Reconfiguration of vertex colouring and forbidden induced subgraphs

Manoj Belavadi, Kathie Cameron, Owen Merkel

Department of Mathematics
Wilfrid Laurier University
Waterloo, Canada

September, 2022

Definition

(1) All graphs considered here are simple, finite and undirected.
(2) A vertex colouring of a graph G is a function $\phi: V(G) \longrightarrow \mathcal{C}$, where \mathcal{C} is a set of colours, such that $\phi(u) \neq \phi(v)$ whenever $u v \in E(G)$.
(3) A k-colouring of G is a colouring that uses at most k colours.
(9) The chromatic number of G, denoted $\chi(G)$, is the smallest integer k such that G is k-colourable.

Reconfiguration of vertex colouring

The reconfiguration graph, $R_{k}(G)$, is the graph whose vertices are k-colourings of G and two vertices are adjacent if they differ exactly on one vertex.
The reconfiguration problem has been defined on other source problems, such as dominating set problem and independent set problem among others.

There are three properties of $R_{k}(G)$ that are of particular interest in applications.
(1) The reachability problem asks: Given two vertices of a reconfiguration graph, is there a path between the two vertices?

There are three properties of $R_{k}(G)$ that are of particular interest in applications.
(1) The reachability problem asks: Given two vertices of a reconfiguration graph, is there a path between the two vertices?
(2) The connectivity problem asks: For a fixed source problem and fixed definitions of feasible solutions and adjacency, is the reconfiguration graph connected?

There are three properties of $R_{k}(G)$ that are of particular interest in applications.
(1) The reachability problem asks: Given two vertices of a reconfiguration graph, is there a path between the two vertices?
(2) The connectivity problem asks: For a fixed source problem and fixed definitions of feasible solutions and adjacency, is the reconfiguration graph connected?
(3) If $R_{k}(G)$ is connected, then what is the diameter of $R_{k}(G)$?

Known results

(1) Given two k-colourings of G, deciding whether there exists a path between the two colourings in $R_{k}(G)$ is PSPACE-complete for all $k>3$ (Bonsma and Cereceda, 2009).

Known results

(1) Given two k-colourings of G, deciding whether there exists a path between the two colourings in $R_{k}(G)$ is PSPACE-complete for all $k>3$ (Bonsma and Cereceda, 2009).
(2) However, deciding whether there exists a path between any two 3-colourings of G in $R_{3}(G)$ can be solved in polynomial time (Cereceda, van den Heuvel, and Johnson, 2010).

Known results

(1) Given two k-colourings of G, deciding whether there exists a path between the two colourings in $R_{k}(G)$ is PSPACE-complete for all $k>3$ (Bonsma and Cereceda, 2009).
(2) However, deciding whether there exists a path between any two 3-colourings of G in $R_{3}(G)$ can be solved in polynomial time (Cereceda, van den Heuvel, and Johnson, 2010).
(3) Given a connected bipartite graph G, deciding whether $R_{3}(G)$ is connected is coNP-complete (Cereceda, van den Heuvel, and Johnson, 2009).

Induced subgraph

(1) A graph G is said to be H-free, if G does not contain any induced subgraph isomorphic to H.
(2) A graph G is said to be k-mixing if $R_{k}(G)$ is connected.
(3) Let $\ell \geq \chi(G)+1$ be an integer.

Known results on H-free graphs

(1) The graph $R_{\ell}(G)$ is disconnected for K_{3}-free graphs, for any $\ell \geq \chi(G)+1$ (Cereceda, van den Heuvel, and Johnson, 2008).

Known results on H-free graphs

(1) The graph $R_{\ell}(G)$ is disconnected for K_{3}-free graphs, for any $\ell \geq \chi(G)+1$ (Cereceda, van den Heuvel, and Johnson, 2008).
(2) The graph $R_{\ell}(G)$ is connected for all H-free graphs, where H is either $3 K_{1}$ or $P_{2}+P_{1}$ or P_{3}, for all $\ell \geq \chi(G)+1$ (Merkel, 2021, Bonamy et.al, 2018).

Known results on H-free graphs

(1) The graph $R_{\ell}(G)$ is disconnected for K_{3}-free graphs, for any $\ell \geq \chi(G)+1$ (Cereceda, van den Heuvel, and Johnson, 2008).
(2) The graph $R_{\ell}(G)$ is connected for all H-free graphs, where H is either $3 K_{1}$ or $P_{2}+P_{1}$ or P_{3}, for all $\ell \geq \chi(G)+1$ (Merkel, 2021, Bonamy et.al, 2018).
(3) The graph $R_{\ell}(G)$ is connected for P_{4}-free graphs and the diameter is at most 4n (Biedl, Lubiw, and Merkel, 2021).

Known results on H-free graphs

(1) The graph $R_{\ell}(G)$ is disconnected for K_{3}-free graphs, for any $\ell \geq \chi(G)+1$ (Cereceda, van den Heuvel, and Johnson, 2008).
(2) The graph $R_{\ell}(G)$ is connected for all H-free graphs, where H is either $3 K_{1}$ or $P_{2}+P_{1}$ or P_{3}, for all $\ell \geq \chi(G)+1$ (Merkel, 2021, Bonamy et.al, 2018).
(3) The graph $R_{\ell}(G)$ is connected for P_{4}-free graphs and the diameter is at most 4n (Biedl, Lubiw, and Merkel, 2021).
(9) For any $\ell \geq \chi(G)+1$, there exists a P_{5}-free graph G that is not ℓ-mixing (Feghali and Merkel, 2021).

Known results on H-free graphs

(1) The graph $R_{\ell}(G)$ is disconnected for K_{3}-free graphs, for any $\ell \geq \chi(G)+1$ (Cereceda, van den Heuvel, and Johnson, 2008).
(2) The graph $R_{\ell}(G)$ is connected for all H-free graphs, where H is either $3 K_{1}$ or $P_{2}+P_{1}$ or P_{3}, for all $\ell \geq \chi(G)+1$ (Merkel, 2021, Bonamy et.al, 2018).
(3) The graph $R_{\ell}(G)$ is connected for P_{4}-free graphs and the diameter is at most 4 n (Biedl, Lubiw, and Merkel, 2021).
(9) For any $\ell \geq \chi(G)+1$, there exists a P_{5}-free graph G that is not ℓ-mixing (Feghali and Merkel, 2021).
(5) For any $\ell \geq \chi(G)+1$, there exists a $2 K_{2}$-free graph G that is not ℓ-mixing (Feghali and Merkel, 2021).

4-vertex graphs

Figure: The 11 graphs on 4 vertices.

Frozen colourings

Figure: A frozen colouring of C_{6}.

Figure: A $2 p$-colouring of G_{p}.

Figure: A frozen $3 p$-colouring of G_{p}.

Results

Lemma

For $p \geq 1$, let G_{p} be the graph obtained from C_{6} by substituting the complete graph K_{p} into each vertex. Then G_{p} is $\left(4 K_{1}, C_{4}\right.$, claw)-free, is $2 p$-colourable, and has a frozen $3 p$-colouring.

Theorem

For any $p \geq 1$, there exists a $\left(4 K_{1}, C_{4}\right.$, claw)-free graph G that is not $(k+p)$-mixing.
$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$

K_{4}
co-diamond
$2 K_{2}$
claw

paw
diamond

C_{4}

P_{4}

co-claw

Let B_{p} be the graph obtained from the complete bipartite graph $K_{p, p}$ by deleting the edges of a perfect matching. Cereceda, van den Heuvel, and Johnson showed that B_{p} has a frozen colouring.

Figure: A frozen p-colouring of the graph B_{p}.

Lemma

For $p \geq 3, B_{p}$ is a (K_{4}, diamond, paw, co-claw, co-diamond)-free, 2-colourable graph that admits a frozen p-colouring.

Theorem

For any $p \geq 1$, there exists a (K_{4}, diamond, paw, co-claw, co-diamond)-free graph G that is not ($k+p$)-mixing.
co-diamond

Theorem

Every $\left(P_{3}+P_{1}\right)$-free graph is ℓ-mixing and the ℓ-recolouring diameter is at most 6 n.

We use the following results in the proof of the above theorem.

Theorem

Every $\left(P_{3}+P_{1}\right)$-free graph is ℓ-mixing and the ℓ-recolouring diameter is at most $6 n$.

We use the following results in the proof of the above theorem.

Lemma (Renaming Lemma by Bonamy and Bousquet, 2018)

Let α^{\prime} and β^{\prime} be two χ-colourings of G that induce the same partition of vertices into colour classes and let $\ell \geq \chi(G)+1$. Then α^{\prime} can be recoloured into β^{\prime} in $R_{\ell}(G)$ by recolouring each vertex at most 2 times.

Theorem

Every $\left(P_{3}+P_{1}\right)$-free graph is ℓ-mixing and the ℓ-recolouring diameter is at most 6 n.

We use the following results in the proof of the above theorem.

Lemma (Renaming Lemma by Bonamy and Bousquet, 2018)

Let α^{\prime} and β^{\prime} be two χ-colourings of G that induce the same partition of vertices into colour classes and let $\ell \geq \chi(G)+1$. Then α^{\prime} can be recoloured into β^{\prime} in $R_{\ell}(G)$ by recolouring each vertex at most 2 times.

Theorem (By a result of Olariu, 1988)

Each anticomponent of a $\left(P_{3}+P_{1}\right)$-free graph is either $3 K_{1}$-free or P_{3}-free.

Theorem

Every $\left(P_{3}+P_{1}\right)$-free graph is ℓ-mixing and the ℓ-recolouring diameter is at most 6 n.

We use the following results in the proof of the above theorem.

Lemma (Renaming Lemma by Bonamy and Bousquet, 2018)

Let α^{\prime} and β^{\prime} be two χ-colourings of G that induce the same partition of vertices into colour classes and let $\ell \geq \chi(G)+1$. Then α^{\prime} can be recoloured into β^{\prime} in $R_{\ell}(G)$ by recolouring each vertex at most 2 times.

Theorem (By a result of Olariu, 1988)

Each anticomponent of a $\left(P_{3}+P_{1}\right)$-free graph is either $3 K_{1}$-free or P_{3}-free.

Lemma (Merkel, 2021)

Let γ be a $\chi(G)$ colouring of a $3 K_{1}$-free graph G. Any ℓ-colouring of G can be recoloured into $\chi(G)$-colouring γ^{\prime} such that the colour classes of γ^{\prime} matches the colour classes of γ by recolouring each vertex at most once.

Structure of $\left(P_{3}+P_{1}\right)$-free graphs

Recolouring $\left(P_{3}+P_{1}\right)$-free graphs

Proof.

Let α and β be two arbitrary ℓ-colourings of G. Let γ denote some χ-colouring of G. Let $A_{1}, A_{2}, \ldots, A_{q}$ denote anticomponents of G.

Recolouring $\left(P_{3}+P_{1}\right)$-free graphs

Proof.

Let α and β be two arbitrary ℓ-colourings of G. Let γ denote some χ-colouring of G. Let $A_{1}, A_{2}, \ldots, A_{q}$ denote anticomponents of G. We prove that there exists a path of length at most $2 n$ between α and α^{\prime} in $R_{\ell}(G)$, where α^{\prime} is a χ-colouring of G that induces same colour classes as γ.

Recolouring $\left(P_{3}+P_{1}\right)$-free graphs

Proof.

Let α and β be two arbitrary ℓ-colourings of G. Let γ denote some χ-colouring of G. Let $A_{1}, A_{2}, \ldots, A_{q}$ denote anticomponents of G. We prove that there exists a path of length at most $2 n$ between α and α^{\prime} in $R_{\ell}(G)$, where α^{\prime} is a χ-colouring of G that induces same colour classes as γ.

Claim

In any ℓ-colouring α of G, either some colour does not appear in α or there is some anticomponent A of G such that α uses at least $\chi(A)+1$ colours on A.

Proof of Claim omitted.

Recolouring $\left(P_{3}+P_{1}\right)$-free graphs

Proof (Contd.).

Without loss of generality, let A_{1} be the anticomponent such that α uses at least $\chi\left(A_{1}\right)+1$ colours on A_{1} or some colour does not appear in α.

Recolouring $\left(P_{3}+P_{1}\right)$-free graphs

Proof (Contd.).

Without loss of generality, let A_{1} be the anticomponent such that α uses at least $\chi\left(A_{1}\right)+1$ colours on A_{1} or some colour does not appear in α. If A_{1} is $3 K_{1}$-free then using Lemma, given by Merkel, we recolour A_{1} to match colour classes of γ on A_{1} in at most $\left|A_{1}\right|$ steps.

Recolouring $\left(P_{3}+P_{1}\right)$-free graphs

Proof (Contd.).

Without loss of generality, let A_{1} be the anticomponent such that α uses at least $\chi\left(A_{1}\right)+1$ colours on A_{1} or some colour does not appear in α. If A_{1} is $3 K_{1}$-free then using Lemma, given by Merkel, we recolour A_{1} to match colour classes of γ on A_{1} in at most $\left|A_{1}\right|$ steps.
If A_{1} is P_{3}-free then using the Renaming Lemma we recolour A_{1} to match the colour classes of γ on A_{1} in at most $2\left|A_{1}\right|$ steps.

Recolouring $\left(P_{3}+P_{1}\right)$-free graphs

Proof (Contd.).

Without loss of generality, let A_{1} be the anticomponent such that α uses at least $\chi\left(A_{1}\right)+1$ colours on A_{1} or some colour does not appear in α. If A_{1} is $3 K_{1}$-free then using Lemma, given by Merkel, we recolour A_{1} to match colour classes of γ on A_{1} in at most $\left|A_{1}\right|$ steps.
If A_{1} is P_{3}-free then using the Renaming Lemma we recolour A_{1} to match the colour classes of γ on A_{1} in at most $2\left|A_{1}\right|$ steps.
Continue this process to recolour all anticomponents and obtain a χ-colouring α^{\prime} of G that induces the same colour classes as γ. We can do this by recolouring every vertex at most twice.

Recolouring $\left(P_{3}+P_{1}\right)$-free graphs

Proof (Contd.).

Without loss of generality, let A_{1} be the anticomponent such that α uses at least $\chi\left(A_{1}\right)+1$ colours on A_{1} or some colour does not appear in α.
If A_{1} is $3 K_{1}$-free then using Lemma, given by Merkel, we recolour A_{1} to match colour classes of γ on A_{1} in at most $\left|A_{1}\right|$ steps.
If A_{1} is P_{3}-free then using the Renaming Lemma we recolour A_{1} to match the colour classes of γ on A_{1} in at most $2\left|A_{1}\right|$ steps.
Continue this process to recolour all anticomponents and obtain a χ-colouring α^{\prime} of G that induces the same colour classes as γ. We can do this by recolouring every vertex at most twice.
By repeating the same process with the colouring β, we obtain a χ-colouring β^{\prime} that induces the same colour classes as γ.

Recolouring $\left(P_{3}+P_{1}\right)$-free graphs

Proof (Contd.).

Without loss of generality, let A_{1} be the anticomponent such that α uses at least $\chi\left(A_{1}\right)+1$ colours on A_{1} or some colour does not appear in α.
If A_{1} is $3 K_{1}$-free then using Lemma, given by Merkel, we recolour A_{1} to match colour classes of γ on A_{1} in at most $\left|A_{1}\right|$ steps.
If A_{1} is P_{3}-free then using the Renaming Lemma we recolour A_{1} to match the colour classes of γ on A_{1} in at most $2\left|A_{1}\right|$ steps.
Continue this process to recolour all anticomponents and obtain a χ-colouring α^{\prime} of G that induces the same colour classes as γ. We can do this by recolouring every vertex at most twice.
By repeating the same process with the colouring β, we obtain a χ-colouring β^{\prime} that induces the same colour classes as γ.
Then by the Renaming Lemma there exists a path between α^{\prime} and β^{\prime} in $R_{\ell}(G)$ of length at most $2 n$.

K_{4}
co-diamond
$2 K_{2}$
claw

paw

$P_{3}+P_{1}$

P_{4}

Main result

Theorem (Main result)

Every H-free graph is ℓ-mixing if and only if H is an induced subgraph of P_{4} or $P_{3}+P_{1}$.

These are the same class of graphs for which deciding if they admit a k-colouring can be answered in polynomial time.

$\left(H_{1}, H_{2}\right)$-free graphs

Let H_{1} and H_{2} be any 4 -vertex graphs other than P_{4} and $P_{3}+P_{1}$.

Theorem

If $R_{k+1}(G)$ is connected for every k-colourable $\left(H_{1}, H_{2}\right)$-free graph G, then either H_{1} or H_{2} is isomorphic to $2 K_{2}$.

$\left(H_{1}, H_{2}\right)$-free graphs

Let H_{1} and H_{2} be any 4 -vertex graphs other than P_{4} and $P_{3}+P_{1}$.

Theorem

If $R_{k+1}(G)$ is connected for every k-colourable $\left(H_{1}, H_{2}\right)$-free graph G, then either H_{1} or H_{2} is isomorphic to $2 K_{2}$.

Theorem

Every $\left(2 K_{2}, C_{4}\right)$-free graph is ℓ-mixing and the ℓ-recolouring diameter is at most 4n.

Theorem

Every $\left(P_{5}, C_{4}\right)$-free graph is ℓ-mixing.

paw

claw

co-diamond co-claw

Theorem

Every $\left(2 K_{2}, H\right)$-free graph is ℓ-mixing, where H is an induced subgraph of either a paw or a claw.

paw

claw

co-diamond co-claw

Theorem

Every $\left(2 K_{2}, H\right)$-free graph is ℓ-mixing, where H is an induced subgraph of either a paw or a claw.

Theorem

For all $p \geq 1$, there exists a k-colourable ($2 K_{2}, 4 K_{1}$, co-diamond, co-claw)-free graph that is not $(k+p)$-mixing.

Important result

paw

Theorem
 Every (triangle, H)-free graph G_{1} is $\chi\left(G_{1}\right)+p$-mixing if and only if every (paw, H)-free graph G_{2} is $\chi\left(G_{2}\right)+p$-mixing, for any $p \geq 1$.

Future work

(1) All H-free and $\left(H_{1}, H_{2}\right)$-free graph classes that are proved here to be ℓ-mixing are also polynomial-time colourable. It is interesting to check if it is true in general.
(2) Characterise $\left(2 K_{2}\right.$, diamond)-free graphs and $\left(2 K_{2}, K_{4}\right)$-free graphs relative to ℓ-mixing.
(3) Find a dichotomy theorem for $\left(H_{1}, H_{2}\right)$-free graphs relative to ℓ-mixing.

Thank You

