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Binary relations

Let R,S ⊆ Ω2 be binary relations. Then

S∗ := {(α, β) | (β, α) ∈ S};
S is symmetric (antisymmetric) if S = S∗ (S ∩ S∗ = ∅ resp.);

αS := {β | (α, β) ∈ S},Sα := αS∗;

D(S) := {α ∈ Ω |αS 6= ∅},R(S) := D(S∗);

RS = {(α, β) |αR ∩ Sβ 6= ∅};
R+ =

⋃∞
i=1 R

i is the transitive closure of R;

1Ω := {(ω, ω) |ω ∈ Ω}
Each permutation g ∈ Sym(Ω) is considered as a binary relation.
Thus αg = {αg} and g∗ = g−1.



Partitions.

P ` Ω means that P is a partition of Ω.

P v C ⇐⇒ C is a refinement of P (in particular, |P| ≤ |C|);

Lattice operations are denoted as P ∨ C and P ∧ C;

if P ` Ω then P∪ denotes the set of all possible unions of
elements in P;

C ` Ω2 =⇒ C∗ := {C ∗ |C ∈ C};



Graphs.

In what follows graph is a pair Γ = (Ω,E ) where Ω is a finite set of
vertices and E ⊂ Ω× Ω is the set of arcs; Γ is undirected if
E ∗ = E .

Definition.

Graphs Γ1 = (Ω1,E1) and Γ2 = (Ω2,E2) are called isomorphic,
Γ1
∼= Γ2, if there is a bijection f : Ω1 → Ω2 such that

∀α1, β1 ∈ Ω1 : (αf
1, β

f
1 ) ∈ E2 ⇔ (α1, β1) ∈ E1.

Such a bijection is called an isomorphism from Γ1 to Γ2; the set of
all of them is denoted by Iso(Γ1, Γ2).The set Iso(Γ1, Γ1) is known
as the automorphism group of Γ1, notation Aut(Γ1).
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An isomorphism

f =

(
1 2 3 4 5 6
1 3 5 2 4 6

)

Aut(Γ) = (S3 × S3).S2.
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The Graph Isomorphism Problem (GI).

GI is to find the computational complexity of the problem:

given two graphs Γ1 and Γ2 test whether or not Γ1
∼= Γ2.

Given graphs Γ1 and Γ2 of order n, and a bijection f : Ω1 → Ω2 one
can test in time O(n2) whether f ∈ Iso(Γ1, Γ2).

Therefore GI∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether GI∈P.

It does not matter whether the graphs Γ and Γ′ are

-undirected, directed, regular, colored etc.

Theorem (L.Babai, 2015).

The isomorphism of n-vertex graphs can be tested in time exp((log n)c).
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Some problems equivalent to the GI (R.Mathon,1979).

The following problems are equivalent to the GI:

ICOUNT: given Γ and Γ′ find | Iso(Γ, Γ′)|,

ACOUNT: given Γ find |Aut(Γ)|,
AGEN: given Γ find generators of the group Aut(Γ),

APART: given Γ find Orb(Aut(Γ)).
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Isomorphism problem for colored graphs.

Definition.

A triple Γ = (Ω,Y , c) where c : Ω2 → Y is a surjection, is called a
colored graph with the coloring function c and color classes
c−1(y), y ∈ Y . Each colored graph determines a partition
C := {c−1(y) | y ∈ Y } of Ω2.

Two colored graphs Γ = (Ω,Y , c) and Γ′ = (∆,Z , d) are
isomorphic iff there exist bijections f : Ω→ ∆,φ : Y → Z s.t.

d(αf , βf ) = c(α, β)φ.

Notice that φ is uniquely determined by f . For this reason we
define f ∗ := φ.
The adjacency matrix A(Γ) of Γ = (Ω,Y , c) is defined as follows:

(A(Γ))α,β = c(α, β), α, β ∈ Ω.
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Isomorphism problem for colored graphs.

We also set Iso(Ω,Y , c) to be the group of all isomorphisms from
(Ω,Y , c) to itself and Aut(Ω,Y , c) to be the normal subgroup of
Iso(Ω,Y , c) which does not permute the colors (that is f ∗ = 1Y ).

Proposition

Let (Ω,Y , c) be a colored graph and C := {c−1(y) | y ∈ Y } be the
corresponding partition. Then

Iso(Ω,Y , c) = {g ∈ Sym(Ω) | Cg = C},
Aut(Ω,Y , c) = {g ∈ Sym(Ω) | ∀C∈CC g = C}.

Theorem.

Isomorphism problem for colored graphs is polynomially equivalent
to GI.



Cayley Graphs and their Isomorphisms.

A Cayley graph over a finite group H defined by a connection set
S ⊆ H has H as a set of nodes and arc set

Cay(H,S) := {(x , y) | xy−1 ∈ S}

. A circulant graph is a Cayley graph over a cyclic group.

Definition

Two Cayley graphs Cay(H,S) and Cay(K ,T ) are Cayley
isomorphic if there exists a group isomorphism f : H → K which is
a graph isomoprhism too, that is

Cay(H, S)f = Cay(K ,T ) ⇐⇒ S f = T .

The graphs Cay({±1},Z5) and Cay({±2},Z5) are Cayley
isomorphic.



Cayley representations of graphs.

An automorphism of a Cayley graph Cay(H,S) contains a regular
subgroup HR consisting of right translations hR , h ∈ H:

xhR = xh, x ∈ H.

Theorem (Sabidussi)

A graph Γ = (Ω,E ) is isomorphic to a Cayley graph over a group
H iff Aut(Γ) contains a regular subgroup isomorphic to H.

Proof.

• Pick a base point ω ∈ Ω.

• Define a bijection f : Ω→ H, α 7→ ᾱ where ωᾱ = α.

• Set S = {ᾱ : α ∈ Eω}.
• Now f ∈ Iso(Γ,Cay(H,S)) :

(α, β) ∈ E ⇔ (ωᾱ, ωβ̄) ∈ E ⇔ (ωᾱβ̄
−1
, ω) ∈ E ⇔ ᾱβ̄−1 ∈ S .
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−1
, ω) ∈ E ⇔
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Isomorphism problems for Cayley graphs.

Given Γ = Cay(H,S) and Γ′ = Cay(H,S ′):

IMAP: find f ∈ Iso(Γ, Γ′) (if it exists),

ICOUNT: find | Iso(Γ, Γ′)|,
ACOUNT:find |Aut(Γ)|,
AGEN: find generators of the group Aut(Γ),

CGR: given a graph Θ find whether it’s a Cayley graph over a
group H.



Isomorphism problem for finite groups.

Construction. Let K be a finite group.

Define a graph Γ(K ) with vertex set K × K and edges:
(a, b) ∼ (c , d) ⇐⇒ a = c ∨ b = d ∨ ab = cd .

Theorem (E. Moorhouse) K1
∼= K2 ⇐⇒ Γ(K1) ∼= Γ(K2).

Exercise. Prove that Γ(K ) is a Cayley graph over K × K .

Exercise. Prove that Γ(Z4) 6∼= Γ(Z2 × Z2).

Z4 →

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Z2 × Z2 →

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

The isomorphism of groups of order n can be tested in time
nO(log n).
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Naive vertex classification.

Vertex partition by valences.

Denote by dΓ(α) the valency of the vertex α in the graph Γ;the
valency of α in a color class is denoted by dΓ(α,C ).

To find Orb(Aut(Γ)) put vertices α and β in the same class iff
dΓ(α) = dΓ(β).

Iteratively, put vertices α and β in the same class iff
dΓ(α,C ) = dΓ(β,C ) for all color classes C .

Comments.

The algorithm correctly finds Orb(Aut(Γ)) for the class of
trees (G.Tinhofer, 1985), for almost all graphs (L.Babai,
P.Erdös, S.Selkow, 1980).

The algorithm fails when Γ is a regular graphs and the group
Aut(Γ) is intransitive.
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The Weisfeiler-Leman algorithm, 1968.

No automorphism moves red points to blue ones.

• • •
•

• • •

To distinguish vertices we need to color edges of Γ.

Algorithm. Set C = {1Ω} ∪ {E} ∪ {(Ω× Ω) \ E}.

For all (α, β) ∈ Ω× Ω and R,S ∈ C find the intersection
number

c(α, β;R,S) = |αR ∩ Sβ|.

Build a new partition Y(C) by putting (α, β) and (α′, β′) to
the same class of Y(C) if |αR ∩ Sβ| = |α′R ∩ Sβ′| for all
R,S ∈ C.

Repeat the procedure till |C| stops to increase.
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The WL-algorithm. Very small example
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The matrix A is stable, that is A2 produces the same coloring as A
does.
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WL-refinement (operation Y)

Properties

C v S =⇒ Y(C) v Y(S);

C∗ = C =⇒ Y(C)∗ = Y(C);

1Ω ∈ C∪ =⇒ C v Y(C);

Proposition

Let f : Ω→ ∆ be a bijection that maps a partition C of Ω2 onto a
paritition T of ∆2 (i.e. Cf = T ). Then Y(C)f = Y(T ).

Given an ordered partition ~C = (S1, ...,Sm) of Ω2 the
WL-algorithm produces a unique (canonical) ordering of the
refinement Y(C) (denoted as Y(~C)) with the following property:

~Cf = ~T =⇒ Y(~C)f = Y(~T )
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Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, C) such that:

C is a partition of Ω× Ω,

1Ω ∈ C∪,

C∗ = C ,

C = Y(C),that is for all R, S ,T ∈ C the intersection number
cTRS = |αR ∩ Sβ| does not depend on the choice of
(α, β) ∈ T .

the degree and rank of X are the numbers |Ω| and |C|,
the basic relations and relations of X are the relations of C
and of C∪.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ C.
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Coherent configurations: a concrete example.
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Coherent configurations. Fibers and relations.

A fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ C; the set of all fibers
is denoted by Φ = Φ(X ).

Thus X is a scheme iff |Φ| = 1.

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆,

for any S ∈ C the sets D(S) and R(S) are fibres of X ,

for any S ∈ C and α ∈ D(S) we have |αS | = cTSS∗ where
T = 1D(S).

for any fiber ∆ ∈ Φ the set of relations
C∆ := {C ∈ C |D(C ) = ∆,R(C ) = ∆} form a homogeneous
co.co. on ∆, called a homogeneous constituent of C.

The number nS = cTSS∗ is called the valency of S .
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T = 1D(S).

for any fiber ∆ ∈ Φ the set of relations
C∆ := {C ∈ C |D(C ) = ∆,R(C ) = ∆} form a homogeneous
co.co. on ∆, called a homogeneous constituent of C.

The number nS = cTSS∗ is called the valency of S .
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Properties of coherent configurations.

Proposition

Let X = (Ω, C) be a co.co. Then

the set C∪ is closed w.r.t. boolean operations;

1Ω,Ω
2 ∈ C∪;

(C∪)∗ = C∪;

C∪ is closed w.r.t. relational product;



Isomorphisms between coherent configurations

Definition

Two coherent configuration X = (Ω, C) and X ′ = (Ω′, C′) are
called (combinatorially) isomorphic iff there exist bijections
f : Ω→ Ω′, φ : C → C′ such that

∀α,β∈Ω (α, β) ∈ C ⇐⇒ (αf , βf ) ∈ Cφ.

The set of all isomorphisms between X and X ′ is denoted as
Iso(X ,X ′). Notice that φ is uniquely determined by f .

In what follows we set Iso(X ) := Iso(X ,X ). We call the elements
of this group colored automorphisms of the configuration.



Coherent configurations generated by a graph.

The mapping (f , φ) 7→ φ is an group homomorphism from Iso(X )
into Sym(C). The kernel of this homomorphism denoted as
Aut(X ) is called the the automorphism group of X :

Aut(X ) = {f ∈ Sym(Ω) : S f = S for all S ∈ C}

Theorem

Let 〈〈Γ〉〉 be the WL-closure of a graph Γ = (Ω,E ) obtained by
applying WL-algorithm to Γ. Then

E ∈ 〈〈Γ〉〉∪;

Aut(Γ) = Aut(〈〈Γ〉〉).
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Examples. Strongly regular graphs.

Definition

A graph Γ = (Ω,E ) is called strongly regular if its WL-closure has
rank three. In other words, WL-algorithm stops at the first
iteration and 〈〈Γ〉〉 = {1Ω,E ,E

c}.

Proposition

A graph Γ = (Ω,E ) is strongly regular if and only if there exists
non-negative integers k , λ, µ such that

1 Γ is k-regular,

2 any pair of points connected by an edge have λ common
neighbours,

3 any pair of points not connected by an edge have µ common
neighbours
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Examples. Permutation groups.

Let G ≤ Sym(Ω) be a permutation group. It acts on Ω× Ω:

(α, β)g := (αg , βg ), α, β ∈ Ω, g ∈ G .

Set Inv(G ) := (Ω, C) where C := Orb(G ,Ω× Ω). Then

1 Inv(G ) is a coherent configuration (of G ),

2 the basic relations of X are the 2-orbits of G ,

3 Φ(X ) = Orb(G ,Ω), in particular X is a scheme iff G is
transitive;

Definition.

A coherent configuration X is called schurian if X = Inv(G ) for
some group G .

Schurity problem

Given a coherent configuration X , find whether it is schurian.
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Galois correspondence.

Definition

Let X = (Ω, C),X ′ = (Ω, C′) be two coherent configuratios. We
say that X is a fusion of X ′ (equivalently X ′ is a fission of X ),
notation X v X ′ if C v C′.

Proposition

Let X ,X ′ be two coherent configurations defined on Ω and
G ,H ≤ Sym(Ω) arbitrary subgroups. Then

X v X ′ =⇒ Aut(X ) ≥ Aut(X ′);

H ≤ G =⇒ Inv(H) w Inv(G );

G ≤ Aut(Inv(G );

X v Inv(Aut(X ))
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Galois closed objects.

Definition

The group G (2) := Aut(Inv(G )) is called a 2-closure of
G ≤ Sym(Ω). A group is called 2-closed if G = G (2).

Definition

Given a coherent configuration X = (Ω, C), the configuration
Sch(X ) := Inv(Aut(X )) is called a Schurian closure of X . A
configuration X is schurian iff Sch(X ) = X .

Theorem

The mappings (Aut, Inv) are bijections between 2-closed subgroups
of Sym(Ω) and schurian coherent configurations defined on Ω.

Theorem.

The GI is polynomially equivalent to the problem of finding the
schurian closure of a coherent configuration.
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