency matrix of some $S \subseteq \Omega^2$, where

$$A(S)_{\alpha\beta} := \begin{cases} 1 & (\alpha,\beta) \in S; \\ 0 & (\alpha,\beta) \notin S \end{cases}$$

Exercise. Prove that a symmetric matrix is \cdot and \circ idempotent iff it's (0,1)-diagonal matrix.

Coherent (cellular) algebras.

Definition.

A subspace $\mathcal{A} \leq M_{\Omega}(\mathbb{F})$ is called a coherent (or cellular) algebra if it contains I_{Ω}, J_{Ω} and is closed with respect to $\cdot, \circ, ^{\top}$. The numbers dim (\mathcal{A}) and $|\Omega|$ are called the rank and the degree of \mathcal{A} .

Coherent (cellular) algebras.

Definition.

A subspace $\mathcal{A} \leq M_{\Omega}(\mathbb{F})$ is called a coherent (or cellular) algebra if it contains I_{Ω}, J_{Ω} and is closed with respect to $\cdot, \circ, ^{\top}$. The numbers dim (\mathcal{A}) and $|\Omega|$ are called the rank and the degree of \mathcal{A} .

Examples

- $\langle I_{\Omega}, J_{\Omega} \rangle$ the trivial CA;
- $M_{\Omega}(\mathbb{F})$ the discrete CA.

Coherent (cellular) algebras.

Definition.

A subspace $\mathcal{A} \leq M_{\Omega}(\mathbb{F})$ is called a coherent (or cellular) algebra if it contains I_{Ω}, J_{Ω} and is closed with respect to $\cdot, \circ, ^{\top}$. The numbers dim (\mathcal{A}) and $|\Omega|$ are called the rank and the degree of \mathcal{A} .

Examples

- $\langle I_{\Omega}, J_{\Omega} \rangle$ the trivial CA;
- $M_{\Omega}(\mathbb{F})$ the discrete CA.

Proposition

Let $\mathcal{X} = (\Omega, \mathcal{C})$ be a coherent configuration. Then the linear span $\mathbb{F}[\mathcal{C}] := \langle A(\mathcal{C}) \rangle_{\mathcal{C} \in \mathcal{C}}$ is a coherent algebra of dimension $|\mathcal{C}|$. It is called the adjacency (or Bose-Mesner) algebra of \mathcal{X} .

The basis A(C), $C \in C$ is called the standard basis of $\mathbb{F}[C]$. The structure constants of the algebra $\mathbb{F}[C]$ with respect to the standard basis coincide with the intersection numbers of \mathcal{X} , i.e.

$$A(S)A(T) = \sum_{R \in \mathcal{C}} c_{ST}^R A(R)$$

Notice that the standard basis matrices $A(S), S \in C$ are (0, 1)-matrices, or, equivalently, they are minimal \circ -idempotents.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The basis $A(C), C \in C$ is called the standard basis of $\mathbb{F}[C]$. The structure constants of the algebra $\mathbb{F}[C]$ with respect to the standard basis coincide with the intersection numbers of \mathcal{X} , i.e.

$$A(S)A(T) = \sum_{R \in \mathcal{C}} c_{ST}^R A(R)$$

Notice that the standard basis matrices $A(S), S \in C$ are (0, 1)-matrices, or, equivalently, they are minimal \circ -idempotents.

Theorem

Every coherent algebra $\mathcal{A} \leq M_{\Omega}(\mathbb{F})$ has a unique basis consisting of minimal o-idempotents which are pairwise orthogonal. If $char(\mathbb{F}) = 0$ then \mathcal{A} is the adjacency algebra of a uniquely determined coherent configuration.

Since \mathcal{A} is a \circ -subalgebra of $(M_{\Omega}(\mathbb{F}), \circ) \cong (\mathbb{F}^n, \circ), n = |\Omega|^2$, we start with the following

Lemma

Let \mathcal{A} be a k-dimensional subalgebra of (\mathbb{F}^n, \circ) . Then there exists a unique basis $A_1, ..., A_k$ of \mathcal{A} consisting of minimal, pairwise orthogonal, \circ -idempotents. Each \circ -idemoptent of \mathcal{A} is a (0, 1)-linear combination of $A_1, ..., A_k$ and $A_1 + ... + A_k$ is the unit of \mathcal{A} .

•
$$A_i = A(R_i), R_i \subseteq \Omega^2;$$

$$A_i = A(R_i), R_i \subseteq \Omega^2;$$

$$i \neq j \implies A_i \circ A_j = 0 \implies R_i \cap R_j = \emptyset;$$

(ロ)、(型)、(E)、(E)、 E) の(()

$$A_i = A(R_i), R_i \subseteq \Omega^2;$$

$$i \neq j \implies A_i \circ A_j = 0 \implies R_i \cap R_j = \emptyset;$$

$$\sum_{i=1}^k A_i = J_\Omega \implies \bigcup_i R_i = \Omega^2;$$

•
$$A_i = A(R_i), R_i \subseteq \Omega^2;$$

• $i \neq j \implies A_i \circ A_j = 0 \implies R_i \cap R_j = \emptyset;$
• $\sum_{i=1}^k A_i = J_\Omega \implies \bigcup_i R_i = \Omega^2;$
• $I_\Omega = \sum_i A_i \implies 1_\Omega = \bigcup_i R_i;$

$$A_{i} = A(R_{i}), R_{i} \subseteq \Omega^{2};$$

$$i \neq j \implies A_{i} \circ A_{j} = 0 \implies R_{i} \cap R_{j} = \emptyset;$$

$$\sum_{i=1}^{k} A_{i} = J_{\Omega} \implies \bigcup_{i} R_{i} = \Omega^{2};$$

$$I_{\Omega} = \sum_{i} A_{i} \implies 1_{\Omega} = \bigcup_{i} R_{i};$$

$$A_{i}^{\top} = A_{j} \implies R_{i}^{*} = R_{j};$$

$$A_{i} = A(R_{i}), R_{i} \subseteq \Omega^{2};$$

$$i \neq j \implies A_{i} \circ A_{j} = 0 \implies R_{i} \cap R_{j} = \emptyset;$$

$$\sum_{i=1}^{k} A_{i} = J_{\Omega} \implies \bigcup_{i} R_{i} = \Omega^{2};$$

$$I_{\Omega} = \sum_{i} A_{i} \implies 1_{\Omega} = \bigcup_{i} R_{i};$$

$$A_{i}^{\top} = A_{j} \implies R_{i}^{*} = R_{j};$$

$$A_{i}A_{j} = \sum_{k} c_{ij}^{k} A_{k} \text{ for some } c_{ij}^{k} \in \mathbb{F};$$

(ロ)、(型)、(E)、(E)、 E) の(()

•
$$A_i = A(R_i), R_i \subseteq \Omega^2;$$

• $i \neq j \implies A_i \circ A_j = 0 \implies R_i \cap R_j = \emptyset;$
• $\sum_{i=1}^k A_i = J_\Omega \implies \bigcup_i R_i = \Omega^2;$
• $I_\Omega = \sum_i A_i \implies 1_\Omega = \bigcup_i R_i;$
• $A_i^\top = A_j \implies R_i^* = R_j;$
• $A_i A_j = \sum_k c_{ij}^k A_k$ for some $c_{ij}^k \in \mathbb{F};$
• $(A_i A_j)_{\alpha\beta} = c_{ij}^k$ where k is defined by $(\alpha, \beta) \in R_k;$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{array}{l} A_i = A(R_i), R_i \subseteq \Omega^2; \\ i \neq j \implies A_i \circ A_j = 0 \implies R_i \cap R_j = \emptyset; \\ \sum_{i=1}^k A_i = J_\Omega \implies \bigcup_i R_i = \Omega^2; \\ I_\Omega = \sum_i A_i \implies 1_\Omega = \bigcup_i R_i; \\ A_i^\top = A_j \implies R_i^* = R_j; \\ A_i A_j = \sum_k c_{ij}^k A_k \text{ for some } c_{ij}^k \in \mathbb{F}; \\ (A_i A_j)_{\alpha\beta} = c_{ij}^k \text{ where } k \text{ is defined by } (\alpha, \beta) \in R_k; \\ \text{if } \operatorname{char}(\mathbb{F}) = 0, \text{ then} \\ (A_i A_j)_{\alpha\beta} = |\alpha R_i \cap R_j\beta| \implies |\alpha R_i \cap R_j\beta| = c_{ij}^k. \end{array}$$

・ロト・「四ト・「田下・「田下・(日下

Isomorphisms between coherent algebras

Definition

Given two coherent algebras $\mathcal{A} \leq M_{\Omega}(\mathbb{F}), \mathcal{A}' \leq M_{\Omega'}(\mathbb{F})$, a linear bijection $L : \mathcal{A} \to \mathcal{A}'$ is called an (algebraic) isomorphism iff

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

$$L(XY) = L(X)L(Y);$$

•
$$L(X \circ Y) = L(X) \circ L(Y);$$

•
$$L(X^{\top}) = L(X)^{\top}$$
.

Isomorphisms between coherent algebras

Definition

Given two coherent algebras $\mathcal{A} \leq M_{\Omega}(\mathbb{F}), \mathcal{A}' \leq M_{\Omega'}(\mathbb{F})$, a linear bijection $L : \mathcal{A} \to \mathcal{A}'$ is called an (algebraic) isomorphism iff

$$L(XY) = L(X)L(Y);$$

•
$$L(X \circ Y) = L(X) \circ L(Y);$$

•
$$L(X^{\top}) = L(X)^{\top}$$
.

Proposition

Let $L : \mathbb{F}[\mathcal{C}] \to \mathbb{F}[\widetilde{\mathcal{C}}]$ be an algebraic isomorphism between the adjacency algebras of co.co.s \mathcal{C} and $\widetilde{\mathcal{C}}$. Then there exists a bijection $\varphi : \mathcal{C} \to \widetilde{\mathcal{C}}$ such that $L(A(\mathcal{C})) = A(\mathcal{C}^{\varphi})$ and $c_{RS}^{T} = \widetilde{c}_{R^{\varphi}S^{\varphi}}^{T^{\varphi}}$. Vice versa, any bijection $\varphi : \mathcal{C} \to \widetilde{\mathcal{C}}$ satisfying the above equations extends uniquely up to an algebraic isomorphism between $\mathbb{F}[\mathcal{C}]$ and $\mathbb{F}[\widetilde{\mathcal{C}}]$. We'll call it an algebraic isomorphism between the co.co.s.

Proposition

Let $\varphi : \mathcal{C} \to \widetilde{\mathcal{C}}$ be an algebraic isomorphism between the co.co.s $\mathcal{X} = (\Omega, \mathcal{C})$ and $\widetilde{\mathcal{X}} = (\widetilde{\Omega}, \widetilde{\mathcal{C}})$. Then

$$(RS)^arphi=R^arphi S^arphi$$
 for any $R,S\in\mathcal{C}^\cup$

for each fiber Δ of X there exists a unique fiber Δ' of X' such that (1_Δ)^φ = 1_{Δ'}, that is φ induces a bijection between fibres;

•
$$S \in \mathcal{C} \implies D(S^{\varphi}) = D(S)^{\varphi}, R(S^{\varphi}) = R(S)^{\varphi};$$

•
$$|n_{C^{\varphi}}| = |n_{C}|$$
 for each $C \in C$;

•
$$|\Delta^arphi| = |\Delta|$$
 for any $\Delta \in \Phi(\mathcal{X});$

Proposition

For each $f \in Iso(\mathcal{X}, \mathcal{X}')$ the mapping f^* is an algebraic isomorphism between the configurations. In this case we say that f^* is an algebraic isomorphism induced by a combinatorial one.

All algebraic automorphisms of a co.co. $\mathcal{X} = (\Omega, \mathcal{C})$ form a group (a subgroup of Sym(\mathcal{C})) denoted as Alg(\mathcal{X}) or Alg(\mathcal{C}). Notice that $Iso(\mathcal{X})/Aut(\mathcal{X}) \hookrightarrow Alg(\mathcal{X})$.

Proposition

Let $A \leq \operatorname{Alg}(\mathcal{X})$. Then the subspace $\mathbb{Q}[\mathcal{C}]^A := \{x \in \mathbb{Q}[\mathcal{C}] \mid \forall_{a \in A} \ x^a = x\}$ is a coherent algebra. The corresponding coherent conguration is denoted as \mathcal{C}^A . It is called an algebraic fusion of \mathcal{C} .

Coherent closure.

Proposition. Let $\mathcal{X} = (\Omega, C)$ and $\mathcal{X}' = (\Omega, C')$ be coherent configurations. Then

$$\blacksquare \ \mathbb{F}[\mathcal{C}] \subseteq \mathbb{F}[\mathcal{C}'] \iff \mathcal{C} \sqsubseteq \mathcal{C}';$$

• $\mathbb{F}[\mathcal{C}] \cap \mathbb{F}[\mathcal{C}'] = \mathbb{F}[\mathcal{C} \land \mathcal{C}'] \implies \mathcal{C} \land \mathcal{C}'$ is a coherent configuration.

Notice that the sum of coherent algebras is not necessarily coherent algebra.

Proposition

Let $A_1, ..., A_m \in M_{\Omega}(\mathbb{F})$ be an arbitrary sequence of matrices. The intersection of all coherent algebras containing $A_1, ..., A_m$ is a coherent algebra too, called the coherent closure of $A_1, ..., A_m$ and denoted as $\langle\!\langle A_1, ..., A_m \rangle\!\rangle$.

Definition

Given a sequence $M_1, ..., M_k \in M_{\Omega}(\mathbb{F})$ of matrices. We define a partition $\mathcal{P}(M_1, ..., M_k)$ of Ω^2 via the following equivalence relation

 $(\alpha,\beta) \sim (\gamma,\delta) \iff \forall_{1 \leq i \leq k} (M_i)_{\alpha\beta} = (M_i)_{\gamma\delta}$

Definition

Given a sequence $M_1, ..., M_k \in M_{\Omega}(\mathbb{F})$ of matrices. We define a partition $\mathcal{P}(M_1, ..., M_k)$ of Ω^2 via the following equivalence relation

$$(\alpha, \beta) \sim (\gamma, \delta) \iff \forall_{1 \leq i \leq k} \ (M_i)_{\alpha\beta} = (M_i)_{\gamma\delta}$$

Proposition

If $\mathcal{X} = (\Omega, \mathcal{C})$ is a coherent configuration, then $\mathcal{P}(M_1, ..., M_k) \sqsubseteq \mathcal{C}$ for any tuple $M_1, ..., M_k \in \mathbb{F}[\mathcal{C}]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

Given a sequence $M_1, ..., M_k \in M_{\Omega}(\mathbb{F})$ of matrices. We define a partition $\mathcal{P}(M_1, ..., M_k)$ of Ω^2 via the following equivalence relation

$$(lpha,eta)\sim(\gamma,\delta)\iff orall_{1\leq i\leq k}\;(M_i)_{lphaeta}=(M_i)_{\gamma\delta}$$

Proposition

If $\mathcal{X} = (\Omega, \mathcal{C})$ is a coherent configuration, then $\mathcal{P}(M_1, ..., M_k) \sqsubseteq \mathcal{C}$ for any tuple $M_1, ..., M_k \in \mathbb{F}[\mathcal{C}]$.

Proposition. Let $\mathcal{X} = (\Omega, \mathcal{C})$ be a co.co. and $\mathcal{S} \vdash \Omega^2$. Then

$$\mathcal{S} \sqsubseteq \mathcal{C} \implies \mathsf{bl}(\mathcal{S}) \sqsubseteq \mathcal{C}$$

Definition

Given a sequence $M_1, ..., M_k \in M_{\Omega}(\mathbb{F})$ of matrices. We define a partition $\mathcal{P}(M_1, ..., M_k)$ of Ω^2 via the following equivalence relation

$$(lpha,eta)\sim(\gamma,\delta)\iff orall_{1\leq i\leq k}\;(M_i)_{lphaeta}=(M_i)_{\gamma\delta}$$

Proposition

If $\mathcal{X} = (\Omega, \mathcal{C})$ is a coherent configuration, then $\mathcal{P}(M_1, ..., M_k) \sqsubseteq \mathcal{C}$ for any tuple $M_1, ..., M_k \in \mathbb{F}[\mathcal{C}]$.

Proposition. Let $\mathcal{X} = (\Omega, \mathcal{C})$ be a co.co. and $\mathcal{S} \vdash \Omega^2$. Then

$$\begin{split} \mathcal{S} \sqsubseteq \mathcal{C} \implies & \mathsf{bl}(\mathcal{S}) \sqsubseteq \mathcal{C} \text{ (follows from } \mathsf{bl}(\mathcal{S}) \sqsubseteq \mathsf{bl}(\mathcal{C}) \text{ and } \\ & \mathsf{bl}(\mathcal{C}) = \mathcal{C}) \end{split}$$

- Input: $A_1, ..., A_k \in M_{\Omega}(\mathbb{F})$,
- **Output:** the coherent closure $\langle\!\langle A_1, ..., A_k \rangle\!\rangle$;
- Compute $S_0 := \mathcal{P}(A_1, ..., A_k, A_1^\top, ..., A_k^\top, I_\Omega);$
- Starting from $S := S_0$ apply WL-stabilization procedure $S \to \operatorname{bl}(S)$ until $S = \operatorname{bl}(S)$.

Theorem

The WL-algorithm produces the coherent closure of the matrices $A_1, ..., A_k$.

Proof. Let C denote the underlying coherent configuration of $\langle\!\langle A_1, ..., A_k \rangle\!\rangle$, i.e. $\langle\!\langle A_1, ..., A_k \rangle\!\rangle = \mathbb{Q}[C]$. Then

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Proposition

Let $\vec{S} = (S_1, ..., S_m)$ and $\vec{T} = (T_1, ..., T_m)$ be ordered partitions of Ω^2 and Δ^2 resp. Let $\langle\!\langle \vec{S} \rangle\!\rangle = (P_1, ..., P_k)$ and $\langle\!\langle \vec{T} \rangle\!\rangle = (Q_1, ..., Q_\ell)$ be the canonical ordering of the coherent closures produced by WL-algorithm. If there exists an isomorphism $f : \Omega \to \Delta$ such that $S_i^f = T_i$, then $k = \ell$ and $P_i^f = Q_i, i = 1, ..., k$. In particular, the mapping $P_i \mapsto Q_i$ is an algebraic isomorphism between the co.co.s $\langle\!\langle S \rangle\!\rangle$ and $\langle\!\langle T \rangle\!\rangle$.

Reformulation of the GI

Given an algebraic isomoprhism between the coherent configurations S and T. Find whether it is induced by a combinatorial one.

Association scheme.

A pair (Ω, S) where $S \vdash \Omega^2$ is an association scheme (=homogeneous coherent configuration) iff

•
$$1_\Omega \in \mathcal{S};$$

•
$$\mathcal{S}^* = \mathcal{S};$$

■ Ы(S) = S

Recall that the intersection numbers are

$$\forall_{S,R,T\in\mathcal{S}} \forall_{(\alpha,\beta)\in\mathcal{T}} |\alpha S \cap R\beta| = c_{RS}^{T}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The number $n_S := c_{SS^*}^{1_{\Omega}} = |\omega S|$ is called the valency of S.

Proposition

• the set S^{\cup} is closed w.r.t. boolean operations;

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Proposition

• the set S^{\cup} is closed w.r.t. boolean operations;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$1_{\Omega}, \Omega^2 \in \mathcal{S}^{\cup};$$

Proposition

• the set S^{\cup} is closed w.r.t. boolean operations;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

•
$$1_{\Omega}, \Omega^2 \in \mathcal{S}^{\cup}$$

•
$$(\mathcal{S}^{\cup})^* = \mathcal{S}^{\cup};$$

Proposition

• the set S^{\cup} is closed w.r.t. boolean operations;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•
$$1_\Omega, \Omega^2 \in \mathcal{S}^\cup;$$

•
$$(\mathcal{S}^{\cup})^* = \mathcal{S}^{\cup};$$

• \mathcal{S} is closed w.r.t. relational product

Proposition

- the set S^{\cup} is closed w.r.t. boolean operations;
- $1_{\Omega}, \Omega^2 \in \mathcal{S}^{\cup};$

•
$$(\mathcal{S}^{\cup})^* = \mathcal{S}^{\cup};$$

• S is closed w.r.t. relational product $\implies \forall_{\ell \in \mathbb{N}} \forall_{S \in S} S^{\ell} \in S^{\cup}$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition

- the set S^{\cup} is closed w.r.t. boolean operations;
- $1_{\Omega}, \Omega^2 \in \mathcal{S}^{\cup};$
- $(\mathcal{S}^{\cup})^* = \mathcal{S}^{\cup};$
- S is closed w.r.t. relational product $\implies \forall_{\ell \in \mathbb{N}} \forall_{S \in S} S^{\ell} \in S^{\cup}$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• each relation $R \in S^{\cup}$ is regular;

Proposition

• the set S^{\cup} is closed w.r.t. boolean operations;

•
$$1_\Omega, \Omega^2 \in \mathcal{S}^\cup;$$

•
$$(\mathcal{S}^{\cup})^* = \mathcal{S}^{\cup};$$

• S is closed w.r.t. relational product $\implies \forall_{\ell \in \mathbb{N}} \forall_{S \in S} S^{\ell} \in S^{\cup}$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- each relation $R \in S^{\cup}$ is regular;
- for any $S \in S$ there exists m s.t. $1_{\Omega} \subseteq S^m$;

Proposition

- the set S^{\cup} is closed w.r.t. boolean operations;
- $1_{\Omega}, \Omega^2 \in \mathcal{S}^{\cup};$
- $(\mathcal{S}^{\cup})^* = \mathcal{S}^{\cup};$
- S is closed w.r.t. relational product $\implies \forall_{\ell \in \mathbb{N}} \forall_{S \in S} S^{\ell} \in S^{\cup}$;

- each relation $R \in S^{\cup}$ is regular;
- for any $S \in S$ there exists m s.t. $1_{\Omega} \subseteq S^m$;
- for any $S \in S$ there exists m s.t. $S^* \subseteq S^m$;

Proposition

• the set S^{\cup} is closed w.r.t. boolean operations;

•
$$1_\Omega, \Omega^2 \in \mathcal{S}^\cup;$$

•
$$(\mathcal{S}^{\cup})^* = \mathcal{S}^{\cup};$$

• S is closed w.r.t. relational product $\implies \forall_{\ell \in \mathbb{N}} \forall_{S \in S} S^{\ell} \in S^{\cup}$;

- each relation $R \in S^{\cup}$ is regular;
- for any $S \in S$ there exists m s.t. $1_{\Omega} \subseteq S^m$;
- for any $S \in S$ there exists m s.t. $S^* \subseteq S^m$;
- $\bullet \ S \in \mathcal{S}^{\cup} \implies S^+ = \cup_{i=1}^{\infty} S^i \in \mathcal{S}^{\cup};$

Proposition

• the set S^{\cup} is closed w.r.t. boolean operations;

•
$$1_\Omega, \Omega^2 \in \mathcal{S}^\cup;$$

•
$$(\mathcal{S}^{\cup})^* = \mathcal{S}^{\cup};$$

- S is closed w.r.t. relational product $\implies \forall_{\ell \in \mathbb{N}} \forall_{S \in S} S^{\ell} \in S^{\cup}$;
- each relation $R \in S^{\cup}$ is regular;
- for any $S \in S$ there exists m s.t. $1_{\Omega} \subseteq S^m$;
- for any $S \in S$ there exists m s.t. $S^* \subseteq S^m$;
- $S \in S^{\cup} \implies S^+ = \cup_{i=1}^{\infty} S^i \in S^{\cup};$
- $S \in \mathcal{S}^{\cup} \implies S^+$ is an equivalence relation on Ω

Definition

A scheme is called symmetric (antisymmetric) if every $S \neq 1_{\Omega}$ is symmetric (anti-symmetric, resp.). A scheme is called commutative if its adjacency algebra is commutative.

Definition

A scheme is called symmetric (antisymmetric) if every $S \neq 1_{\Omega}$ is symmetric (anti-symmetric, resp.). A scheme is called commutative if its adjacency algebra is commutative.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition

A symmetric scheme is always commutative.

Definition

A scheme is called symmetric (antisymmetric) if every $S \neq 1_{\Omega}$ is symmetric (anti-symmetric, resp.). A scheme is called commutative if its adjacency algebra is commutative.

Proposition

A symmetric scheme is always commutative.

Proposition

•
$$\sum_{S\in\mathcal{S}} n_S = |\Omega|;$$

Definition

A scheme is called symmetric (antisymmetric) if every $S \neq 1_{\Omega}$ is symmetric (anti-symmetric, resp.). A scheme is called commutative if its adjacency algebra is commutative.

Proposition

A symmetric scheme is always commutative.

Proposition

•
$$\sum_{S\in\mathcal{S}}n_S=|\Omega|;$$

•
$$2 \leq |\mathcal{S}| \leq |\Omega|;$$

Definition

A scheme is called symmetric (antisymmetric) if every $S \neq 1_{\Omega}$ is symmetric (anti-symmetric, resp.). A scheme is called commutative if its adjacency algebra is commutative.

Proposition

A symmetric scheme is always commutative.

Proposition

$$\sum_{S\in\mathcal{S}}n_S=|\Omega|;$$

•
$$2 \leq |\mathcal{S}| \leq |\Omega|;$$

•
$$|\mathcal{S}| = 2 \iff \mathcal{S} = \{\mathbf{1}_{\Omega}, \Omega^2 \setminus \mathbf{1}_{\Omega}\};$$

Definition

A scheme is called symmetric (antisymmetric) if every $S \neq 1_{\Omega}$ is symmetric (anti-symmetric, resp.). A scheme is called commutative if its adjacency algebra is commutative.

Proposition

A symmetric scheme is always commutative.

Proposition

•
$$2 \leq |\mathcal{S}| \leq |\Omega|;$$

$$\bullet \ |\mathcal{S}| = 2 \iff \mathcal{S} = \{\mathbf{1}_{\Omega}, \Omega^2 \setminus \mathbf{1}_{\Omega}\};$$

$$|\mathcal{S}| = |\Omega| \iff \forall_{S \in \mathcal{S}} n_S = 1$$

Primitive and Imprimitive schemes

Definition

A scheme (Ω, S) is called imprimitive if S^{\cup} contains a non-trivial and non-discrete equivalence relation E. The equivalence classes $\omega E, \omega \in \Omega$ form a partition of Ω called imprimitivity system of S.

Proposition

If
$$E \in S^{\cup}$$
 is an equivalence. Then $|\Omega/E| \cdot n_E = |\Omega|$.

Proposition

The following are equivalent

S is imprimitive;

$$\blacksquare \ \exists \ \mathcal{S} \in \mathcal{S}, \mathcal{S}
eq 1_\Omega \ ext{s.t} \ \mathcal{S}^+
eq \Omega^2;$$

• $\exists \ T \subset S, 1 < |T| < |S|$ s. t. $\langle A(T) \rangle_{T \in T}$ is a subalgebra of $\mathbb{Q}[S]$

Recall that a scheme (Ω, S) is schurian iff there exists $G \leq Sym(\Omega)$ s.t. S = Inv(G).

- G is transitive on Ω ;
- ωS is an orbit of G_{ω} for each $\omega \in \Omega$ and $S \in S$;
- the mapping S → {g ∈ G | ω^g ∈ ωS} is a bijection between the basic relations of S and double cosets of G_ω.
- a rescaling of the above mapping is an isomorphism between the adjacency algebra $\mathbb{F}[S]$ and the Hecke algebra $\mathbb{F}(G_{\omega} \setminus G/G_{\omega})$;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• G is primitive iff Inv(G) is primitive.