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The Cage Problem

I A (k , g)-graph is a k-regular graph and girth g

I n(k , g) = the order of a smallest (k, g)-graph
I a (k , g)-graph of the smallest order is called a (k , g)-cage

The Cage Problem:

For a given pair of parameters (k, g), k ≥ 3, g ≥ 3, find the value
n(k , g) and at least one (k , g)-graph of order n(k , g).

I This is an Extremal Graph Theory Problem.
I It is not immediately obvious that for any pair of parameters

(k , g), k ≥ 3, g ≥ 3 there exists at least one (k, g)-graph
I The set of all (k, g)-graphs for a pair of parameters (k , g)

might be infinite and we may not know how to efficiently
construct all such graphs

I The order of n(k , g) grows for a fixed k exponentially with
respect to g
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Applications of Cages

I Regular graphs have a wide range of applications in
Network Design.
I If all vertices of the graph are of the same degree, they can be

mass produced.
I Choosing a small graphs makes the network efficient and

cheap.

I Small graphs of large girth are used in the construction of the
LDPC codes, Low Density Parity Check Codes.
I LDPC codes are linear error correcting codes whose generating

matrices contain very few 1’s.
I The speed of the decoding is directly related to the girth of the

related graph.
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Examples of Cages

Petersen graph Heawood graph Tutte graph

k = 3, g = 5 k = 3, g = 6 k = 3, g = 8
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Ancient History

I Tutte: A family of cubical graphs, 1947

I Hoffman and Singleton: On Moore graphs with diameter 2
and 3, 1960

I Feit and Higman: The non-existence of certain generalized
polygons, 1964

Theorem (Erdös and Sachs, 1963, Sachs 1963)

Infinitely many (k , g)-graphs exist for all pairs (k, g), k ≥ 2, g ≥ 3.
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Future?

I Finding cages requires two steps:
I a good construction of a (k , g)-graph, and
I a proof that there is no smaller (k , g)-graph

I Since proofs are hard to get by, one usually settles for

Record Graphs,

i.e., one finds a good construction and gives up on proving
that the obtained graph is the smallest possible; just compares
to the graphs obtained by others.
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Record Cubic Cages

Girth Lower Upper Author(s)
g bound bound

13 202 272 McKay-Myrvold; Hoare
14 258 384 McKay; Exoo
15 384 620 Biggs
16 512 960 Exoo
17 768 2176 Exoo
18 1024 2560 Exoo
19 1536 4324 Hoare, H(47)
20 2048 5376 Exoo
21 3072 16028 Exoo
22 4096 16206 Biggs-Hoare, S(73)
23 6144 49326 Exoo
24 8192 49608 Bray-Parker-Rowley
25 12288 108906 Exoo
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Record Cubic Cages

Girth Lower Upper Author(s)
g bound bound

26 16384 109200 Bray-Parker-Rowley
27 24576 285852 Bray-Parker-Rowley
28 32768 415104 Bray-Parker-Rowley
29 49152 1141484 Exoo-Jajcay
30 65536 1143408 Exoo-Jajcay
31 98304 3649794 Bray-Parker-Rowley
32 131072 3650304 Bray-Parker-Rowley

G. Exoo and R. Jajcay, Dynamic cage survey, Electron. J. Combin.
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How to Become a Record Holder?

I The three examples from the beginning of the talk suggest
that one class of graphs to look at is the class of highly
symmetric graphs

I Highly symmetric graphs look all the same at each vertex

I Highly symmetric graphs usually have a compact description
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Highly Symmetric Graphs

A graph is called vertex-transitive if there exists a graph
automorphism mapping u to v for any pair of vertices u, v .

Known Cubic Cages:

girth 5 6 7 8 9 10 11 12
order 10 14 24 30 58 70 112 126
# of cages 1 1 1 1 18 3 1 1

# of sym’s 120 336 32 1440 ≤ 24 ≤ 120 64 12,096

Theorem (Nedela, Škoviera (2001))

For every pair (k , g), there exists a vertex-transitive graph of
degree k and girth g.
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Current Record Holders - Infinite Families

I Sextet Graphs, Hexagons, Biggs and Hoare, based on finite
fields GF (q)

I The Lubotzky-Phillips-Sarnak Construction, based on
Cayley graphs of linear groups

I Loz, Miller, Šiagiová, Širáň, and Tomanová have shown that
all the smallest known vertex-transitive graphs of a given
degree and girth 6 are Cayley graphs.

Note: Vertex-transitive graphs are the same locally around each
vertex, and each vertex lies on the same system of cycles, and so if
there are no short cycles in the neighborhood of one vertex, then
there are no short cycles at all.
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Cayley Graphs

Γ, a finite group
X = {x1, x2, . . . , xk}, a generating set,
X = X−1, 1Γ 6∈ X .
Cay(Γ,X ) has Γ for its set of vertices and each g is adjacent to all
the vertices gx1, gx2, . . . , gxk .
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Cayley Graph - Example

G = Zm × Zn, X = {(1, 0), (0, 1), (m − 1, 0), (0, n − 1)}
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The Existence of Cayley Graphs of Given Degree and Girth
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The Existence of Cayley Graphs of Given Degree and Girth

Theorem (Biggs)

Given any k , g ≥ 3, there is k-regular graph G whose girth is at
least g.

Proof.

I k, g ≥ 3, r = bg2 c,
I Tk,r , the finite tree of radius r and degree k,
I color the edges of Tr ,k by k colors; no two adjacent edges of

the same color,
I for each color i , let αi denote the involutory permutation of

the vertices of Tk,r :

αi (u) = v if and only if the edge {u, v} is colored by i .

I Γ = 〈X 〉 = 〈α1, α2, . . . , αk〉
I the k-regular graph C (Γ,X ) has girth at least g . �
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The Existence of Cayley Graphs of Given Degree and Girth

Theorem (Širáň, RJ (2009))

For every pair (k , g), there exists a Cayley graph of degree k and
girth g.

We have three proofs by now:

I factorization of infinite maps (taking advantage of residual
finiteness)

I adding edges to Biggs’ construction

I constructing Cayley graphs from permutations obtained from
ordinary (k , g)-graphs
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Girth of a Cayley Graph

The oriented edges of a Cayley graph are ‘colored’ by the elements
in X

=⇒
each closed walk in a Cayley graph is associated with a
reduced word w(x1, x2, . . . , xk) ∈ X ∗ satisfying the condition

w(x1, x2, . . . , xk) = 1Γ.

Conversely, each reduced word w(x1, x2, . . . , xk) satisfying

w(x1, x2, . . . , xk) = 1Γ

gives rise to a closed walk in Cay(Γ,X ).

Theorem

The girth of Cay(Γ,X ) is equal to the length of the shortest
non-trivial reduced word w(x1, x2, . . . , xk) equal to 1Γ.
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Girth of a Cayley Graph

The girth of Cay(Γ,X ) is equal to the length of the shortest
non-trivial reduced word w(x1, x2, . . . , xk) equal to 1Γ.

Example: Girth of a Cayley Graph of an Abelian Group
Since X is closed under taking inverses, for any pair of distinct
generators xi , xj ∈ X , there exists a path in the Cayley graph
labeled by the non-trivial reduced word

xixjx
−1
i x−1

j

=⇒

If Γ is abelian, then xixjx
−1
i x−1

j = xix
−1
i xjx

−1
j = 1Γ

=⇒

any Caley graph of an abelian group Γ is of girth at most 4.
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General Bounds for the Girth of the Cayley Graphs of
Nilpotent Groups

The class of nilpotent groups is the class of groups that is widely
considered to be ‘the closest’ to the abelian groups.

Theorem (Conder, Exoo, RJ (2009))

If N is a finite nilpotent group of nilpotency ν, generated by a set
of X of size at least 3, then

girth of Cay(N,X ) ≤ (ν + 1)2
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General Bounds for the Girth of the Cayley Graphs of
Solvable Groups

Theorem (Exoo,Conder, RJ (2009))

If Γ is a solvable group with derived series of length n, then any
Cayley graph of Γ of degree at least 3 has girth at most 4n.

I There exists a group Γ of derived length 2 and a cubic Cayley
graph Cay(Γ,X ) with girth 14.

I This Cayley graph was a long-standing record-holder for girth
14 constructed by Hoare.

I It was improved by a voltage graph construction by Exoo,
rec(3, 14) = 384.
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14 constructed by Hoare.

I It was improved by a voltage graph construction by Exoo,
rec(3, 14) = 384.
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Voltage Graph Construction

I G , an undirected graph;

I each edge replaced by a pair of opposing arcs;

I the set of all arcs denoted by D(G ).

Definition

A voltage assignment on G is any mapping α from D(G ) into a
group Γ that satisfies the condition α(e−1) = (α(e))−1 for all
e ∈ D(G ).
The derived regular cover (lift) of G with respect to the voltage
assignment α is the graph denoted by Gα.

I V (Gα) = V (G )× Γ,

I ug and vf are adjacent iff e = (u, v) ∈ D(G ) and f = g ·α(e).
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Voltage Graph Construction - Example
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Voltage Graph Construction - Example
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Girth of a Voltage Graph

Once again, the arcs of the base graph are colored by the elements
in Γ

=⇒

each “non-path-reversing” closed walk in the base graph is
associated with a reduced word w(α(D(G ))).

If w(α(D(G ))) happens to be equal to 1Γ, the lift Gα contains a
cycle of length at most |w(α(D(G )))|.

Note, however, that (unlike the case of Cayley graphs) not every
reduced word w(α(D(G ))) satisfying w(α(D(G ))) = 1Γ gives rise
to a cycle in the lift.
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Girth of a Voltage Graph

I For example, we cannot read aba−1b−1 in the θ-graph – the
only characters that can ever follow after a are the characters
b−1 and 1Γ.

I Nevertheless, entering identities allows us to travel in the
opposite direction, and so entering just two identities into
aba−1b−1 makes reading the expanded word possible:

a1Γba
−11Γb

−1

I The girth of the lift of the θ-graph via an abelian voltage
assignment is 6

I Voltage graph constructions generally outperform Cayley
graphs in record constructions

robert.jajcay@fmph.uniba.sk Group based constructions of cages



Girth of a Voltage Graph

I For example, we cannot read aba−1b−1 in the θ-graph – the
only characters that can ever follow after a are the characters
b−1 and 1Γ.

I Nevertheless, entering identities allows us to travel in the
opposite direction, and so entering just two identities into
aba−1b−1 makes reading the expanded word possible:

a1Γba
−11Γb

−1

I The girth of the lift of the θ-graph via an abelian voltage
assignment is 6

I Voltage graph constructions generally outperform Cayley
graphs in record constructions

robert.jajcay@fmph.uniba.sk Group based constructions of cages



Girth of a Voltage Graph

I For example, we cannot read aba−1b−1 in the θ-graph – the
only characters that can ever follow after a are the characters
b−1 and 1Γ.

I Nevertheless, entering identities allows us to travel in the
opposite direction, and so entering just two identities into
aba−1b−1 makes reading the expanded word possible:

a1Γba
−11Γb

−1

I The girth of the lift of the θ-graph via an abelian voltage
assignment is 6

I Voltage graph constructions generally outperform Cayley
graphs in record constructions

robert.jajcay@fmph.uniba.sk Group based constructions of cages



Girth of a Voltage Graph

I For example, we cannot read aba−1b−1 in the θ-graph – the
only characters that can ever follow after a are the characters
b−1 and 1Γ.

I Nevertheless, entering identities allows us to travel in the
opposite direction, and so entering just two identities into
aba−1b−1 makes reading the expanded word possible:

a1Γba
−11Γb

−1

I The girth of the lift of the θ-graph via an abelian voltage
assignment is 6

I Voltage graph constructions generally outperform Cayley
graphs in record constructions

robert.jajcay@fmph.uniba.sk Group based constructions of cages



Girth of Voltage Graphs with Nilpotent Voltages

Theorem (Exoo, RJ)

Let Γ be a nilpotent group of nilpotency ν. The girth g of any
lift of a base graph containing θ(`1, `2, `3) using voltages from Γ is
bounded above by

[`1 + `3](ν + 1)2 (1)

The girth g of any lift of a base graph containing DB(j1, j2, j3)
using voltages from Γ is bounded above by

[max(j1, j3) + j2)](ν + 1)2 (2)

The corresponding bound for Cayley graphs was simply (ν + 1)2, while

`1 + `3 ≥ 2 and max(j1, j3) + j2 ≥ 2.
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Girth of Voltage Graphs with Solvable Voltages

Theorem (Exoo, RJ)

Let Γ be a solvable group of derived length δ. The girth g of any
lift of a base graph containing θ(`1, `2, `3) using voltages from Γ is
bounded above by

[`1 + `3]4δ (3)

The girth g of any lift of a base graph containing DB(j1, j2, j3)
using voltages from Γ is bounded above by

[max(j1, j3) + j2)]4δ (4)

The corresponding bound for Cayley graphs was simply 4n, while

`1 + `3 ≥ 2 and max(j1, j3) + j2 ≥ 2.
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Record Cubic Cages using Voltage Graphs

Girth Lower Upper Due to
g Bound Bound

25 12288 108906 Exoo
26 16384 109200 Bray-Parker-Rowley
27 24576 285852 Bray-Parker-Rowley
28 32768 415104 Bray-Parker-Rowley
29 49152 1141484 Exoo-Jajcay
30 65536 1143408 Exoo-Jajcay
31 98304 3649794 Bray-Parker-Rowley
32 131072 3650304 Bray-Parker-Rowley
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Record Cubic Cages Obtained Using Bi-Coset Graphs

Girth Lower Upper Due to
g Bound Bound

25 12288 1089 Exoo
26 16384 109200 Bray-Parker-Rowley
27 24576 285852 Bray-Parker-Rowley
28 32768 368640 Erskine-Tuite
29 49152 805746 Erskine-Tuite
30 65536 806736 Erskine-Tuite
31 98304 1440338 Erskine-Tuite
32 131072 1441440 Erskine-Tuite
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Coset graphs

Definition (J.Tits, 1956)

Let G be a finite group and H1,H2, . . . ,Hk be subgroups of G with
a core-free intersection,

⋂
g∈G g−1Hig = 〈1G 〉.

The coset graph Γ(G ;H1,H2,...,Hk ) is the graph whose vertices are
the cosets of the subgroups Hi , 1 ≤ i ≤ k , with the adjacency
determined by non-empty intersection.

Observation. If k ≥ 3, the girth of Γ(G ;H1,H2,...,Hk ) is 3:

The subgraph induced by the cosets H1,H2,H3 is a triangle.
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Bi-coset graphs

Definition

Let G be a finite group and H,K be subgroups of G with a
core-free intersection,

⋂
g∈G g−1(H ∩ K )g = 〈1G 〉.

The bi-coset graph Γ(G ;H,K) is the bipartite graph whose vertices
V (Γ(G ;H,K)) = V1 ∪ V2 are the cosets of H and K in G ,

V1 = {1GH, g2H, g3H, . . . g|G |/|H|H},
V2 = {1GK , f2K , f3K , . . . f|G |/|K |K},

and the adjacency relation is defined via non-empty intersection:
giH is adjacent to fjK if and only if giH ∩ fjK 6= ∅.

I Equivalently, giH and fjK are adjacent if and only if
g−1
i fj ∈ HK and f −1

j gi ∈ KH
I The vertices in V1 are of degree |H|/|H ∩ K |, the vertices in

V2 are of degree |K |/|H ∩ K |. Thus, if |H| = |K |, then
Γ(G ;H,K) is regular of degree |H|/|H ∩ K |
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Fundamental properties of bi-coset graphs

I A bi-coset graph Γ(G ;H,K) is connected if and only if
〈H,K 〉 = G .

I Every element g ∈ G induces via its action on the cosets of H
and K a graph automorphism δg :

δg (giH) = (ggi )H, δg (fjK ) = (gfj)K

I Since the left multiplication action of G on the cosets of any
of its subgroups is transitive, the full automorphism group of
Γ(G ;H,K) acts transitively on both bipartite sets V1 and V2

I The full automorphism group of Γ(G ;H,K) acts transitively on
the edges of Γ(G ;H,K), and thus Γ(G ;H,K) is either
semi-symmetric (when not vertex-transitive) or symmetric
(i.e., arc- and vertex-transitive)
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The girth of a bi-coset graph

Lemma (Gyürki, RJ, Jánoš, Širáň, Wang, 2022)

Let G be a finite group and K ,H ≤ G be two non-trivial
subgroups of G with a core-free intersection. Then the bi-coset
graph Γ(G ;H,K) has a cycle of length 2r , r ≥ 2, if and only if there
exist sequences of non-identity elements h1, h2, . . . , hr ∈ H and
k1, k2, . . . , kr ∈ K such that

h1k1h2k2 . . . hrkr = 1G .

Corollary

The girth of the bi-coset graph Γ(G ;H,K) is equal to 2r , with r ≥ 1
being the smallest positive integer for which there exist sequences
of non-identity elements h1, h2, . . ., hr ∈ H and k1, k2, . . . , kr ∈ K
such that

h1k1h2k2 . . . hrkr = 1G .
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Easy examples of bi-coset graphs of girth 4

Example

G = Zk × Zk , k > 2, H = 〈(1, 0)〉, and K = 〈(0, 1)〉, gives rise to
Γ(G ;H,K) isomorphic to the k-regular complete bipartite graph Kk,k

of girth 4

(1, 0) + (0, 1) + (k − 1, 0) + (0, k − 1) = (0, 0)

Lemma (Gyürki, RJ, Jánoš, Širáň, Wang, 2022)

The girth of any Γ(G ;H,K) in which the elements from H and K
commute is less than or equal to 4, and if G = HK,
|H| = |K | = n, the graph Γ(G ;H,K) is Kn,n.
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Example of girth 6

Example

I Let G be the group Z3 × Z3 with permutation representation
〈(1, 2, 3), (4, 5, 6)〉. If H = 〈(1, 2, 3)〉 and K = 〈(4, 5, 6)〉, then
Γ(G ;H,K)

∼= K3,3 of order 6 and girth 4.

I Adding ϕ = (1, 2, 3), constructing Ĝ = G o ϕ, and using
subgroups Ĥ = 〈(7, 8, 9)(13, 15, 14)〉 and K̂ =
〈(1, 7, 13)(2, 8, 14)(3, 9, 15)(4, 11, 18)(5, 12, 16)(6, 10, 17)〉
yields a connected component of a bi-coset graph of order 18,
valency 3, and girth 6.

The full group of automorphisms of this graph is of order 216
and it is the well-known Pappus graph.
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Regular bi-coset graphs of fixed degree and unbounded
girths

Theorem (Gyürki, RJ, Jánoš, Širáň, Wang, 2022)

For every k ≥ 3, there exists a bi-coset (k , g)-graph with arbitrarily
large girth g.

robert.jajcay@fmph.uniba.sk Group based constructions of cages



Record Cubic Cages

Girth Lower Upper Due to
g Bound Bound

25 12288 1089 Exoo
26 16384 109200 Bray-Parker-Rowley
27 24576 285852 Bray-Parker-Rowley
28 32768 368640 Erskine-Tuite
29 49152 805746 Erskine-Tuite
30 65536 806736 Erskine-Tuite
31 98304 1440338 Erskine-Tuite
32 131072 1441440 Erskine-Tuite
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Comparing the Three Constructions with Regard to
Constructions of Cages

I ‘Evidence’ suggests that voltage lifts are better than Cayley
graphs, and the bi-coset graphs are better than voltage lifts

I Bi-coset graphs are bipartite, and so one cannot use bi-coset
graphs to construct odd girth graphs (at least not directly)

I In all three constructions, it appears to be the case, that
‘more complicated’ groups produce better results; so it is hard
to deduce conclusions based on the computational evidence

I Gyürki, Jánoš and Širáň have results on when a bi-coset graph
is a lift; so sometimes we are talking about the same graphs
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Canonical Double Cover

Definition

Let Γ be a finite graph. We say that Γα is a canonical double
cover of Γ if the voltage group is Z2 and each dart of Γ receives
the voltage assignment 1 ∈ Z2.

I

Figure: Canonical Double Covers of C4 and C5

I The canonical double cover of the Petersen graph of girth 5 is
the Desargues graph, which has 20 vertices and girth 6.

robert.jajcay@fmph.uniba.sk Group based constructions of cages



Canonical Double Cover

Definition

Let Γ be a finite graph. We say that Γα is a canonical double
cover of Γ if the voltage group is Z2 and each dart of Γ receives
the voltage assignment 1 ∈ Z2.

I

Figure: Canonical Double Covers of C4 and C5

I The canonical double cover of the Petersen graph of girth 5 is
the Desargues graph, which has 20 vertices and girth 6.

robert.jajcay@fmph.uniba.sk Group based constructions of cages



Canonical Double Cover

Definition

Let Γ be a finite graph. We say that Γα is a canonical double
cover of Γ if the voltage group is Z2 and each dart of Γ receives
the voltage assignment 1 ∈ Z2.

I

Figure: Canonical Double Covers of C4 and C5

I The canonical double cover of the Petersen graph of girth 5 is
the Desargues graph, which has 20 vertices and girth 6.

robert.jajcay@fmph.uniba.sk Group based constructions of cages



Canonical Double Cover

Lemma

Let Γα be the canonical double cover of a graph Γ, then

1. |V (Γα)| = 2× |V (Γ)|, |E (Γα)| = 2× |E (Γ)|;
2. Γα is a bipartite graph;

3. Γα is connected if and only if Γ is connected and
non-bipartite;

4. If C is a cycle in Γ of odd length 2r + 1, the preimage of C in
Γα (the lift of C in Γα) is a cycle of the double length 4r + 2;

5. If C is a cycle in Γ of even length 2r , the lift of C in Γα is a
pair of cycles of length 2r ;

6. If Γ is k-regular, Γα is also k-regular.

If g is odd,
n(k , g + 1) ≤ 2n(k , g)
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Canonical Double Covers and Cayley Graphs

Theorem

Let Γ = C(G ,S), S = {s1, s2, . . . , sk}. The Cayley graph
Γ = C(G × Z2, {(s1, 1), (s2, 1), . . . , (sk , 1)}) is the canonical double
cover of Γ.
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Lifts of Cayley Graphs and Canonical Double Covers

I Let C(G ,S) be a Cayley graph.

I Consider the base graph Γ = (V ,E ) which is a dipole
consisting of two vertices and |S | multiple parallel edges. Take
G to be the voltage group, and let α assign to each edge of Γ
a unique element of S .

Figure: Lift Graph of the Cayley Graph G = Z2
2
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Lifts of Cayley Graphs and Canonical Double Covers

Theorem

Let C(G ,S) be a Cayley graph. The lift of the dipole graph with
|S | parallel edges is isomorphic to the canonical double cover of
C(G , S).
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Odd Girth Graphs from Even Girth Graphs

Theorem (L. Eze, RJ)

There is no α ∈ R such that for any k ≥ 3 and even g ≥ 4,
n(k , g + 1) ≤ αn(k , g).

Proof: Based on an analysis of the Moore bound.
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Recursive Construction of (k + 1, 6)-Graphs from
(k , 6)-Graphs

I Select a perfect matching for a bipartite k-regular Γ

I Let Γ̃ be the multigraph obtained from Γ by adding a parallel
edge to each of the edges of the perfect matching of Γ

I Γ̃ is a (k + 1)-regular multigraph
I Let G = Z3, and assign the voltage 0 to all darts originating

from the old edges of Γ̃ and assign the voltage 1 to the darts
formed from the new edges of Γ̃

Lemma (L. Eze, RJ)

I Γ̃α is a (k + 1)-regular bipartite graph.

I If Γ is a bipartite k-regular graph of girth 6, then Γ̃α is a
(k + 1)-regular graph of girth 6 and order the 3-multiple of
the order of Γ.

I n(k + 1, 6) ≤ 3n(k , 6)
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Recursive Construction of (k + 1, 6)-Graphs from
(k , 6)-Graphs

Figure: Base graph Γ̃ and lift graph Γ̃α
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Thank you
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