
Graph Isomorphism problem, Weisfeiler-Leman
algortihm and coherent configurations

M. Muzychuk

Ben-Gurion University of the Negev,
Israel

10th PhD Summer School in Discrete Mathematics , Rogla
Slovenia, June 2022

Content

Graph isomorphism problem and Weisfeiler-Leman algorithm.

Coherent configurations and coherent (cellular) algebras.

Association schemes.

Cayley schemes and Schur rings.

Schur rings and Cayley graphs isomorphism problem.

References. Coherent configurtion and algebras

[Hig70] D. G. Higman, Coherent configurations I, Rend. Sem. Mat.
Univ. Padova 44(1970), 1-25

[Hig87] D. G. Higman,Coherent algebras, Linear Alg. and Its
Applications 93(1987),209-239

[Wei76] B. Weisfeiler, On Construction and Identification of Graphs,
LNM 558 (1976)

[KRRT99] M. Klin, C. Rücker, G. Rücker and G. Tinhofer,
Algebraic Combinatorics in Mahematical Chemistry. Methods
and Algorithms. I. Permutation Groups and Coherent
(Cellular) Algebras. Match (40), 1999,
shttp:\match.pmf.kg.ac.rs\electronic_versions\

Match40\match40_7-138.pdf

[CP] G. Chen and I. Ponomarenko, Lectures on coherent
configurations (2019),
http://www.pdmi.ras.ru/~inp/ccNOTES.pdf.

shttp:\ match.pmf.kg.ac.rs\ electronic_versions\ Match40\ match40_7-138.pdf
shttp:\ match.pmf.kg.ac.rs\ electronic_versions\ Match40\ match40_7-138.pdf
http://www.pdmi.ras.ru/~inp/ccNOTES.pdf

References. Association Schemes

[BI84] E. Bannai, T. Ito, Algebraic Combinatorics I: Association
Schemes, Benjamin/Cummings, Menlo Park, CA, 1984.

[Ba04] R.A. Bailey, Association Schemes: Designed Experiments,
Algebra and Combinatorics, Cambridge University Press,
Cambridge, 2004

[BCN89] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular
Graphs, Springer-Verlag, Berlin, 1989

[Z96] P.-H. Zieschang, An algebraic approach to association
schemes, Springer-Verlag, Berlin,1996

[Z05] P.-H. Zieschang, Theory of Association Schemes,
Springer-Verlag, Berlin, 2005.

Binary relations

Let R,S ⊆ Ω2 be binary relations. Then

S∗ := {(α, β) | (β, α) ∈ S};
S is symmetric (antisymmetric) if S = S∗ (S ∩ S∗ = ∅ resp.);

αS := {β | (α, β) ∈ S},Sα := αS∗;

D(S) := {α ∈ Ω |αS 6= ∅},R(S) := D(S∗);

RS = {(α, β) |αR ∩ Sβ 6= ∅};
R+ =

⋃∞
i=1 R

i is the transitive closure of R;

1Ω := {(ω, ω) |ω ∈ Ω}
Each permutation g ∈ Sym(Ω) is considered as a binary relation.
Thus αg = {αg} and g∗ = g−1.

Partitions.

P ` Ω means that P is a partition of Ω.

P v C ⇐⇒ C is a refinement of P (in particular, |P| ≤ |C|);

Lattice operations are denoted as P ∨ C and P ∧ C;

if P ` Ω then P∪ denotes the set of all possible unions of
elements in P;

C ` Ω2 =⇒ C∗ := {C ∗ |C ∈ C};

Graphs.

In what follows graph is a pair Γ = (Ω,E) where Ω is a finite set of
vertices and E ⊂ Ω× Ω is the set of arcs; Γ is undirected if
E ∗ = E .

Definition.

Graphs Γ1 = (Ω1,E1) and Γ2 = (Ω2,E2) are called isomorphic,
Γ1
∼= Γ2, if there is a bijection f : Ω1 → Ω2 such that

∀α1, β1 ∈ Ω1 : (αf
1, β

f
1) ∈ E2 ⇔ (α1, β1) ∈ E1.

Such a bijection is called an isomorphism from Γ1 to Γ2; the set of
all of them is denoted by Iso(Γ1, Γ2).The set Iso(Γ1, Γ1) is known
as the automorphism group of Γ1, notation Aut(Γ1).

Graphs.

In what follows graph is a pair Γ = (Ω,E) where Ω is a finite set of
vertices and E ⊂ Ω× Ω is the set of arcs; Γ is undirected if
E ∗ = E .

Definition.

Graphs Γ1 = (Ω1,E1) and Γ2 = (Ω2,E2) are called isomorphic,
Γ1
∼= Γ2, if there is a bijection f : Ω1 → Ω2 such that

∀α1, β1 ∈ Ω1 : (αf
1, β

f
1) ∈ E2 ⇔ (α1, β1) ∈ E1.

Such a bijection is called an isomorphism from Γ1 to Γ2; the set of
all of them is denoted by Iso(Γ1, Γ2).The set Iso(Γ1, Γ1) is known
as the automorphism group of Γ1, notation Aut(Γ1).

Graphs.

In what follows graph is a pair Γ = (Ω,E) where Ω is a finite set of
vertices and E ⊂ Ω× Ω is the set of arcs; Γ is undirected if
E ∗ = E .

Definition.

Graphs Γ1 = (Ω1,E1) and Γ2 = (Ω2,E2) are called isomorphic,
Γ1
∼= Γ2, if there is a bijection f : Ω1 → Ω2 such that

∀α1, β1 ∈ Ω1 : (αf
1, β

f
1) ∈ E2 ⇔ (α1, β1) ∈ E1.

Such a bijection is called an isomorphism from Γ1 to Γ2; the set of
all of them is denoted by Iso(Γ1, Γ2).The set Iso(Γ1, Γ1) is known
as the automorphism group of Γ1, notation Aut(Γ1).

Example

1 2 3

4 5 6

1

6 2

5 3

4

An isomorphism

f =

(
1 2 3 4 5 6
1 3 5 2 4 6

)

Aut(Γ) = (S3 × S3).S2.

Example

1 2 3

4 5 6

1

6 2

5 3

4
An isomorphism

f =

(
1 2 3 4 5 6
1 3 5 2 4 6

)

Aut(Γ) = (S3 × S3).S2.

Example

1 2 3

4 5 6

1

6 2

5 3

4
An isomorphism

f =

(
1 2 3 4 5 6
1 3 5 2 4 6

)

Aut(Γ) = (S3 × S3).S2.

The Graph Isomorphism Problem (GI).

GI is to find the computational complexity of the problem:

given two graphs Γ1 and Γ2 test whether or not Γ1
∼= Γ2.

Given graphs Γ1 and Γ2 of order n, and a bijection f : Ω1 → Ω2 one
can test in time O(n2) whether f ∈ Iso(Γ1, Γ2).

Therefore GI∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether GI∈P.

It does not matter whether the graphs Γ and Γ′ are

-undirected, directed, regular, colored etc.

Theorem (L.Babai, 2015).

The isomorphism of n-vertex graphs can be tested in time exp((log n)c).

The Graph Isomorphism Problem (GI).

GI is to find the computational complexity of the problem:

given two graphs Γ1 and Γ2 test whether or not Γ1
∼= Γ2.

Given graphs Γ1 and Γ2 of order n, and a bijection f : Ω1 → Ω2 one
can test in time O(n2) whether f ∈ Iso(Γ1, Γ2).

Therefore GI∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether GI∈P.

It does not matter whether the graphs Γ and Γ′ are

-undirected, directed, regular, colored etc.

Theorem (L.Babai, 2015).

The isomorphism of n-vertex graphs can be tested in time exp((log n)c).

The Graph Isomorphism Problem (GI).

GI is to find the computational complexity of the problem:

given two graphs Γ1 and Γ2 test whether or not Γ1
∼= Γ2.

Given graphs Γ1 and Γ2 of order n, and a bijection f : Ω1 → Ω2 one
can test in time O(n2) whether f ∈ Iso(Γ1, Γ2).

Therefore GI∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether GI∈P.

It does not matter whether the graphs Γ and Γ′ are

-undirected, directed, regular, colored etc.

Theorem (L.Babai, 2015).

The isomorphism of n-vertex graphs can be tested in time exp((log n)c).

The Graph Isomorphism Problem (GI).

GI is to find the computational complexity of the problem:

given two graphs Γ1 and Γ2 test whether or not Γ1
∼= Γ2.

Given graphs Γ1 and Γ2 of order n, and a bijection f : Ω1 → Ω2 one
can test in time O(n2) whether f ∈ Iso(Γ1, Γ2).

Therefore GI∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether GI∈P.

It does not matter whether the graphs Γ and Γ′ are

-undirected, directed, regular, colored etc.

Theorem (L.Babai, 2015).

The isomorphism of n-vertex graphs can be tested in time exp((log n)c).

The Graph Isomorphism Problem (GI).

GI is to find the computational complexity of the problem:

given two graphs Γ1 and Γ2 test whether or not Γ1
∼= Γ2.

Given graphs Γ1 and Γ2 of order n, and a bijection f : Ω1 → Ω2 one
can test in time O(n2) whether f ∈ Iso(Γ1, Γ2).

Therefore GI∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether GI∈P.

It does not matter whether the graphs Γ and Γ′ are

-undirected, directed, regular, colored etc.

Theorem (L.Babai, 2015).

The isomorphism of n-vertex graphs can be tested in time exp((log n)c).

The Graph Isomorphism Problem (GI).

GI is to find the computational complexity of the problem:

given two graphs Γ1 and Γ2 test whether or not Γ1
∼= Γ2.

Given graphs Γ1 and Γ2 of order n, and a bijection f : Ω1 → Ω2 one
can test in time O(n2) whether f ∈ Iso(Γ1, Γ2).

Therefore GI∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether GI∈P.

It does not matter whether the graphs Γ and Γ′ are

-undirected, directed, regular, colored etc.

Theorem (L.Babai, 2015).

The isomorphism of n-vertex graphs can be tested in time exp((log n)c).

The Graph Isomorphism Problem (GI).

GI is to find the computational complexity of the problem:

given two graphs Γ1 and Γ2 test whether or not Γ1
∼= Γ2.

Given graphs Γ1 and Γ2 of order n, and a bijection f : Ω1 → Ω2 one
can test in time O(n2) whether f ∈ Iso(Γ1, Γ2).

Therefore GI∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether GI∈P.

It does not matter whether the graphs Γ and Γ′ are

-undirected, directed, regular, colored etc.

Theorem (L.Babai, 2015).

The isomorphism of n-vertex graphs can be tested in time exp((log n)c).

The Graph Isomorphism Problem (GI).

GI is to find the computational complexity of the problem:

given two graphs Γ1 and Γ2 test whether or not Γ1
∼= Γ2.

Given graphs Γ1 and Γ2 of order n, and a bijection f : Ω1 → Ω2 one
can test in time O(n2) whether f ∈ Iso(Γ1, Γ2).

Therefore GI∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether GI∈P.

It does not matter whether the graphs Γ and Γ′ are

-undirected, directed, regular, colored etc.

Theorem (L.Babai, 2015).

The isomorphism of n-vertex graphs can be tested in time exp((log n)c).

The Graph Isomorphism Problem (GI).

GI is to find the computational complexity of the problem:

given two graphs Γ1 and Γ2 test whether or not Γ1
∼= Γ2.

Given graphs Γ1 and Γ2 of order n, and a bijection f : Ω1 → Ω2 one
can test in time O(n2) whether f ∈ Iso(Γ1, Γ2).

Therefore GI∈NP.

An exhaustive search of all the possible bijections runs in
exponential time O(n!).

At present it is not known whether GI∈P.

It does not matter whether the graphs Γ and Γ′ are

-undirected, directed, regular, colored etc.

Theorem (L.Babai, 2015).

The isomorphism of n-vertex graphs can be tested in time exp((log n)c).

Some problems equivalent to the GI (R.Mathon,1979).

The following problems are equivalent to the GI:

ICOUNT: given Γ and Γ′ find | Iso(Γ, Γ′)|,

ACOUNT: given Γ find |Aut(Γ)|,
AGEN: given Γ find generators of the group Aut(Γ),

APART: given Γ find Orb(Aut(Γ)).

Some problems equivalent to the GI (R.Mathon,1979).

The following problems are equivalent to the GI:

ICOUNT: given Γ and Γ′ find | Iso(Γ, Γ′)|,
ACOUNT: given Γ find |Aut(Γ)|,

AGEN: given Γ find generators of the group Aut(Γ),

APART: given Γ find Orb(Aut(Γ)).

Some problems equivalent to the GI (R.Mathon,1979).

The following problems are equivalent to the GI:

ICOUNT: given Γ and Γ′ find | Iso(Γ, Γ′)|,
ACOUNT: given Γ find |Aut(Γ)|,
AGEN: given Γ find generators of the group Aut(Γ),

APART: given Γ find Orb(Aut(Γ)).

Some problems equivalent to the GI (R.Mathon,1979).

The following problems are equivalent to the GI:

ICOUNT: given Γ and Γ′ find | Iso(Γ, Γ′)|,
ACOUNT: given Γ find |Aut(Γ)|,
AGEN: given Γ find generators of the group Aut(Γ),

APART: given Γ find Orb(Aut(Γ)).

Some problems equivalent to the GI (R.Mathon,1979).

The following problems are equivalent to the GI:

ICOUNT: given Γ and Γ′ find | Iso(Γ, Γ′)|,
ACOUNT: given Γ find |Aut(Γ)|,
AGEN: given Γ find generators of the group Aut(Γ),

APART: given Γ find Orb(Aut(Γ)).

Isomorphism problem for colored graphs.

Definition.

A triple Γ = (Ω,Y , c) where c : Ω2 → Y is a surjection, is called a
colored graph with the coloring function c and color classes
c−1(y), y ∈ Y . Each colored graph determines a partition
C := {c−1(y) | y ∈ Y } of Ω2.

Two colored graphs Γ = (Ω,Y , c) and Γ′ = (∆,Z , d) are
isomorphic iff there exist bijections f : Ω→ ∆,φ : Y → Z s.t.

d(αf , βf) = c(α, β)φ.

Notice that φ is uniquely determined by f . For this reason we
define f ∗ := φ.
The adjacency matrix A(Γ) of Γ = (Ω,Y , c) is defined as follows:

(A(Γ))α,β = c(α, β), α, β ∈ Ω.

Isomorphism problem for colored graphs.

Definition.

A triple Γ = (Ω,Y , c) where c : Ω2 → Y is a surjection, is called a
colored graph with the coloring function c and color classes
c−1(y), y ∈ Y . Each colored graph determines a partition
C := {c−1(y) | y ∈ Y } of Ω2.

Two colored graphs Γ = (Ω,Y , c) and Γ′ = (∆,Z , d) are
isomorphic iff there exist bijections f : Ω→ ∆,φ : Y → Z s.t.

d(αf , βf) = c(α, β)φ.
Notice that φ is uniquely determined by f . For this reason we
define f ∗ := φ.
The adjacency matrix A(Γ) of Γ = (Ω,Y , c) is defined as follows:

(A(Γ))α,β = c(α, β), α, β ∈ Ω.

Isomorphism problem for colored graphs.

We also set Iso(Ω,Y , c) to be the group of all isomorphisms from
(Ω,Y , c) to itself and Aut(Ω,Y , c) to be the normal subgroup of
Iso(Ω,Y , c) which does not permute the colors (that is f ∗ = 1Y).

Proposition

Let (Ω,Y , c) be a colored graph and C := {c−1(y) | y ∈ Y } be the
corresponding partition. Then

Iso(Ω,Y , c) = {g ∈ Sym(Ω) | Cg = C},
Aut(Ω,Y , c) = {g ∈ Sym(Ω) | ∀C∈CC g = C}.

Theorem.

Isomorphism problem for colored graphs is polynomially equivalent
to GI.

Cayley Graphs and their Isomorphisms.

A Cayley graph over a finite group H defined by a connection set
S ⊆ H has H as a set of nodes and arc set

Cay(H,S) := {(x , y) | xy−1 ∈ S}

. A circulant graph is a Cayley graph over a cyclic group.

Definition

Two Cayley graphs Cay(H,S) and Cay(K ,T) are Cayley
isomorphic if there exists a group isomorphism f : H → K which is
a graph isomoprhism too, that is

Cay(H, S)f = Cay(K ,T) ⇐⇒ S f = T .

The graphs Cay({±1},Z5) and Cay({±2},Z5) are Cayley
isomorphic.

Cayley representations of graphs.

An automorphism of a Cayley graph Cay(H,S) contains a regular
subgroup HR consisting of right translations hR , h ∈ H:

xhR = xh, x ∈ H.

Theorem (Sabidussi)

A graph Γ = (Ω,E) is isomorphic to a Cayley graph over a group
H iff Aut(Γ) contains a regular subgroup isomorphic to H.

Proof.

• Pick a base point ω ∈ Ω.

• Define a bijection f : Ω→ H, α 7→ ᾱ where ωᾱ = α.

• Set S = {ᾱ : α ∈ Eω}.
• Now f ∈ Iso(Γ,Cay(H,S)) :

(α, β) ∈ E ⇔ (ωᾱ, ωβ̄) ∈ E ⇔ (ωᾱβ̄
−1
, ω) ∈ E ⇔ ᾱβ̄−1 ∈ S .

Cayley representations of graphs.

An automorphism of a Cayley graph Cay(H,S) contains a regular
subgroup HR consisting of right translations hR , h ∈ H:

xhR = xh, x ∈ H.

Theorem (Sabidussi)

A graph Γ = (Ω,E) is isomorphic to a Cayley graph over a group
H iff Aut(Γ) contains a regular subgroup isomorphic to H.

Proof.

• Pick a base point ω ∈ Ω.

• Define a bijection f : Ω→ H, α 7→ ᾱ where ωᾱ = α.

• Set S = {ᾱ : α ∈ Eω}.
• Now f ∈ Iso(Γ,Cay(H,S)) :

(α, β) ∈ E ⇔ (ωᾱ, ωβ̄) ∈ E ⇔ (ωᾱβ̄
−1
, ω) ∈ E ⇔ ᾱβ̄−1 ∈ S .

Cayley representations of graphs.

An automorphism of a Cayley graph Cay(H,S) contains a regular
subgroup HR consisting of right translations hR , h ∈ H:

xhR = xh, x ∈ H.

Theorem (Sabidussi)

A graph Γ = (Ω,E) is isomorphic to a Cayley graph over a group
H iff Aut(Γ) contains a regular subgroup isomorphic to H.

Proof.

• Pick a base point ω ∈ Ω.

• Define a bijection f : Ω→ H, α 7→ ᾱ where ωᾱ = α.

• Set S = {ᾱ : α ∈ Eω}.
• Now f ∈ Iso(Γ,Cay(H,S)) :

(α, β) ∈ E ⇔ (ωᾱ, ωβ̄) ∈ E ⇔ (ωᾱβ̄
−1
, ω) ∈ E ⇔ ᾱβ̄−1 ∈ S .

Cayley representations of graphs.

An automorphism of a Cayley graph Cay(H,S) contains a regular
subgroup HR consisting of right translations hR , h ∈ H:

xhR = xh, x ∈ H.

Theorem (Sabidussi)

A graph Γ = (Ω,E) is isomorphic to a Cayley graph over a group
H iff Aut(Γ) contains a regular subgroup isomorphic to H.

Proof.

• Pick a base point ω ∈ Ω.

• Define a bijection f : Ω→ H, α 7→ ᾱ where ωᾱ = α.

• Set S = {ᾱ : α ∈ Eω}.

• Now f ∈ Iso(Γ,Cay(H,S)) :

(α, β) ∈ E ⇔ (ωᾱ, ωβ̄) ∈ E ⇔ (ωᾱβ̄
−1
, ω) ∈ E ⇔ ᾱβ̄−1 ∈ S .

Cayley representations of graphs.

An automorphism of a Cayley graph Cay(H,S) contains a regular
subgroup HR consisting of right translations hR , h ∈ H:

xhR = xh, x ∈ H.

Theorem (Sabidussi)

A graph Γ = (Ω,E) is isomorphic to a Cayley graph over a group
H iff Aut(Γ) contains a regular subgroup isomorphic to H.

Proof.

• Pick a base point ω ∈ Ω.

• Define a bijection f : Ω→ H, α 7→ ᾱ where ωᾱ = α.

• Set S = {ᾱ : α ∈ Eω}.
• Now f ∈ Iso(Γ,Cay(H, S)) :

(α, β) ∈ E ⇔ (ωᾱ, ωβ̄) ∈ E ⇔ (ωᾱβ̄
−1
, ω) ∈ E ⇔ ᾱβ̄−1 ∈ S .

Cayley representations of graphs.

An automorphism of a Cayley graph Cay(H,S) contains a regular
subgroup HR consisting of right translations hR , h ∈ H:

xhR = xh, x ∈ H.

Theorem (Sabidussi)

A graph Γ = (Ω,E) is isomorphic to a Cayley graph over a group
H iff Aut(Γ) contains a regular subgroup isomorphic to H.

Proof.

• Pick a base point ω ∈ Ω.

• Define a bijection f : Ω→ H, α 7→ ᾱ where ωᾱ = α.

• Set S = {ᾱ : α ∈ Eω}.
• Now f ∈ Iso(Γ,Cay(H, S)) :

(α, β) ∈ E ⇔

(ωᾱ, ωβ̄) ∈ E ⇔ (ωᾱβ̄
−1
, ω) ∈ E ⇔ ᾱβ̄−1 ∈ S .

Cayley representations of graphs.

An automorphism of a Cayley graph Cay(H,S) contains a regular
subgroup HR consisting of right translations hR , h ∈ H:

xhR = xh, x ∈ H.

Theorem (Sabidussi)

A graph Γ = (Ω,E) is isomorphic to a Cayley graph over a group
H iff Aut(Γ) contains a regular subgroup isomorphic to H.

Proof.

• Pick a base point ω ∈ Ω.

• Define a bijection f : Ω→ H, α 7→ ᾱ where ωᾱ = α.

• Set S = {ᾱ : α ∈ Eω}.
• Now f ∈ Iso(Γ,Cay(H, S)) :

(α, β) ∈ E ⇔ (ωᾱ, ωβ̄) ∈ E ⇔

(ωᾱβ̄
−1
, ω) ∈ E ⇔ ᾱβ̄−1 ∈ S .

Cayley representations of graphs.

An automorphism of a Cayley graph Cay(H,S) contains a regular
subgroup HR consisting of right translations hR , h ∈ H:

xhR = xh, x ∈ H.

Theorem (Sabidussi)

A graph Γ = (Ω,E) is isomorphic to a Cayley graph over a group
H iff Aut(Γ) contains a regular subgroup isomorphic to H.

Proof.

• Pick a base point ω ∈ Ω.

• Define a bijection f : Ω→ H, α 7→ ᾱ where ωᾱ = α.

• Set S = {ᾱ : α ∈ Eω}.
• Now f ∈ Iso(Γ,Cay(H, S)) :

(α, β) ∈ E ⇔ (ωᾱ, ωβ̄) ∈ E ⇔ (ωᾱβ̄
−1
, ω) ∈ E ⇔

ᾱβ̄−1 ∈ S .

Cayley representations of graphs.

An automorphism of a Cayley graph Cay(H,S) contains a regular
subgroup HR consisting of right translations hR , h ∈ H:

xhR = xh, x ∈ H.

Theorem (Sabidussi)

A graph Γ = (Ω,E) is isomorphic to a Cayley graph over a group
H iff Aut(Γ) contains a regular subgroup isomorphic to H.

Proof.

• Pick a base point ω ∈ Ω.

• Define a bijection f : Ω→ H, α 7→ ᾱ where ωᾱ = α.

• Set S = {ᾱ : α ∈ Eω}.
• Now f ∈ Iso(Γ,Cay(H, S)) :

(α, β) ∈ E ⇔ (ωᾱ, ωβ̄) ∈ E ⇔ (ωᾱβ̄
−1
, ω) ∈ E ⇔ ᾱβ̄−1 ∈ S .

Isomorphism problems for Cayley graphs.

Given Γ = Cay(H,S) and Γ′ = Cay(H,S ′):

IMAP: find f ∈ Iso(Γ, Γ′) (if it exists),

ICOUNT: find | Iso(Γ, Γ′)|,
ACOUNT:find |Aut(Γ)|,
AGEN: find generators of the group Aut(Γ),

CGR: given a graph Θ find whether it’s a Cayley graph over a
group H.

Isomorphism problem for finite groups.

Construction. Let K be a finite group.

Define a graph Γ(K) with vertex set K × K and edges:
(a, b) ∼ (c , d) ⇐⇒ a = c ∨ b = d ∨ ab = cd .

Theorem (E. Moorhouse) K1
∼= K2 ⇐⇒ Γ(K1) ∼= Γ(K2).

Exercise. Prove that Γ(K) is a Cayley graph over K × K .

Exercise. Prove that Γ(Z4) 6∼= Γ(Z2 × Z2).

Z4 →

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Z2 × Z2 →

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

The isomorphism of groups of order n can be tested in time
nO(log n).

Isomorphism problem for finite groups.

Construction. Let K be a finite group.

Define a graph Γ(K) with vertex set K × K and edges:
(a, b) ∼ (c , d) ⇐⇒ a = c ∨ b = d ∨ ab = cd .

Theorem (E. Moorhouse) K1
∼= K2 ⇐⇒ Γ(K1) ∼= Γ(K2).

Exercise. Prove that Γ(K) is a Cayley graph over K × K .

Exercise. Prove that Γ(Z4) 6∼= Γ(Z2 × Z2).

Z4 →

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Z2 × Z2 →

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

The isomorphism of groups of order n can be tested in time
nO(log n).

Isomorphism problem for finite groups.

Construction. Let K be a finite group.

Define a graph Γ(K) with vertex set K × K and edges:
(a, b) ∼ (c , d) ⇐⇒ a = c ∨ b = d ∨ ab = cd .

Theorem (E. Moorhouse) K1
∼= K2 ⇐⇒ Γ(K1) ∼= Γ(K2).

Exercise. Prove that Γ(K) is a Cayley graph over K × K .

Exercise. Prove that Γ(Z4) 6∼= Γ(Z2 × Z2).

Z4 →

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Z2 × Z2 →

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

The isomorphism of groups of order n can be tested in time
nO(log n).

Isomorphism problem for finite groups.

Construction. Let K be a finite group.

Define a graph Γ(K) with vertex set K × K and edges:
(a, b) ∼ (c , d) ⇐⇒ a = c ∨ b = d ∨ ab = cd .

Theorem (E. Moorhouse) K1
∼= K2 ⇐⇒ Γ(K1) ∼= Γ(K2).

Exercise. Prove that Γ(K) is a Cayley graph over K × K .

Exercise. Prove that Γ(Z4) 6∼= Γ(Z2 × Z2).

Z4 →

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Z2 × Z2 →

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

The isomorphism of groups of order n can be tested in time
nO(log n).

Naive vertex classification.

Vertex partition by valences.

Denote by dΓ(α) the valency of the vertex α in the graph Γ;the
valency of α in a color class is denoted by dΓ(α,C).

To find Orb(Aut(Γ)) put vertices α and β in the same class iff
dΓ(α) = dΓ(β).

Iteratively, put vertices α and β in the same class iff
dΓ(α,C) = dΓ(β,C) for all color classes C .

Comments.

The algorithm correctly finds Orb(Aut(Γ)) for the class of
trees (G.Tinhofer, 1985), for almost all graphs (L.Babai,
P.Erdös, S.Selkow, 1980).

The algorithm fails when Γ is a regular graphs and the group
Aut(Γ) is intransitive.

Naive vertex classification.

Vertex partition by valences.

Denote by dΓ(α) the valency of the vertex α in the graph Γ;

the
valency of α in a color class is denoted by dΓ(α,C).

To find Orb(Aut(Γ)) put vertices α and β in the same class iff
dΓ(α) = dΓ(β).

Iteratively, put vertices α and β in the same class iff
dΓ(α,C) = dΓ(β,C) for all color classes C .

Comments.

The algorithm correctly finds Orb(Aut(Γ)) for the class of
trees (G.Tinhofer, 1985), for almost all graphs (L.Babai,
P.Erdös, S.Selkow, 1980).

The algorithm fails when Γ is a regular graphs and the group
Aut(Γ) is intransitive.

Naive vertex classification.

Vertex partition by valences.

Denote by dΓ(α) the valency of the vertex α in the graph Γ;the
valency of α in a color class is denoted by dΓ(α,C).

To find Orb(Aut(Γ)) put vertices α and β in the same class iff
dΓ(α) = dΓ(β).

Iteratively, put vertices α and β in the same class iff
dΓ(α,C) = dΓ(β,C) for all color classes C .

Comments.

The algorithm correctly finds Orb(Aut(Γ)) for the class of
trees (G.Tinhofer, 1985), for almost all graphs (L.Babai,
P.Erdös, S.Selkow, 1980).

The algorithm fails when Γ is a regular graphs and the group
Aut(Γ) is intransitive.

Naive vertex classification.

Vertex partition by valences.

Denote by dΓ(α) the valency of the vertex α in the graph Γ;the
valency of α in a color class is denoted by dΓ(α,C).

To find Orb(Aut(Γ)) put vertices α and β in the same class iff
dΓ(α) = dΓ(β).

Iteratively, put vertices α and β in the same class iff
dΓ(α,C) = dΓ(β,C) for all color classes C .

Comments.

The algorithm correctly finds Orb(Aut(Γ)) for the class of
trees (G.Tinhofer, 1985), for almost all graphs (L.Babai,
P.Erdös, S.Selkow, 1980).

The algorithm fails when Γ is a regular graphs and the group
Aut(Γ) is intransitive.

Naive vertex classification.

Vertex partition by valences.

Denote by dΓ(α) the valency of the vertex α in the graph Γ;the
valency of α in a color class is denoted by dΓ(α,C).

To find Orb(Aut(Γ)) put vertices α and β in the same class iff
dΓ(α) = dΓ(β).

Iteratively, put vertices α and β in the same class iff
dΓ(α,C) = dΓ(β,C) for all color classes C .

Comments.

The algorithm correctly finds Orb(Aut(Γ)) for the class of
trees (G.Tinhofer, 1985), for almost all graphs (L.Babai,
P.Erdös, S.Selkow, 1980).

The algorithm fails when Γ is a regular graphs and the group
Aut(Γ) is intransitive.

Naive vertex classification.

Vertex partition by valences.

Denote by dΓ(α) the valency of the vertex α in the graph Γ;the
valency of α in a color class is denoted by dΓ(α,C).

To find Orb(Aut(Γ)) put vertices α and β in the same class iff
dΓ(α) = dΓ(β).

Iteratively, put vertices α and β in the same class iff
dΓ(α,C) = dΓ(β,C) for all color classes C .

Comments.

The algorithm correctly finds Orb(Aut(Γ)) for the class of
trees (G.Tinhofer, 1985), for almost all graphs (L.Babai,
P.Erdös, S.Selkow, 1980).

The algorithm fails when Γ is a regular graphs and the group
Aut(Γ) is intransitive.

Naive vertex classification.

Vertex partition by valences.

Denote by dΓ(α) the valency of the vertex α in the graph Γ;the
valency of α in a color class is denoted by dΓ(α,C).

To find Orb(Aut(Γ)) put vertices α and β in the same class iff
dΓ(α) = dΓ(β).

Iteratively, put vertices α and β in the same class iff
dΓ(α,C) = dΓ(β,C) for all color classes C .

Comments.

The algorithm correctly finds Orb(Aut(Γ)) for the class of
trees (G.Tinhofer, 1985), for almost all graphs (L.Babai,
P.Erdös, S.Selkow, 1980).

The algorithm fails when Γ is a regular graphs and the group
Aut(Γ) is intransitive.

Naive vertex classification.

Vertex partition by valences.

Denote by dΓ(α) the valency of the vertex α in the graph Γ;the
valency of α in a color class is denoted by dΓ(α,C).

To find Orb(Aut(Γ)) put vertices α and β in the same class iff
dΓ(α) = dΓ(β).

Iteratively, put vertices α and β in the same class iff
dΓ(α,C) = dΓ(β,C) for all color classes C .

Comments.

The algorithm correctly finds Orb(Aut(Γ)) for the class of
trees (G.Tinhofer, 1985), for almost all graphs (L.Babai,
P.Erdös, S.Selkow, 1980).

The algorithm fails when Γ is a regular graphs and the group
Aut(Γ) is intransitive.

The Weisfeiler-Leman algorithm, 1968.

No automorphism moves red points to blue ones.

• • •
•

• • •

To distinguish vertices we need to color edges of Γ.

Algorithm. Set C = {1Ω} ∪ {E} ∪ {(Ω× Ω) \ E}.

For all (α, β) ∈ Ω× Ω and R,S ∈ C find the intersection
number

c(α, β;R,S) = |αR ∩ Sβ|.

Build a new partition Y(C) by putting (α, β) and (α′, β′) to
the same class of Y(C) if |αR ∩ Sβ| = |α′R ∩ Sβ′| for all
R,S ∈ C.

Repeat the procedure till |C| stops to increase.

The Weisfeiler-Leman algorithm, 1968.

No automorphism moves red points to blue ones.

• • •
•

• • •
To distinguish vertices we need to color edges of Γ.

Algorithm. Set C = {1Ω} ∪ {E} ∪ {(Ω× Ω) \ E}.

For all (α, β) ∈ Ω× Ω and R,S ∈ C find the intersection
number

c(α, β;R,S) = |αR ∩ Sβ|.

Build a new partition Y(C) by putting (α, β) and (α′, β′) to
the same class of Y(C) if |αR ∩ Sβ| = |α′R ∩ Sβ′| for all
R,S ∈ C.

Repeat the procedure till |C| stops to increase.

The Weisfeiler-Leman algorithm, 1968.

No automorphism moves red points to blue ones.

• • •
•

• • •
To distinguish vertices we need to color edges of Γ.

Algorithm. Set C = {1Ω} ∪ {E} ∪ {(Ω× Ω) \ E}.

For all (α, β) ∈ Ω× Ω and R,S ∈ C find the intersection
number

c(α, β;R,S) = |αR ∩ Sβ|.

Build a new partition Y(C) by putting (α, β) and (α′, β′) to
the same class of Y(C) if |αR ∩ Sβ| = |α′R ∩ Sβ′| for all
R,S ∈ C.

Repeat the procedure till |C| stops to increase.

The Weisfeiler-Leman algorithm, 1968.

No automorphism moves red points to blue ones.

• • •
•

• • •
To distinguish vertices we need to color edges of Γ.

Algorithm. Set C = {1Ω} ∪ {E} ∪ {(Ω× Ω) \ E}.

For all (α, β) ∈ Ω× Ω and R,S ∈ C find the intersection
number

c(α, β;R, S) = |αR ∩ Sβ|.

Build a new partition Y(C) by putting (α, β) and (α′, β′) to
the same class of Y(C) if |αR ∩ Sβ| = |α′R ∩ Sβ′| for all
R,S ∈ C.

Repeat the procedure till |C| stops to increase.

The Weisfeiler-Leman algorithm, 1968.

No automorphism moves red points to blue ones.

• • •
•

• • •
To distinguish vertices we need to color edges of Γ.

Algorithm. Set C = {1Ω} ∪ {E} ∪ {(Ω× Ω) \ E}.

For all (α, β) ∈ Ω× Ω and R,S ∈ C find the intersection
number

c(α, β;R, S) = |αR ∩ Sβ|.

Build a new partition Y(C) by putting (α, β) and (α′, β′) to
the same class of Y(C) if |αR ∩ Sβ| = |α′R ∩ Sβ′| for all
R,S ∈ C.

Repeat the procedure till |C| stops to increase.

The Weisfeiler-Leman algorithm, 1968.

No automorphism moves red points to blue ones.

• • •
•

• • •
To distinguish vertices we need to color edges of Γ.

Algorithm. Set C = {1Ω} ∪ {E} ∪ {(Ω× Ω) \ E}.

For all (α, β) ∈ Ω× Ω and R,S ∈ C find the intersection
number

c(α, β;R, S) = |αR ∩ Sβ|.

Build a new partition Y(C) by putting (α, β) and (α′, β′) to
the same class of Y(C) if |αR ∩ Sβ| = |α′R ∩ Sβ′| for all
R,S ∈ C.

Repeat the procedure till |C| stops to increase.

The WL-algorithm. Very small example

1 3

2

Initial coloring

1

a

��

b

c
3

a

��

2
a
XX

b

Adjacency matrix

A =

 a b c
b a b
c b a

 .

First iteration

1

a

��

b

c
3

a

��

2
a
XX

b

A2 =

 a2 + b2 + c2 ab + ba + cb ac + b2 + ca
ba + ab + bc 2b2 + a2 bc + ab + ba
ca + b2 + ac cb + ba + ab c2 + b2 + a2

 .

First iteration

1

a

��

b

c
3

a

��

2
a
XX

b

A2 =

 a2 + b2 + c2 ab + ba + cb ac + b2 + ca
bc + ab + ba 2b2 + a2 bc + ab + ba
ac + b2 + ca ab + ba + cb c2 + b2 + a2

 .

Second iteration

New matrix A

A =

 d e f
g h g
f e d



1

d

��

e

��

f ++
3

d

��

f
kk

e
ww

2
h
XX

g

S[
g

3;

The matrix A is stable, that is A2 produces the same coloring as A
does.

Second iteration

New matrix A

A =

 d e f
g h g
f e d



1

d

��

e

��

f ++
3

d

��

f
kk

e
ww

2
h
XX

g

S[
g

3;

The matrix A is stable, that is A2 produces the same coloring as A
does.

Second iteration

New matrix A

A =

 d e f
g h g
f e d



1

d

��

e

��

f ++
3

d

��

f
kk

e
ww

2
h
XX

g

S[
g

3;

The matrix A is stable, that is A2 produces the same coloring as A
does.

Second iteration

New matrix A

A =

 d e f
g h g
f e d



1

d

��

e

��

f ++
3

d

��

f
kk

e
ww

2
h
XX

g

S[
g

3;

The matrix A is stable, that is A2 produces the same coloring as A
does.

WL-refinement (operation Y)

Properties

C v S =⇒ Y(C) v Y(S);

C∗ = C =⇒ Y(C)∗ = Y(C);

1Ω ∈ C∪ =⇒ C v Y(C);

Proposition

Let f : Ω→ ∆ be a bijection that maps a partition C of Ω2 onto a
paritition T of ∆2 (i.e. Cf = T). Then Y(C)f = Y(T).

Given an ordered partition ~C = (S1, ...,Sm) of Ω2 the
WL-algorithm produces a unique (canonical) ordering of the
refinement Y(C) (denoted as Y(~C)) with the following property:

~Cf = ~T =⇒ Y(~C)f = Y(~T)

WL-refinement (operation Y)

Properties

C v S =⇒ Y(C) v Y(S);

C∗ = C =⇒ Y(C)∗ = Y(C);

1Ω ∈ C∪ =⇒ C v Y(C);

Proposition

Let f : Ω→ ∆ be a bijection that maps a partition C of Ω2 onto a
paritition T of ∆2 (i.e. Cf = T). Then Y(C)f = Y(T).

Given an ordered partition ~C = (S1, ...,Sm) of Ω2 the
WL-algorithm produces a unique (canonical) ordering of the
refinement Y(C) (denoted as Y(~C)) with the following property:

~Cf = ~T =⇒ Y(~C)f = Y(~T)

WL-refinement (operation Y)

Properties

C v S =⇒ Y(C) v Y(S);

C∗ = C =⇒ Y(C)∗ = Y(C);

1Ω ∈ C∪ =⇒ C v Y(C);

Proposition

Let f : Ω→ ∆ be a bijection that maps a partition C of Ω2 onto a
paritition T of ∆2 (i.e. Cf = T). Then Y(C)f = Y(T).

Given an ordered partition ~C = (S1, ...,Sm) of Ω2 the
WL-algorithm produces a unique (canonical) ordering of the
refinement Y(C) (denoted as Y(~C)) with the following property:

~Cf = ~T =⇒ Y(~C)f = Y(~T)

WL-refinement (operation Y)

Properties

C v S =⇒ Y(C) v Y(S);

C∗ = C =⇒ Y(C)∗ = Y(C);

1Ω ∈ C∪ =⇒ C v Y(C);

Proposition

Let f : Ω→ ∆ be a bijection that maps a partition C of Ω2 onto a
paritition T of ∆2 (i.e. Cf = T). Then Y(C)f = Y(T).

Given an ordered partition ~C = (S1, ...,Sm) of Ω2 the
WL-algorithm produces a unique (canonical) ordering of the
refinement Y(C) (denoted as Y(~C)) with the following property:

~Cf = ~T =⇒ Y(~C)f = Y(~T)

WL-refinement (operation Y)

Properties

C v S =⇒ Y(C) v Y(S);

C∗ = C =⇒ Y(C)∗ = Y(C);

1Ω ∈ C∪ =⇒ C v Y(C);

Proposition

Let f : Ω→ ∆ be a bijection that maps a partition C of Ω2 onto a
paritition T of ∆2 (i.e. Cf = T). Then Y(C)f = Y(T).

Given an ordered partition ~C = (S1, ...,Sm) of Ω2 the
WL-algorithm produces a unique (canonical) ordering of the
refinement Y(C) (denoted as Y(~C)) with the following property:

~Cf = ~T =⇒ Y(~C)f = Y(~T)

WL-refinement (operation Y)

Properties

C v S =⇒ Y(C) v Y(S);

C∗ = C =⇒ Y(C)∗ = Y(C);

1Ω ∈ C∪ =⇒ C v Y(C);

Proposition

Let f : Ω→ ∆ be a bijection that maps a partition C of Ω2 onto a
paritition T of ∆2 (i.e. Cf = T). Then Y(C)f = Y(T).

Given an ordered partition ~C = (S1, ...,Sm) of Ω2 the
WL-algorithm produces a unique (canonical) ordering of the
refinement Y(C) (denoted as Y(~C)) with the following property:

~Cf = ~T =⇒ Y(~C)f = Y(~T)

Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, C) such that:

C is a partition of Ω× Ω,

1Ω ∈ C∪,

C∗ = C ,

C = Y(C),that is for all R, S ,T ∈ C the intersection number
cTRS = |αR ∩ Sβ| does not depend on the choice of
(α, β) ∈ T .

the degree and rank of X are the numbers |Ω| and |C|,
the basic relations and relations of X are the relations of C
and of C∪.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ C.

Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, C) such that:

C is a partition of Ω× Ω,

1Ω ∈ C∪,

C∗ = C ,

C = Y(C),that is for all R, S ,T ∈ C the intersection number
cTRS = |αR ∩ Sβ| does not depend on the choice of
(α, β) ∈ T .

the degree and rank of X are the numbers |Ω| and |C|,
the basic relations and relations of X are the relations of C
and of C∪.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ C.

Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, C) such that:

C is a partition of Ω× Ω,

1Ω ∈ C∪,

C∗ = C ,

C = Y(C),that is for all R, S ,T ∈ C the intersection number
cTRS = |αR ∩ Sβ| does not depend on the choice of
(α, β) ∈ T .

the degree and rank of X are the numbers |Ω| and |C|,
the basic relations and relations of X are the relations of C
and of C∪.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ C.

Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, C) such that:

C is a partition of Ω× Ω,

1Ω ∈ C∪,

C∗ = C ,

C = Y(C),that is for all R, S ,T ∈ C the intersection number
cTRS = |αR ∩ Sβ| does not depend on the choice of
(α, β) ∈ T .

the degree and rank of X are the numbers |Ω| and |C|,
the basic relations and relations of X are the relations of C
and of C∪.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ C.

Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, C) such that:

C is a partition of Ω× Ω,

1Ω ∈ C∪,

C∗ = C ,

C = Y(C),

that is for all R, S ,T ∈ C the intersection number
cTRS = |αR ∩ Sβ| does not depend on the choice of
(α, β) ∈ T .

the degree and rank of X are the numbers |Ω| and |C|,
the basic relations and relations of X are the relations of C
and of C∪.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ C.

Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, C) such that:

C is a partition of Ω× Ω,

1Ω ∈ C∪,

C∗ = C ,

C = Y(C),that is for all R, S ,T ∈ C the intersection number
cTRS = |αR ∩ Sβ| does not depend on the choice of
(α, β) ∈ T .

the degree and rank of X are the numbers |Ω| and |C|,
the basic relations and relations of X are the relations of C
and of C∪.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ C.

Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, C) such that:

C is a partition of Ω× Ω,

1Ω ∈ C∪,

C∗ = C ,

C = Y(C),that is for all R, S ,T ∈ C the intersection number
cTRS = |αR ∩ Sβ| does not depend on the choice of
(α, β) ∈ T .

the degree and rank of X are the numbers |Ω| and |C|,

the basic relations and relations of X are the relations of C
and of C∪.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ C.

Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, C) such that:

C is a partition of Ω× Ω,

1Ω ∈ C∪,

C∗ = C ,

C = Y(C),that is for all R, S ,T ∈ C the intersection number
cTRS = |αR ∩ Sβ| does not depend on the choice of
(α, β) ∈ T .

the degree and rank of X are the numbers |Ω| and |C|,
the basic relations and relations of X are the relations of C
and of C∪.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ C.

Coherent configurations (D. Higman, 1970).

The output partition of the Weisfeiler-Leman algorithm is a
coherent configuration, i.e. a pair X = (Ω, C) such that:

C is a partition of Ω× Ω,

1Ω ∈ C∪,

C∗ = C ,

C = Y(C),that is for all R, S ,T ∈ C the intersection number
cTRS = |αR ∩ Sβ| does not depend on the choice of
(α, β) ∈ T .

the degree and rank of X are the numbers |Ω| and |C|,
the basic relations and relations of X are the relations of C
and of C∪.

The configuration X is homogeneous (or association scheme, or
scheme), if 1Ω ∈ C.

Coherent configurations: a concrete example.

1

d

��
3

d

��

2

1
f ++

3
f

kk

2

1 3

2

g

__

g

??

1 3

2
h
XX

1

e

��

3

e

��
2

Coherent configurations. Fibers and relations.

A fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ C; the set of all fibers
is denoted by Φ = Φ(X).

Thus X is a scheme iff |Φ| = 1.

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆,

for any S ∈ C the sets D(S) and R(S) are fibres of X ,

for any S ∈ C and α ∈ D(S) we have |αS | = cTSS∗ where
T = 1D(S).

for any fiber ∆ ∈ Φ the set of relations
C∆ := {C ∈ C |D(C) = ∆,R(C) = ∆} form a homogeneous
co.co. on ∆, called a homogeneous constituent of C.

The number nS = cTSS∗ is called the valency of S .

Coherent configurations. Fibers and relations.

A fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ C; the set of all fibers
is denoted by Φ = Φ(X).Thus X is a scheme iff |Φ| = 1.

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆,

for any S ∈ C the sets D(S) and R(S) are fibres of X ,

for any S ∈ C and α ∈ D(S) we have |αS | = cTSS∗ where
T = 1D(S).

for any fiber ∆ ∈ Φ the set of relations
C∆ := {C ∈ C |D(C) = ∆,R(C) = ∆} form a homogeneous
co.co. on ∆, called a homogeneous constituent of C.

The number nS = cTSS∗ is called the valency of S .

Coherent configurations. Fibers and relations.

A fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ C; the set of all fibers
is denoted by Φ = Φ(X).Thus X is a scheme iff |Φ| = 1.

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆,

for any S ∈ C the sets D(S) and R(S) are fibres of X ,

for any S ∈ C and α ∈ D(S) we have |αS | = cTSS∗ where
T = 1D(S).

for any fiber ∆ ∈ Φ the set of relations
C∆ := {C ∈ C |D(C) = ∆,R(C) = ∆} form a homogeneous
co.co. on ∆, called a homogeneous constituent of C.

The number nS = cTSS∗ is called the valency of S .

Coherent configurations. Fibers and relations.

A fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ C; the set of all fibers
is denoted by Φ = Φ(X).Thus X is a scheme iff |Φ| = 1.

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆,

for any S ∈ C the sets D(S) and R(S) are fibres of X ,

for any S ∈ C and α ∈ D(S) we have |αS | = cTSS∗ where
T = 1D(S).

for any fiber ∆ ∈ Φ the set of relations
C∆ := {C ∈ C |D(C) = ∆,R(C) = ∆} form a homogeneous
co.co. on ∆, called a homogeneous constituent of C.

The number nS = cTSS∗ is called the valency of S .

Coherent configurations. Fibers and relations.

A fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ C; the set of all fibers
is denoted by Φ = Φ(X).Thus X is a scheme iff |Φ| = 1.

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆,

for any S ∈ C the sets D(S) and R(S) are fibres of X ,

for any S ∈ C and α ∈ D(S) we have |αS | = cTSS∗ where
T = 1D(S).

for any fiber ∆ ∈ Φ the set of relations
C∆ := {C ∈ C |D(C) = ∆,R(C) = ∆} form a homogeneous
co.co. on ∆, called a homogeneous constituent of C.

The number nS = cTSS∗ is called the valency of S .

Coherent configurations. Fibers and relations.

A fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ C; the set of all fibers
is denoted by Φ = Φ(X).Thus X is a scheme iff |Φ| = 1.

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆,

for any S ∈ C the sets D(S) and R(S) are fibres of X ,

for any S ∈ C and α ∈ D(S) we have |αS | = cTSS∗ where
T = 1D(S).

for any fiber ∆ ∈ Φ the set of relations
C∆ := {C ∈ C |D(C) = ∆,R(C) = ∆} form a homogeneous
co.co. on ∆, called a homogeneous constituent of C.

The number nS = cTSS∗ is called the valency of S .

Coherent configurations. Fibers and relations.

A fiber of X is a set ∆ ⊂ Ω such that 1∆ ∈ C; the set of all fibers
is denoted by Φ = Φ(X).Thus X is a scheme iff |Φ| = 1.

Proposition. The following statements hold:

Ω =
⋃

∆∈Φ ∆,

for any S ∈ C the sets D(S) and R(S) are fibres of X ,

for any S ∈ C and α ∈ D(S) we have |αS | = cTSS∗ where
T = 1D(S).

for any fiber ∆ ∈ Φ the set of relations
C∆ := {C ∈ C |D(C) = ∆,R(C) = ∆} form a homogeneous
co.co. on ∆, called a homogeneous constituent of C.

The number nS = cTSS∗ is called the valency of S .

Properties of coherent configurations.

Proposition

Let X = (Ω, C) be a co.co. Then

the set C∪ is closed w.r.t. boolean operations;

1Ω,Ω
2 ∈ C∪;

(C∪)∗ = C∪;

C∪ is closed w.r.t. relational product;

Isomorphisms between coherent configurations

Definition

Two coherent configuration X = (Ω, C) and X ′ = (Ω′, C′) are
called (combinatorially) isomorphic iff there exist bijections
f : Ω→ Ω′, φ : C → C′ such that

∀α,β∈Ω (α, β) ∈ C ⇐⇒ (αf , βf) ∈ Cφ.

The set of all isomorphisms between X and X ′ is denoted as
Iso(X ,X ′). Notice that φ is uniquely determined by f .

In what follows we set Iso(X) := Iso(X ,X). We call the elements
of this group colored automorphisms of the configuration.

Coherent configurations generated by a graph.

The mapping (f , φ) 7→ φ is an group homomorphism from Iso(X)
into Sym(C). The kernel of this homomorphism denoted as
Aut(X) is called the the automorphism group of X :

Aut(X) = {f ∈ Sym(Ω) : S f = S for all S ∈ C}

Theorem

Let 〈〈Γ〉〉 be the WL-closure of a graph Γ = (Ω,E) obtained by
applying WL-algorithm to Γ. Then

E ∈ 〈〈Γ〉〉∪;

Aut(Γ) = Aut(〈〈Γ〉〉).

Coherent configurations generated by a graph.

The mapping (f , φ) 7→ φ is an group homomorphism from Iso(X)
into Sym(C). The kernel of this homomorphism denoted as
Aut(X) is called the the automorphism group of X :

Aut(X) = {f ∈ Sym(Ω) : S f = S for all S ∈ C}

Theorem

Let 〈〈Γ〉〉 be the WL-closure of a graph Γ = (Ω,E) obtained by
applying WL-algorithm to Γ. Then

E ∈ 〈〈Γ〉〉∪;

Aut(Γ) = Aut(〈〈Γ〉〉).

Examples. Strongly regular graphs.

Definition

A graph Γ = (Ω,E) is called strongly regular if its WL-closure has
rank three. In other words, WL-algorithm stops at the first
iteration and 〈〈Γ〉〉 = {1Ω,E ,E

c}.

Proposition

A graph Γ = (Ω,E) is strongly regular if and only if there exists
non-negative integers k , λ, µ such that

1 Γ is k-regular,

2 any pair of points connected by an edge have λ common
neighbours,

3 any pair of points not connected by an edge have µ common
neighbours

Examples. Strongly regular graphs.

Definition

A graph Γ = (Ω,E) is called strongly regular if its WL-closure has
rank three. In other words, WL-algorithm stops at the first
iteration and 〈〈Γ〉〉 = {1Ω,E ,E

c}.

Proposition

A graph Γ = (Ω,E) is strongly regular if and only if there exists
non-negative integers k , λ, µ such that

1 Γ is k-regular,

2 any pair of points connected by an edge have λ common
neighbours,

3 any pair of points not connected by an edge have µ common
neighbours

Examples. Permutation groups.

Let G ≤ Sym(Ω) be a permutation group. It acts on Ω× Ω:

(α, β)g := (αg , βg), α, β ∈ Ω, g ∈ G .

Set Inv(G) := (Ω, C) where C := Orb(G ,Ω× Ω). Then

1 Inv(G) is a coherent configuration (of G),

2 the basic relations of X are the 2-orbits of G ,

3 Φ(X) = Orb(G ,Ω), in particular X is a scheme iff G is
transitive;

Definition.

A coherent configuration X is called schurian if X = Inv(G) for
some group G .

Schurity problem

Given a coherent configuration X , find whether it is schurian.

Examples. Permutation groups.

Let G ≤ Sym(Ω) be a permutation group. It acts on Ω× Ω:

(α, β)g := (αg , βg), α, β ∈ Ω, g ∈ G .

Set Inv(G) := (Ω, C) where C := Orb(G ,Ω× Ω). Then

1 Inv(G) is a coherent configuration (of G),

2 the basic relations of X are the 2-orbits of G ,

3 Φ(X) = Orb(G ,Ω), in particular X is a scheme iff G is
transitive;

Definition.

A coherent configuration X is called schurian if X = Inv(G) for
some group G .

Schurity problem

Given a coherent configuration X , find whether it is schurian.

Examples. Permutation groups.

Let G ≤ Sym(Ω) be a permutation group. It acts on Ω× Ω:

(α, β)g := (αg , βg), α, β ∈ Ω, g ∈ G .

Set Inv(G) := (Ω, C) where C := Orb(G ,Ω× Ω). Then

1 Inv(G) is a coherent configuration (of G),

2 the basic relations of X are the 2-orbits of G ,

3 Φ(X) = Orb(G ,Ω), in particular X is a scheme iff G is
transitive;

Definition.

A coherent configuration X is called schurian if X = Inv(G) for
some group G .

Schurity problem

Given a coherent configuration X , find whether it is schurian.

Examples. Permutation groups.

Let G ≤ Sym(Ω) be a permutation group. It acts on Ω× Ω:

(α, β)g := (αg , βg), α, β ∈ Ω, g ∈ G .

Set Inv(G) := (Ω, C) where C := Orb(G ,Ω× Ω). Then

1 Inv(G) is a coherent configuration (of G),

2 the basic relations of X are the 2-orbits of G ,

3 Φ(X) = Orb(G ,Ω), in particular X is a scheme iff G is
transitive;

Definition.

A coherent configuration X is called schurian if X = Inv(G) for
some group G .

Schurity problem

Given a coherent configuration X , find whether it is schurian.

Examples. Permutation groups.

Let G ≤ Sym(Ω) be a permutation group. It acts on Ω× Ω:

(α, β)g := (αg , βg), α, β ∈ Ω, g ∈ G .

Set Inv(G) := (Ω, C) where C := Orb(G ,Ω× Ω). Then

1 Inv(G) is a coherent configuration (of G),

2 the basic relations of X are the 2-orbits of G ,

3 Φ(X) = Orb(G ,Ω), in particular X is a scheme iff G is
transitive;

Definition.

A coherent configuration X is called schurian if X = Inv(G) for
some group G .

Schurity problem

Given a coherent configuration X , find whether it is schurian.

Examples. Permutation groups.

Let G ≤ Sym(Ω) be a permutation group. It acts on Ω× Ω:

(α, β)g := (αg , βg), α, β ∈ Ω, g ∈ G .

Set Inv(G) := (Ω, C) where C := Orb(G ,Ω× Ω). Then

1 Inv(G) is a coherent configuration (of G),

2 the basic relations of X are the 2-orbits of G ,

3 Φ(X) = Orb(G ,Ω), in particular X is a scheme iff G is
transitive;

Definition.

A coherent configuration X is called schurian if X = Inv(G) for
some group G .

Schurity problem

Given a coherent configuration X , find whether it is schurian.

Galois correspondence.

Definition

Let X = (Ω, C),X ′ = (Ω, C′) be two coherent configuratios. We
say that X is a fusion of X ′ (equivalently X ′ is a fission of X),
notation X v X ′ if C v C′.

Proposition

Let X ,X ′ be two coherent configurations defined on Ω and
G ,H ≤ Sym(Ω) arbitrary subgroups. Then

X v X ′ =⇒ Aut(X) ≥ Aut(X ′);

H ≤ G =⇒ Inv(H) w Inv(G);

G ≤ Aut(Inv(G);

X v Inv(Aut(X))

Galois correspondence.

Definition

Let X = (Ω, C),X ′ = (Ω, C′) be two coherent configuratios. We
say that X is a fusion of X ′ (equivalently X ′ is a fission of X),
notation X v X ′ if C v C′.

Proposition

Let X ,X ′ be two coherent configurations defined on Ω and
G ,H ≤ Sym(Ω) arbitrary subgroups. Then

X v X ′ =⇒ Aut(X) ≥ Aut(X ′);

H ≤ G =⇒ Inv(H) w Inv(G);

G ≤ Aut(Inv(G);

X v Inv(Aut(X))

Galois closed objects.

Definition

The group G (2) := Aut(Inv(G)) is called a 2-closure of
G ≤ Sym(Ω). A group is called 2-closed if G = G (2).

Definition

Given a coherent configuration X = (Ω, C), the configuration
Sch(X) := Inv(Aut(X)) is called a Schurian closure of X . A
configuration X is schurian iff Sch(X) = X .

Theorem

The mappings (Aut, Inv) are bijections between 2-closed subgroups
of Sym(Ω) and schurian coherent configurations defined on Ω.

Theorem.

The GI is polynomially equivalent to the problem of finding the
schurian closure of a coherent configuration.

Galois closed objects.

Definition

The group G (2) := Aut(Inv(G)) is called a 2-closure of
G ≤ Sym(Ω). A group is called 2-closed if G = G (2).

Definition

Given a coherent configuration X = (Ω, C), the configuration
Sch(X) := Inv(Aut(X)) is called a Schurian closure of X . A
configuration X is schurian iff Sch(X) = X .

Theorem

The mappings (Aut, Inv) are bijections between 2-closed subgroups
of Sym(Ω) and schurian coherent configurations defined on Ω.

Theorem.

The GI is polynomially equivalent to the problem of finding the
schurian closure of a coherent configuration.

