Graph parameters, implicit representation and factorial properties

Vadim Lozin

Mathematics Institute
University of Warwick

UK

Implicit representation of graphs

Implicit representation of graphs

Kannan, S.; Naor, M.; Rudich, S. Implicit representation of graphs. STOC '88: Proceedings of the twentieth annual ACM symposium on Theory of computing 334-343.
Kannan, S.; Naor, M.; Rudich, S. Implicit representation of graphs. SIAM J. Discrete Math. 5 (1992), 596-603.

Implicit representation of graphs

Kannan, S.; Naor, M.; Rudich, S. Implicit representation of graphs.
STOC '88: Proceedings of the twentieth annual ACM symposium on Theory of computing 334-343.
Kannan, S.; Naor, M.; Rudich, S. Implicit representation of graphs. SIAM J. Discrete Math. 5 (1992), 596-603.

SIAM Journal on Discrete Mathematics

Implicit representation of graphs

Kannan, S.; Naor, M.; Rudich, S. Implicit representation of graphs.
STOC '88: Proceedings of the twentieth annual ACM symposium on Theory of computing 334-343.
Kannan, S.; Naor, M.; Rudich, S. Implicit representation of graphs.
SIAM J. Discrete Math. 5 (1992), 596-603.
SIAM Journal on Discrete Mathematics

< Previous Article
Volume 5, Issue 4
Abstract \| References \| PDF \| Cited By

SIAM J. Discrete Math., 5(4), 596-603. (8 pages)
Implicat Representation of Graphs
Sampath Kannan, Moni Naor, and Steven Rudich
https://doi.org/10.1137/0405049

Implicit representation of graphs

Kannan, S.; Naor, M.; Rudich, S. Implicit representation of graphs.
STOC '88: Proceedings of the twentieth annual ACM symposium on Theory of computing 334-343.
Kannan, S.; Naor, M.; Rudich, S. Implicit representation of graphs.
SIAM J. Discrete Math. 5 (1992), 596-603.
SIAM Journal on Discrete Mathematics

< Previous Article
Volume 5, Issue 4
Abstract \| References \| PDF \| Cited By

SIAM J. Discrete Math., 5(4), 596-603. (8 pages)
Implicat Representation of Graphs
Sampath Kannan, Moni Naor, and Steven Rudich
https://doi.org/10.1137/0405049

```
n \(\quad \cdots \quad 5\)
```


Implicit representation of graphs

Kannan, S.; Naor, M.; Rudich, S. Implicit representation of graphs.
STOC '88: Proceedings of the twentieth annual ACM symposium on Theory of computing 334-343.
Kannan, S.; Naor, M.; Rudich, S. Implicit representation of graphs. SIAM J. Discrete Math. 5 (1992), 596-603.

SIAM Journal on Discrete Mathematics
Volume 5, Issue 4

We need $n \log n$
1 - bits to represent the vertex labels
< Previous Article
Abstract \| References \| PDF \| Cited By

- |

Prüfer code establishes a bijection between the set of labelled trees with n vertices and the set of all sequences of length $n-2$ composed of the elements of $\{1,2, \ldots, n\}$.

Every labelled tree with n vertices can be represented by a binary word of length $n \log n$.

The number of labelled trees with n vertices is $\mathrm{n}^{\mathrm{n}-2}$ (Cayley's Formula)

Prüfer code establishes a bijection between the set of labelled trees with n vertices and the set of all sequences of length $n-2$ composed of the elements of $\{1,2, \ldots, n\}$.

Every labelled tree with n vertices can be represented by a binary word of length $n \log n$.

The number of labelled trees with n vertices is $\mathrm{n}^{\mathrm{n}-2}$ (Cayley's Formula)

Carl Borchardt (1817-1880)

Arthur Cayley (1821-1895)

Ernst Paul Heinz Prüfer (1896-1934)

The formula was first discovered by Carl Borchardt in 1860, and proved via a determinant. In a short 1889 note, Cayley extended the formula in several directions, by taking into account the degrees of the vertices. Although he referred to Borchardt's original paper, the name "Cayley's formula" became standard in the field.

Prüfer code establishes a bijection between the set of labelled trees with n vertices and the set of all sequences of length $n-2$ composed of the elements of $\{1,2, \ldots, n\}$.

Every labelled tree with n vertices can be represented by a binary word of length $n \log n$.

Implicit representation of graphs

If a graph admits a representation by a binary word of length $n \log n$, can we split it into n pieces of length $\log n$, assign them to the vertices as labels, and determine the adjacency of two vertices by looking at their labels only?

Implicit representation of graphs

If a graph admits a representation by a binary word of length $n \log n$, can we split it into n pieces of length $\log n$, assign them to the vertices as labels, and determine the adjacency of two vertices by looking at their labels only?

Prüfer code does not allow this, but a tree can be represented in this way by assigning to each vertex a label of length $2 \log n$: choose a root (arbitrarily) and assign to each vertex its name (a number from 1 to n) and the name of its parent (a number from 1 to n).

Implicit representation of graphs

If a graph admits a representation by a binary word of length $n \log n$, can we split it into n pieces of length $\log n$, assign them to the vertices as labels, and determine the adjacency of two vertices by looking at their labels only?

Prüfer code does not allow this, but a tree can be represented in this way by assigning to each vertex a label of length $2 \log n$: choose a root (arbitrarily) and assign to each vertex its name (a number from 1 to n) and the name of its parent (a number from 1 to n).

A representation of an n-vertex graph G is implicit if it assigns to each vertex of G a binary code of length $O(\log n)$ so that the adjacency of two vertices is a function of their codes.

Implicit representation of graphs

If a graph admits a representation by a binary word of length $n \log n$, can we split it into n pieces of length $\log n$, assign them to the vertices as labels, and determine the adjacency of two vertices by looking at their labels only?

Prüfer code does not allow this, but a tree can be represented in this way by assigning to each vertex a label of length $2 \log n$: choose a root (arbitrarily) and assign to each vertex its name (a number from 1 to n) and the name of its parent (a number from 1 to n).

A representation of an n-vertex graph G is implicit if it assigns to each vertex of G a binary code of length $O(\log n)$ so that the adjacency of two vertices is a function of their codes.

Every class of graphs that admits an implicit representation contains $2^{0(n \log n)}$ labelled graphs

Factorial properties of graphs

Factorial properties of graphs

Balogh, József; Bollobás, Béla; Weinreich, David The speed of hereditary properties of graphs. J. Combin. Theory Ser. B 79 (2000), no. 2, 131-156.

Hereditary classes containing $2^{\Theta(n \log n)}$ labelled graphs have factorial speed of growth and are known as factorial classes (properties).

Factorial properties of graphs

Balogh, József; Bollobás, Béla; Weinreich, David The speed of hereditary properties of graphs. J. Combin. Theory Ser. B 79 (2000), no. 2, 131-156.

Hereditary classes containing $2^{\Theta(n \log n)}$ labelled graphs have factorial speed of growth and are known as factorial classes (properties).

Definition. A class of graphs is hereditary if it is closed under taking induced subgraphs.

Factorial properties of graphs

Balogh, József; Bollobás, Béla; Weinreich, David The speed of hereditary properties of graphs. J. Combin. Theory Ser. B 79 (2000), no. 2, 131-156.

Hereditary classes containing $2^{\Theta(n \log n)}$ labelled graphs have factorial speed of growth and are known as factorial classes (properties).

Definition. A class of graphs is hereditary if it is closed under taking induced subgraphs.

Every hereditary class of graphs that admits an implicit representation has (at most) factorial speed of growth.

Implicit representation conjecture

Do graphs in any hereditary class with at most factorial speed of growth admit an implicit representation?

Implicit representation conjecture

Do graphs in any hereditary class with at most factorial speed of growth admit an implicit representation?

Spinrad, J.P. Efficient graph representations. Fields Institute Monographs, 19. American Mathematical Society, Providence, RI, 2003. xiii+342 pp.

Implicit representation conjecture

Do graphs in any hereditary class with at most factorial speed of growth admit an implicit representation?

Spinrad, J.P. Efficient graph representations. Fields Institute Monographs, 19. American Mathematical Society, Providence, RI, 2003. xiii+342 pp.
H. Hatami, P. Hatami, The implicit graph conjecture is false, FOCS 2022.

The authors prove the existence of factorial classes of bipartite graphs that do not admit an implicit representation.

Implicit representation conjecture

Do graphs in any hereditary class with at most factorial speed of growth admit an implicit representation?

Spinrad, J.P. Efficient graph representations. Fields Institute Monographs, 19. American Mathematical Society, Providence, RI, 2003. xiii+342 pp.
H. Hatami, P. Hatami, The implicit graph conjecture is false, FOCS 2022.

The authors prove the existence of factorial classes of bipartite graphs that do not admit an implicit representation.

If the speed of a hereditary class is not responsible for implicit representation, then what is responsible for it?

Classes of graphs admitting an implicit representation

Classes of graphs admitting an implicit representation

- Graphs of bounded vertex degree

Classes of graphs admitting an implicit representation

- Graphs of bounded vertex degree
- Graphs of bounded degeneracy (the minimum k such that every induced subgraph has a vertex of degree at most k), which includes all proper minor closed classes, all classes of bounded tree-width, etc.

Classes of graphs admitting an implicit representation

- Graphs of bounded vertex degree
- Graphs of bounded degeneracy (the minimum k such that every induced subgraph has a vertex of degree at most k), which includes all proper minor closed classes, all classes of bounded tree-width, etc.
- Graphs of bounded boxicity, including interval graphs
- Graphs of bounded clique-width

> Spinrad, J.P. Efficient graph representations. Fields Institute Monographs, 19. American Mathematical Society, Providence, RI, 2003. xiii+342 pp.

- Graphs of bounded twin-width

```
Bonnet, Édouard; Geniet, Colin; Kim, Eun Jung; Thomassé, Stéphan; Watrigant, Rémi Twin-width II: small classes. Proc. the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), 1977-1996.
```


Graph parameters

Graph parameters

Alecu, Bogdan; Atminas, Aistis; Lozin, Vadim Graph functionality. J. Combin. Theory Ser. B 147 (2021),139-158.

bounded
clique-width
:---
twin-width
:---
functionality

Graph parameters

Alecu, Bogdan; Atminas, Aistis; Lozin, Vadim Graph functionality. J. Combin. Theory Ser. B 147 (2021),139-158.
bounded
clique-width
bounded

twin-width \begin{tabular}{l}
bounded

symmetric

difference

\longrightarrow

bounded

functionality
\end{tabular}

The symmetric difference of two vertices x and y in a graph G is the number of vertices in $\mathrm{G}-\{\mathrm{x}, \mathrm{y}\}$ adjacent to exactly one of x and y .

The symmetric difference of G as the smallest number k such that every induced subgraph of G has a pair of vertices with symmetric difference at most k.

Classes of graphs

Classes of graphs

We study hereditary classes of bipartite graphs

Classes of graphs

We study hereditary classes of bipartite graphs
Every such class can be described by a set M of minimal forbidden induced bipartite subgraphs

Classes of graphs

We study hereditary classes of bipartite graphs
Every such class can be described by a set M of minimal forbidden induced bipartite subgraphs
$|M|=1$: monogenic classes

Classes of graphs

We study hereditary classes of bipartite graphs
Every such class can be described by a set M of minimal forbidden induced bipartite subgraphs
$|M|=1$: monogenic classes
Theorem. For a bipartite graph H , the class of H -free bipartite graphs has at most factorial speed of growth if and only if H is an induced subgraph of one of the following graphs: $P_{7,} S_{1,2,3}$ and $F_{t, p}$.

$S_{1,2,3}$

$F_{t, p}$

Classes of graphs

We study hereditary classes of bipartite graphs
Every such class can be described by a set M of minimal forbidden induced bipartite subgraphs
$|M|=1$: monogenic classes
Theorem. For a bipartite graph H, the class of H-free bipartite graphs has at most factorial speed of growth if and only if H is an induced subgraph of one of the following graphs: $P_{7,} S_{1,2,3}$ and $F_{t, p}$.

Allen, Peter Forbidden induced bipartite graphs.
J. Graph Theory 60 (2009), no. 3, 219-241.

Lozin, Vadim; Zamaraev, Viktor The structure and the number of P7-free bipartite graphs. European J. Combin. 65 (2017), 143-153.

$S_{1,2,3}$

$F_{t, p}$

Three extremal classes of graphs

$S_{1,2,3}$

$F_{t, p}$

Three extremal classes of graphs

$\mathrm{S}_{1,2,3}$-free bipartite graphs have bounded clique-width
Lozin, Vadim V. Bipartite graphs without a skew star. Discrete Math. 257 (2002), no. 1, 83-100.
$\mathrm{S}_{1,2,3}$-free bipartite graphs admit an implicit representation and have bounded symmetric difference

$S_{1,2,3}$

$F_{t, p}$

Three extremal classes of graphs

Lozin, Vadim V. Bipartite graphs without a skew star. Discrete Math. 257 (2002), no. 1, 83-100.
$\mathrm{S}_{1,2,3}$-free bipartite graphs admit an implicit representation and have bounded symmetric difference
$2 \mathrm{P}_{3}$-free bipartite, and hence P_{7}-free bipartite and $\mathrm{F}_{\mathrm{t}, \mathrm{p}}$-free bipartite, graphs have unbounded clique-width

Lozin, Vadim V.; Volz, Jordan The clique-width of bipartite graphs in monogenic classes. Internat. J. Found. Comput. Sci. 19 (2008), 477-494.

$S_{1,2,3}$

$2 \mathrm{P}_{3}$

$F_{t, p}$

Three extremal classes of graphs

$\mathrm{S}_{1,2,2,}$-free bipartite graphs
have bounded clique-width have bounded clique-width
Lozin, Vadim V. Bipartite graphs without a skew star. Discrete Math. 257 (2002), no. 1, 83-100.
$\mathrm{S}_{1,2,3}$-free bipartite graphs admit an implicit representation and have bounded symmetric difference
$2 \mathrm{P}_{3}$-free bipartite, and hence P_{7}-free bipartite and $\mathrm{F}_{\mathrm{t}, \mathrm{p}}$-free bipartite, graphs have unbounded clique-width
Lozin, Vadim V.; Volz, Jordan The clique-width of bipartite graphs in monogenic classes. Internat. J. Found. Comput. Sci. 19 (2008), 477-494.

Theorem. $F_{t, p}$-free bipartite graphs have bounded symmetric difference.
$2 \mathrm{P}_{3}$
Theorem. $F_{t, p}-$ free bipartite graphs admit an implicit representation.

$\mathrm{S}_{1,2,3}$

$F_{t, p}$

Three extremal classes of graphs

E$\mathrm{S}_{1,2,3}$-free bipartite graphs have bounded clique-width
Lozin, Vadim V. Bipartite graphs without a skew star. Discrete Math. 257 (2002), no. 1, 83-100.
$\mathrm{S}_{1,2,3}$-free bipartite graphs admit an implicit representation and have bounded symmetric difference
$2 \mathrm{P}_{3}$-free bipartite, and hence P_{7}-free bipartite and $\mathrm{F}_{\mathrm{t}, \mathrm{p}}$-free bipartite, graphs have unbounded clique-width

```
Lozin, Vadim V.; Volz, Jordan The clique-width of bipartite graphs in
monogenic classes. Internat. J. Found. Comput. Sci. 19 (2008), 477-494.
```


Theorem. $F_{t, p}$-free bipartite graphs have bounded symmetric difference.
$2 \mathrm{P}_{3}$
Theorem. $F_{t, p}$-free bipartite graphs admit an implicit representation.
Conjecture. P_{7}-free bipartite graphs have bounded symmetric difference.
Conjecture. Hereditary classes of graphs of bounded symmetric difference admit an implicit representation.

$S_{1,2,3}$

$F_{t, p}$

Back to factorial properties

Back to factorial properties

Alecu, Bogdan; Atminas, Aistis; Lozin, Vadim Graph functionality. J. Combin. Theory Ser. B 147 (2021),139-158.

Theorem. Every class of graphs of bounded functionality is (at most) factorial.

Back to factorial properties

Alecu, Bogdan; Atminas, Aistis; Lozin, Vadim Graph functionality. J. Combin. Theory Ser. B 147 (2021),139-158.

Theorem. Every class of graphs of bounded functionality is (at most) factorial.

Is the reverse true?

Back to factorial properties

Alecu, Bogdan; Atminas, Aistis; Lozin, Vadim Graph functionality. J. Combin. Theory Ser. B 147 (2021),139-158.

Theorem. Every class of graphs of bounded functionality is (at most) factorial.

Is the reverse true? No

Back to factorial properties

Alecu, Bogdan; Atminas, Aistis; Lozin, Vadim Graph functionality. J. Combin. Theory Ser. B 147 (2021),139-158.

Theorem. Every class of graphs of bounded functionality is (at most) factorial.

Is the reverse true? No
Theorem. Hypercubes can have arbitrarily large functionality.

Let Q be the class of induced subgraphs of hypercubes.

What is the speed of Q ?

Back to factorial properties

Let Q be the class of induced subgraphs of hypercubes.
Theorem. There are at most $\mathrm{n}^{2 \mathrm{n}} \mathrm{n}$-vertex labelled graphs in Q .

Back to factorial properties

Let Q be the class of induced subgraphs of hypercubes.
Theorem. There are at most $\mathrm{n}^{2 \mathrm{n}} \mathrm{n}$-vertex labelled graphs in Q .

Let Q_{n} denote the n-dimensional hypercube. To obtain the desired bound, we will produce, for each labelled n-vertex graph in Q , a sequence of 2 n numbers between 1 and n which allows us to retrieve the graph uniquely.

Back to factorial properties

Let Q be the class of induced subgraphs of hypercubes.
Theorem. There are at most $\mathrm{n}^{2 \mathrm{n}} \mathrm{n}$-vertex labelled graphs in Q .

Let Q_{n} denote the n-dimensional hypercube. To obtain the desired bound, we will produce, for each labelled n-vertex graph in Q , a sequence of 2 n numbers between 1 and n which allows us to retrieve the graph uniquely.

As a preliminary, let $G \in Q$ be a connected graph on n vertices. By definition of Q, G embeds into Q_{m} for some m. We claim that, in fact, G embeds into Q_{n-1} (by induction on the number of vertices in G). Additionally, by symmetry, if G has a distinguished vertex r, we remark that we may find an embedding sending r to ($0,0, \ldots, 0$).

Back to factorial properties

Let Q be the class of induced subgraphs of hypercubes.
Theorem. There are at most $\mathrm{n}^{2 n} \mathrm{n}$-vertex labelled graphs in Q .

Let $\mathrm{G} \in \mathrm{Q}$ be any labelled graph with vertex set $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right\}$. We start by choosing, for each connected component C of G :

- a spanning tree T_{C} of C;
- a root r_{c} of T_{c};
- an embedding φ_{c} of T_{c} into Q_{n-1} sending r_{c} to $(0,0, \ldots, 0)$.

We define two functions $\mathrm{p}, \mathrm{d}: \mathrm{V}(\mathrm{G}) \rightarrow\{1, \ldots, \mathrm{n}\}$:
$p\left(x_{i}\right)=i$ if x_{i} is the root
$d\left(x_{i}\right)=i$ if x_{i} is the root
$P\left(x_{i}\right)=j$ if x_{j} is the parent of $x_{i} \quad d\left(x_{i}\right)=j$ if $\varphi\left(x_{i}\right)$ and $\varphi\left(p\left(x_{j}\right)\right)$ differ in coordinate j.

Back to factorial properties

Let Q be the class of induced subgraphs of hypercubes.
Theorem. There are at most $\mathrm{n}^{2 \mathrm{n}} \mathrm{n}$-vertex labelled graphs in Q .

We now claim that G can be restored from the sequence $p\left(x_{1}\right), d\left(x_{1}\right), \ldots, p\left(x_{n}\right), d\left(x_{n}\right)$. To do so, we first note that this sequence allows us to easily determine the partition of G into connected components. Moreover, for each connected component, we may then determine its embedding $\varphi(C)$ into $Q_{n-1}: \varphi_{c}\left(r_{c}\right)$ is by assumption ($0,0, \ldots, 0$); we may then identify its children using p, then compute their embeddings using d; we may then proceed inductively. This information allows us to determine the adjacency in G as claimed, and the encoding uses 2 n integers between 1 and n as required.

We define two functions $p, d: V(G) \rightarrow\{1, \ldots, n\}$:
$p\left(x_{i}\right)=i$ if x_{i} is the root
$P\left(x_{i}\right)=j$ if x_{j} is the parent of x_{i}
$d\left(x_{i}\right)=i$ if x_{i} is the root
$d\left(x_{i}\right)=j$ if $\varphi\left(x_{i}\right)$ and $\varphi\left(p\left(x_{j}\right)\right)$ differ in coordinate j.

Open questions

Open questions

Do graphs in Q admit an implicit representation?

Open questions

Do graphs in Q admit an implicit representation?

Open questions

Do graphs in Q admit an implicit representation?
Yes
N. Harms, S. Wild, V. Zamaraev, Randomized communication and implicit graph representations. STOC 2022, 1220-1233.

Non-constructive proof with no explicit labelling scheme

Open questions

Do graphs in Q admit an implicit representation?
Yes
N. Harms, S. Wild, V. Zamaraev, Randomized communication and implicit graph representations. STOC 2022, 1220-1233.

Non-constructive proof with no explicit labelling scheme
Find specific implicit representation for the class Q

Open questions

Do graphs in Q admit an implicit representation?
N. Harms, S. Wild, V. Zamaraev, Randomized communication and implicit graph representations. STOC 2022, 1220-1233.

Non-constructive proof with no explicit labelling scheme
Find specific implicit representation for the class Q

Do P_{7}-free (chordal) bipartite graphs admit an implicit representation?

Thank you

