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Happy 60th Birthday, Vadim!
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and many returns!
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SAT and Graphs

• SAT: given a propositional formula in 
CNF (i.e., a set of clauses). Is the 
formula satisfiable?
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F = {C1, …, C5}

C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x}, C5 = {x, y, z}

y

u

v

w

x

z

(a)

C2

C5

C4 C3

C1

(b)

C2
z

C5

x

C4
w

C3

v

C1

u

y

(c)

C2

C5

C4 C3

C1

(d)

C2

C5

C4 C3

C1

(e)

Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.
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incidence graph• We want to apply graph parameters, 
hence need to associate with the 
formula formula a graph.


• For an overview see the Handbook 
of Satisfiability, Chapter 17, 2nd 
edition, [1]
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Use of incidence graphs
• David Lichtenstein 1982 [2]: SAT is NP-hard 

for planar incidence graphs.


• Jan Kratochvil 1994 [3]: remains hard for 
incidence graphs that are vertex-3-connected, 
maximum degree 4. 


• Vadim Lozin, Christopher Purcell 2013 [4]: 
remains hard for incidence graphs without

 as induced 
subgraphs. For  this sequence 
converges to a “minimal boundary property”.

K1,4, C4, …, Ck, H1, …, Hk
k → ∞
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V. Lozin, C. Purcell / Information Processing Letters 113 (2013) 313–317 315

Fig. 1. Graphs Hn (left) and Si, j,k (right).

monotone property containing no subgraphs from a set M
by Freem(M).

To simplify our discussion, let us call any hereditary
property of formula graphs with polynomial-time solvable
satisfiability problem good and all other hereditary prop-
erties of formula graphs bad.

A hereditary property Z of formula graphs will be
called a limit property if there is a sequence Y1 ⊇ Y2 ⊇ · · ·
of bad classes such that Z = ⋂

i!1 Yi . We will say that the
sequence {Yi}i!1 converges to Z .

A minimal limit property will be called a boundary
property. A helpful minimality criterion is given in the fol-
lowing lemma.

Lemma 1. A limit class Y = Free(M) is minimal (i.e. boundary)
if and only if for every graph G ∈ Y there is a finite set T ⊆ M
such that Free({G} ∪ T ) is good.

Proof. Suppose Y is a boundary class, and assume for con-
tradiction that there is a graph G ∈ Y such that for ev-
ery finite set T ⊆ M the class Free({G} ∪ T ) is bad. Let
M := {m1,m2, . . .} and Zi := Free(G,m1,m2, . . . ,mi). Then,
according to our assumption, Zi is bad for each i. There-
fore, Z := ⋂

i Zi is a limit class. It contains no element
from M and it does not contain G . Therefore, it is a proper
subset of Y , contradicting the minimality of Y .

Conversely, assume that for every graph G ∈ Y there is
a finite set T ⊆ M such that Free({G} ∪ T ) is good, and
suppose for contradiction that there exists a limit class Z
which is properly contained in X . Since Z is a limit class,
there exists a sequence Z1 ⊇ Z2 ⊇ · · · of bad classes con-
verging to Z . Pick any graph G ∈ Y \ Z and a finite set
T ⊆ M such that Free({G} ∪ T ) is good. Then, since T is fi-
nite, there must exist an n such that Zn is ({G} ∪ T )-free,
in which case Zn must be good. This contradiction finishes
the proof. !

3. A limit property of satisfiability

Let F be a CNF formula, x a variable and C a clause
containing it. We denote the literal of x contained in C
by xα , where xα = x if α = 1, and xα = x̄ if α = 0. Let us
denote by F (x, C) the formula obtained from F as follows:
add a new variable y, add a new clause xα ∨ ȳ, replace xα

by y in C .

Lemma 2. Formula F is satisfiable if and only if F (x, C) is.

Proof. Assume F is satisfiable and let γ be a satisfying
truth assignment. If C is satisfied by xα , then xα satisfies
the new clause in F (x, C). Therefore, the assignment γ to-
gether with y → 1 satisfies F (x, C). If C is satisfies by a
literal different from xα , then F (x, C) can be satisfied by
the assignment γ together with y → 0.

Conversely, suppose F (x, C) is satisfiable and let γ be a
satisfying truth assignment. If the clause xα ∨ ȳ is satisfied
by xα , then γ also satisfies F . If xα ∨ ȳ is satisfied not
by xα , then it is satisfied by ȳ, in which case γ (y) = 0
and hence C is satisfied in F (x, C) by a variable different
from y. Therefore, γ satisfies F again. !

In terms of graphs, the transformation of F into F (x, C)
is equivalent to a double subdivision of an edge in the
formula graph G F . This observation leads to the follow-
ing conclusion, where Hn denotes the graph represented
on the left of Fig. 1.

Lemma 3. For any fixed k, the satisfiability problem re-
stricted to instances whose formula graphs belong to the class
Free(K1,4, C3, C4, . . . , Ck, H1, H2, . . . , Hk) is NP-complete.

Proof. We know that sat is NP-complete when restricted
to formula graphs of vertex degree at most three [15].
Given a graph G F in this class, we subdivide each edge
of G twice and denote the resulting graph by G F ′ . Ob-
serve that by means of this transformation we destroy all
small induced copies of cycles and graphs of the from Hi .
According to Lemma 2, F is satisfiable if and only if F ′

is. Applying the above transformation sufficiently many
times, we can transform G F into a graph G F ′′ in the class
Free(C3, . . . , Ck, H1, . . . , Hk). As before, F is satisfiable if
and only if F ′′ is, and for a fixed k, this transformation
is obviously polynomial. Finally, since G F is of degree at
most 3, then so is G F ′′ . Therefore, G F ′′ is K1,4-free. !

Let us denote the class Free(K1,4, C3, C4, . . . , Ck, H1,
H2, . . . , Hk) by Sk . Clearly, S3 ⊃ S4 ⊃ S5 ⊃ · · · and there-
fore, by Lemma 3, the intersection

⋂
k Sk is a limit class.

This intersection contains no cycles. Therefore, it is a class
of forests. Since the intersection does not contain K1,4, it
is a class of forest of vertex degree at most 3. Finally, since
the intersection contains no graphs of the form Hn , ev-
ery connected component of any graph in this class has
at most one vertex of degree 3. In other words, the inter-
section

⋂
k Sk consists of graphs in which every connected

component has the form Si, j,k (with some values of i, j,k)
represented on the right of Fig. 1. Throughout the paper,

Hn
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SAT and width parameters
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SAT and Twin-Width (tww)
• A new graph parameter, introduced by Bonnet et al. [5]


• Graphs of bounded tww capture many others sparse and 
dense graph classes.


• Graphs of bounded tww admit tractable First-Order model 
checking


• Q1: can we use tww for SAT? 

• Q2: can we use SAT to compute tww? 

6
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Twin-Width of Graphs
• Reduce a given Graph to a single vertex by a sequence of contractions.


• Each contraction removes a vertex  by contracting it to one of the remaining vertices . In symbols 
.


• If  are twins, then the contraction is perfect.


• if  are not twins, we record the error by colouring edges red. 


• red edges remain red in subsequent steps

u v
u ↝ v

u, v

u, v

7

a
u

v
b
c
d

u ↝ v
v

a

b
c
d
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Twin-width of Graphs
• A d-contraction sequence of a graph contracts all vertices 

step-by-step to a single vertex graph, such that each 
intermediate graph has red degree at most d.


• 


• The twin-width of a graph is the smallest d such that it admits 
a d-contraction sequence.

G = Gn ↝ Gn−1 ↝ Gn−2 ↝ ⋯ ↝ G2

8



Stefan Szeider

tww in relation to 
other parameters
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Q1: can we use tww for SAT?
• paraNP-hard for primal-tww and incidence-tww 
 
follows from hardness of planar SAT 


• not unexpected… does it help to consider the signed 
incidence graph?

10
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Signed twin-width [6]
• The given graph G is signed, i.e., all edges are labeled + or -.


• A d-contraction sequence is defined as before, except that contracting 
black edges of different signs become red as well.

11

u ↝ v
u

v a′￼

a

—

+

+
+

v a′￼

a
+

• For bipartite signed graphs, we can assume that we always contract 
vertices that belong to the same side of the partition. We can show that 
the tww does only change by a small constant factor [4].
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Q1: can we use tww for SAT?
• SAT remains paraNP—hard for signed-tww 


• Idea: take second parameter k which bounds the number of 
variables assigend true.


• Bounded-Ones-SAT: is the formula satisfiable by a truth 
assignment that sets at most k variables to true?


• W[2]-hard for parameter k, but together with (signed) tww we 
have a chance.


• With parameters k + tww we still have W[1]-hardness.

12
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Finally….

• We can even do bounded weighted model counting in FPT 
time (compute the sum of weights of all satisfying 
assignements that set at most k variables to true)


• by Ganian, Pokrývka, Schidler, Simonov, Sz. SAT 2022 [6]

13

Theorem: Bounded-ones-SAT is fixed-parameter tractable 
when parameterised by the certified signed tww of F and k.
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DP Algorithm

• We proceed by dynamic programming (as typical for width measures)


• Computing records for each intermediate graph from its predecessor


• Record for first graph is trivial. 


• We can read off the solution from the record of the last graph 


• Intuition:  only needs to store information on small local parts of   that a red-connected


• Size of local parts is bounded by 

Ri Gi

k(d2 + 1)

14

G = Gn ↝ Gn−1 ↝ Gn−2 ↝ ⋯ ↝ G2

Rn Rn−1 Rn−2 R2
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Computing tww
• Recognizing graphs of tww at most 4 is NP-hard, shown by 

Bergé, Bonnet, Déprés ICALP 2022 [7].


• However, for our FPT algorithm we only need an FPT-
approximation for signed tww, i.e., an FPT algorithm that finds 
an f(d)-contruction sequence for graphs of signed tww d.


• Such algorithms exist for (signed) cwd, currently unknown for 
(signed) tww.

15
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Q2: can we use SAT to compute tww? 
• General Idea, for any width measure 


• Given a graph  and an integer .


• Construct in poynomial time a propositional formula  (“encoding”) such that


 is satisfiable if and only if .


• to determine  check the satisfiability of 
 
 , , , ,…, , , 




• We can think of the encoding as a nondeterministic algorithm

w

G k

Fw(G, k)

Fw(G, k) w(G) ≤ k

w(G)

Fw(G,1) Fw(G,2) Fw(G,1) Fw(G,3) Fw(G, k) Fw(G, k + 1) Fw(G, k + 2)
UNSAT SAT
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SAT solvers
• here we utilize the enourmous (and unreasonable) efficiency of 

todays SAT solvers.


• Instances with millions of variables and clauses can be 
handled.


• Today’s leading SAT solvers are based on the conflict-driven 
clause learning algorithms (CDCL)


• See our forthcoming survey in Comm. ACM [8]
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SAT 
encodings 
for width 
measures

18

parameter PC ref

treewidth fpt Samer, Veith 2009

branchwidth fpt Lodha,Ordynaik,Sz 2016

pathwidth fpt Lodha,Ordynaik,Sz 2017

special tw fpt Lodha,Ordynaik,Sz 2017

tree-depth fpt Ganian,Lodha,Ordynaik,Sz 2018

clique-width fpt-apx Heule, Szeider 2015

tree-cut width fpt-apx Ganian,Lodha,Ordynaik,Sz 2018

twin-width paraNP-h Schidler, Sz 2022 [9]

hypertree width XP Schidler, Sz 2020, 2022

generalised htw paraNP-h Fichte,Hecher, Lodha, Sz 2018

fractional htw paraNP-h Fichte,Hecher, Lodha, Sz 2018
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Relative encoding of tww
• Guess a linear ordering of the vertices by means of variables  meaning 

 and enforcing transitivity.


• Guess for each vertex  the vertex  it gets contracted to by the variable  


• At each position in the ordering compute the red subgraph  of  


• With cardinality constraints bound the maximum degree of 


• For an input graph with  vertices, the number of clauses is 

ordi,j
vi < vj

vi vj pi,j

Hi Gi

Hi

n O(n4)
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Absolute encoding of tww
• Reduce the number of clauses to .


• Guess for each vertex its position in the ordering 
 iff vertex  has position  in the ordering.


• Interestingly,  the absolute encoding performs worse than the 
relative encoding, since it has poorer propagation properties.

O(n3)

o(i, j) = true vi j

20
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tww of famous named graphs

• With our encodings we could determine the exact tww 
of several based graphs, Schidler, Sz. ALENEX 2022 [9] 


• Some results have been independently established by 
Ahn, Hendrey, Kim, Oum 2021 [10]


• See Jungho’s talk tomorrow!

21

Graph tww

Brinkmann 6
Chvatal 3

Clebsch 6

Desargues 4

Dodecahedron 4

Errera 5

FlowerSnark 4

Folkman 3

Franklin 2

Frucht 3

Grid6×8* 3

Grötzsch 3

Herschel 2

Hoffman 4

Holt 6

Kittell 5

McGee 4

Nauru 4

Paley-73* 36

Pappus 4

Peterson 4

Poussin 3

Robertson 6

Rook 6 × 6 10

Shrikhande 6

Sousselier 4

Tietze 4
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tww of signed incidence graphs [6]
• We modified the relative encoding to handle bipartite signed 

graphs


• computed the signed bipartite tww of some standard SAT 
instances


• up to 130 vertices and up to 550 edges.

22
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Conclusion
• Q1: can we use tww for SAT?


• Q2: can we use SAT to compute tww?

23

Questions?

sign-tww

sign-cwd

?• Future work 1: find parameter between signed 
cwd and signed tww that allows FPT without 
bounding the ones. 

• Future work 2: improve the SAT encoding  
 
(tww is the subject of the PACE 2023 
competition! https://pacechallenge.org/2023/)

https://pacechallenge.org/2023/
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