Critical $\left(P_{3}+\ell P_{1}\right)$-free graphs

Chính T Hoàng

Department of Physics and Computer Science
Wilfrid Laurier University (Canada)
September 19, 2022
(Joint work with Tala Abuadas, Ben Cameron and Joe Sawada)

k-critical graphs

Definition

A graph G is k-critical if G is k-chromatic but $G-x$ is
$(k-1)$-colorable for any vertex x of G.

Problem

For a class \mathcal{F} of graphs, is the number of k-critical graphs in \mathcal{F} finite, for some given k ?

If the answer is yes, then we can k-color the graphs in \mathcal{F} in poly-time.

H-Free Graphs

Definition

For a graph H, a graph G is H-free, when G does not contain H as an induced subgraph.

Definition

For a set \mathcal{F} of graphs, a graph G is \mathcal{F}-free, when G does not contain any graph of \mathcal{F} as an induced subgraph.

All graphs on four vertices

Complexity of coloring P_{5} graphs

Theorem (Kral, Kratochvil, Tuza, Woeginger 2001)

Coloring ($2 K_{2}$, co-diamond, $4 K_{1}, C_{5}$)-free graphs is NP-hard
This implies it is NP-hard to color the following classes:

- graphs with no holes of length at least five
- odd-hole-free graphs
- P_{5}-free graphs

What about k-coloring P_{5}-free graphs for a fixed $k \geq 3$?

3-coloring P_{5}-free graphs

Theorem (Woeginger and Sgall 2001)

There is a polynomial time algorithm to 3-color a P_{5}-free graphs, or to show that no 3-coloring exists.

Theorem (Daniel Bruce, CTH, Joe Sawada 2009)

The number of 4-critical P_{5}-free graphs is finite.

What about 5-critical P_{5}-free graphs?

k-colorability of P_{5}-free graphs 1

Theorem (CTH, Kaminski, Lozin, Sawada, Shu 2010)
For every $k \geq 4, k$-colorability of P_{5}-free graphs can be solved in poly time.

k-critical P_{5}-free graphs

Theorem (CTH, Moore, Recoskie, Sawada, Vatshelle 2014)

For every $k \geq 5$, the number of k-critical $2 K_{2}$-free graphs is infinite.

Note the $\mathrm{k}=4$ gap. We'll talk about it later.

Constructing 5-critical $2 K_{2}$-free graphs

G_{p} has $4 p+1$ vertices.

(a)

(b)
$p=6$

Constructing 5 -critical $2 K_{2}$-free graphs

G_{p} has $4 p+1$ vertices
To increase p by 1 , add one interval We can make a graph with arbitrarily large α and $\omega=4$. Adding an universal vertex, we get arbirarily large ω

Some properties of k-critical graphs

Theorem (Erdos 1959)

If H contains a cycle, then for all $k \geq 3$, there are an infinite number of H-free k-critical graphs.

Theorem (Lazebnik Ustimenko 1995)

If H contains a claw, then for all $k \geq 3$, there are an infinite number of H-free k-critical graphs.

Theorem (Chudnovsky,Goedgebeur, Schaudt and Zhong 2016)

Let H be a graph. There are only finitely many H-free 4-vertex-critical graphs if and only if H is an induced subgraph of $P_{6}, 2 P_{3}$, or $P_{4}+k P_{1}$ for some $k \in N$.

A question on H -free k -critical graphs

Problem

For which graphs H are there a finite number of k-critical H-free graphs for all $k \geq 5$?
H cannot contain a cycle, or a claw, or a $2 K_{2}$.
H must be, for a constant ℓ

- $P_{2}+\ell K_{1}$, or
- $P_{3}+\ell K_{1}$, or
- $P_{4}+\ell K_{1}$, or

The first two cases were solved.

The graphs $P_{2}+\ell P_{1}$ and $P_{3}+\ell P_{1}$

Theorem (Ben Cameron, CTH, Joe Sawada 2020)

All all $\ell \geq 0$ and k, the number of k-critical $\left(P_{2}+\ell P_{1}\right)$-free graph is finite.

Theorem (Ben Cameron, CTH, Joe Sawada 2022)

All all $\ell \geq 0$ and k, the number of k-critical $\left(P_{3}+\ell P_{1}\right)$-free graph is finite.

Proof of $\left(P_{3}+\ell P_{1}\right)$-free graphs

Outline of the proof:

- Let G be a k-critical graph.
- We know $\omega(G) \leq k$ because $\chi(G) \geq \omega(G)$.
- We will prove $\alpha(G)$ is bounded.
- By Ramsey theorem we are done, because $|V(G)| \leq R(\alpha+1, \omega+1)$.

Proof

Take S to be max stable set
Want to prove $|S|<k^{\wedge} 2(l+3)$

Assume to contrary
$A=$ vertices in $G-S$ with exactly one neighbor in S
$B=$ vertices in $G-S$ with at least two neighbors in S
$\mathrm{A}+\mathrm{B}+\mathrm{S}=\mathrm{V}(\mathrm{G})$

Observation 1

If some v in B is non-adjacent to at least l vertices in S then we have a P3+l P1

Observation 2

A

B

A color class is big if it has $>=k(l+3)$ vertices in S
In a k-coloring, some color class is big
If a color appears in B, it cannot belong to a big color class

Step 3

Claim: S_B is empty

Proof:
Remove x in S_B, color G-x with k-1 colors, these appear in B , one of the color is big

Step 4

Take x in S_A with smallest degree in A $x _A$ is a clique (neighbors of x in A)
There is a k-coloring of G such that x is the only vertex with color k and colors 1, 2, $\ldots, \mathrm{k}-1$ appear in $\mathrm{N}(\mathrm{x})$
Colors $\mathrm{t}+1, \ldots, \mathrm{k}-1$ are small WLOG, assume color 1 is big

Step 5

There are $k(l+3)$ cliques
Some color, say $t+1$, appears at least limes in the cliques

Step 6

The set $S_{-} A-I$ has $k^{\wedge} 2(l+3)-l>l$ vertices
Vertex y cannot miss l vertices in $S_{-} A-1$ so it sees at least two vertices
There is a P3 $+l P 1$

Open problems

Problem

Are there a finite number of k-critical $\left(P_{4}+P_{1}\right)$-free graphs, for all $k \geq 5$?

Problem

For which values of $k \geq 5$ and $\ell \geq 2$ is there a finite number of k-critical ($P_{4}+\ell P_{1}$)-free graphs?

co-gem-free graphs

The graph $P_{4}+P_{1}$ is called a co-gem.
The problem is open for co-gem-free graphs.
Theorem (Ben Cameron, CTH, Joe Sawada)
Therer is a finite number of k-critical (gem, co-gem)-free graphs for $k \geq 5$.

This uses a theorem of Karthick and Maffray.
Theorem (T. Karthick, F. Maffray)
If G is (gem, co-gem)-free, then G is perfect or a $P 4$ - or clique-expansion of a finite number of finite graphs.

Theorem (T. Karthick, F. Maffray)
If G is (gem, co-gem)-free, then G is perfect, or a P4- or clique-expansion of 10 graphs, or G belongs to a family of special graphs.

Thank you for your attention

