Tree-layout based graph classes: the case of proper chordal graphs

Evangelos Protopapas

LIRMM, Université de Montpellier, CNRS, Montpellier, France

GROW 2022

Joint work with:

Christophe Paul

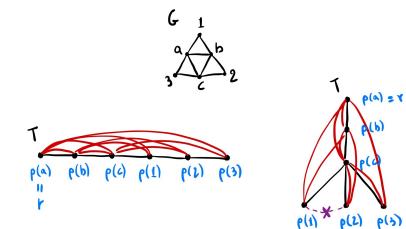
LIRMM, Université de Montpellier, CNRS, Montpellier, France

Tree-layouts

Tree-layout $\mathbf{T} = (T, r, \rho)$ of a graph G:

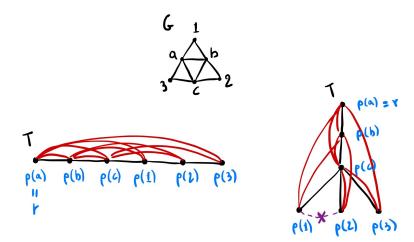
Tree-layouts

Tree-layout $\mathbf{T} = (T, r, \rho)$ of a graph G:



Tree-layouts

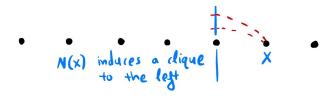
Tree-layout $\mathbf{T} = (T, r, \rho)$ of a graph G:



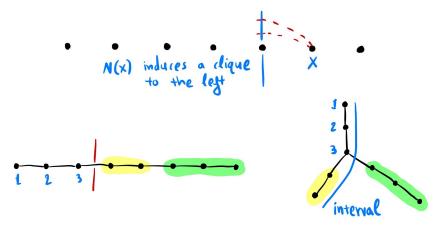
 $u <_{\mathsf{T}} v$ iff $\rho(x)$ is an ancestor of $\rho(y)$ in \mathcal{T} . **T** is a **tree-layout** of G iff $\forall xy \in E(G) : x <_{\mathsf{T}} y$ or $y <_{\mathsf{T}} x$.

G chordal: Admits a simplicial elimination ordering.

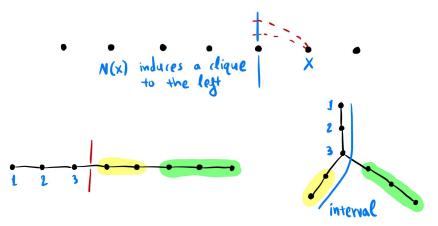
G chordal: Admits a simplicial elimination ordering.



G chordal: Admits a simplicial elimination ordering.



G chordal: Admits a simplicial elimination ordering.

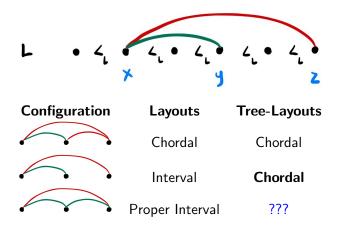


G chordal: Admits tree-layout where the graph induced by every root-leaf path is an interval graph.

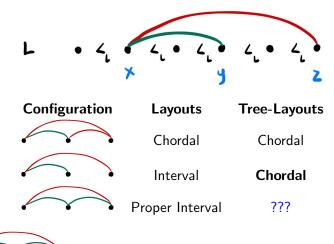
Specific **configuration** of layouts \Rightarrow Graph class **characterization**.

Specific **configuration** of layouts \Rightarrow Graph class **characterization**.

Specific **configuration** of layouts \Rightarrow Graph class **characterization**.

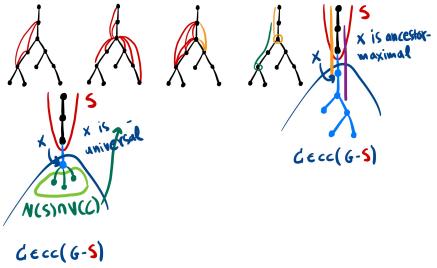


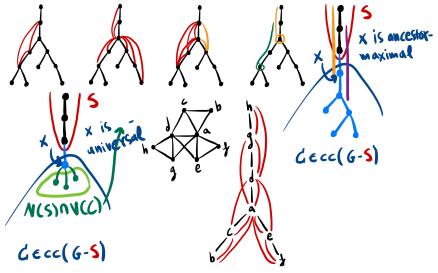
Specific **configuration** of layouts \Rightarrow Graph class **characterization**.

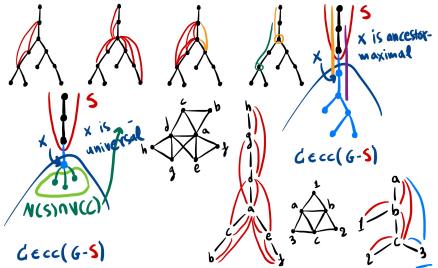


: indifference property

x is ancestormaximal Gecc(6-5)







Positioning of Proper Chordal graphs

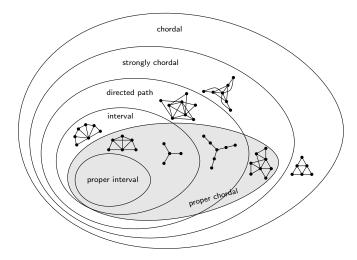
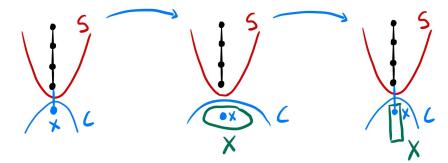
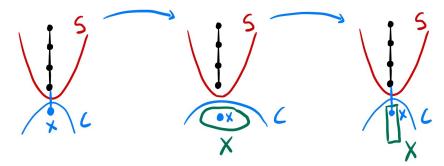
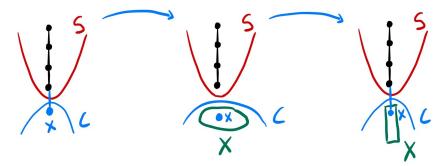


Figure: Relationship between proper chordal graphs and subclasses of chordal graphs.



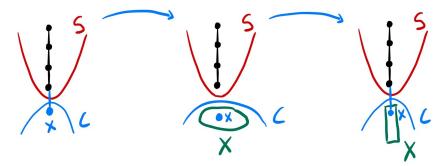


- S is the set of ancestors of x on some indiff. tl. T; C ∈ cc(G − S);
- X is the set of ancestor-maximal and (N(S) ∩ V(C))-universal vertices in C.



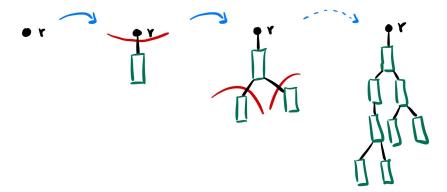
- S is the set of ancestors of x on some indiff. tl. T; C ∈ cc(G − S);
- X is the set of ancestor-maximal and (N(S) ∩ V(C))-universal vertices in C.

We can prove that X has to appear **first** and **consecutively**.

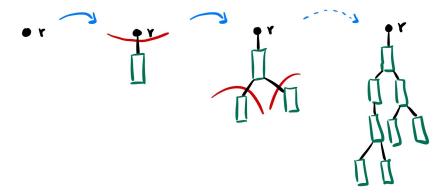


- S is the set of ancestors of x on some indiff. tl. T; C ∈ cc(G − S);
- X is the set of ancestor-maximal and (N(S) ∩ V(C))-universal vertices in C.

We can prove that X has to appear **first** and **consecutively**. We call X a **block**. Block Tree

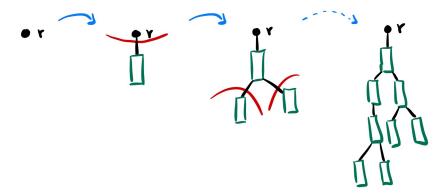


Block Tree



There is a **unique** block tree rooted at each $r \in V(G)$.

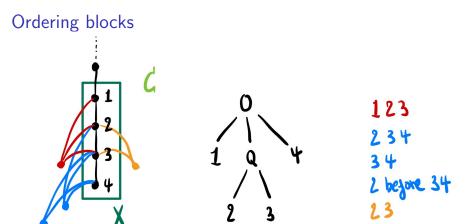
Block Tree

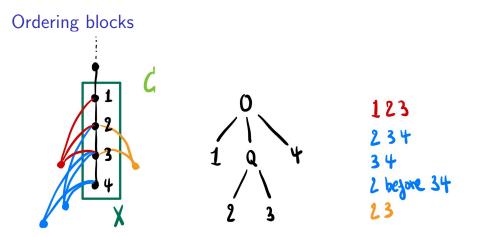


There is a **unique** block tree rooted at each $r \in V(G)$.

To obtain an indifference tree-layout, it remains to:

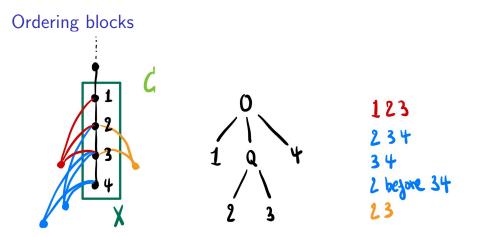
- 1. Order vertices within blocks;
- 2. Properly attach children blocks to parent block.





The order of X needs to satisfy certain convexity conditions:

- ▶ $N(u) \cap X$, where $u \in V(C X)$ has to appear consecutively;
- ► For each component of C X we need to respect the inclusion ordering (maximal to minimal neighbourhood).



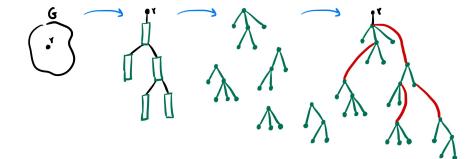
The order of X needs to satisfy certain convexity conditions:

▶ $N(u) \cap X$, where $u \in V(C - X)$ has to appear consecutively;

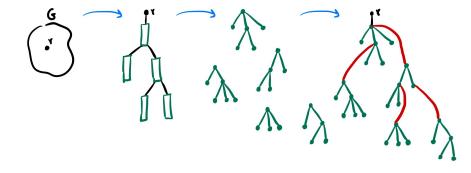
► For each component of C – X we need to respect the inclusion ordering (maximal to minimal neighbourhood).

Unique OPQ-tree represents all **possible permutations** of *X*.

Canonical representation

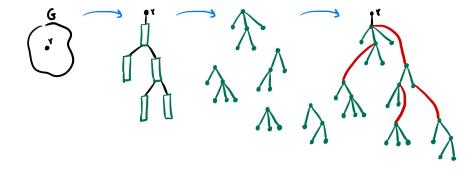


Canonical representation



Unique OPQ-hierarchy represents all **indifference tree-layouts** of *G* rooted at $r \in V(G)$.

Canonical representation



Unique OPQ-hierarchy represents all **indifference tree-layouts** of *G* rooted at $r \in V(G)$.

Remark: We can compute it in **poly-time** and has size **linear** in |G|.

Recognition & Isomorphism

Recognition of proper chordal graphs is in P.

Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G:

- For every $u \in V(G)$;
- Compute block tree rooted at u;
- Compute OPQ-tree corresponding to each block;
- Verify that each block has a valid **convex order**.

Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G:

- For every $u \in V(G)$;
- Compute block tree rooted at u;
- Compute OPQ-tree corresponding to each block;
- Verify that each block has a valid **convex order**.

What about GRAPH ISOMORPHISM?

Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G:

- For every $u \in V(G)$;
- Compute block tree rooted at u;
- Compute OPQ-tree corresponding to each block;
- Verify that each block has a valid **convex order**.

What about GRAPH ISOMORPHISM? We can solve it...

Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G:

- For every $u \in V(G)$;
- Compute block tree rooted at u;
- Compute OPQ-tree corresponding to each block;
- Verify that each block has a valid **convex order**.

What about GRAPH ISOMORPHISM? We can solve it... maybe...

Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G:

- For every $u \in V(G)$;
- Compute block tree rooted at u;
- Compute OPQ-tree corresponding to each block;
- Verify that each block has a valid **convex order**.

What about GRAPH ISOMORPHISM?

We can solve it... maybe...

Depends on whether we can do isomorphism for OPQ-hierarchies.

Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G:

- For every $u \in V(G)$;
- Compute block tree rooted at u;
- Compute OPQ-tree corresponding to each block;
- Verify that each block has a valid **convex order**.

What about GRAPH ISOMORPHISM?

We can solve it... maybe...

Depends on whether we can do isomorphism for OPQ-hierarchies.

Lemma

Two proper chordal graphs G and H are isomorphic iff there exist $u \in V(G)$ and $v \in V(H)$ such that the OPQ-hierarchies rooted at u and v are isomorphic.

Recap:

Recap:

We introduced a new subclass of Chordal graphs, which we call Proper Chordal graphs via tree-layouts.

Recap:

- We introduced a new subclass of Chordal graphs, which we call Proper Chordal graphs via tree-layouts.
- We showed how to canonically represent all indifference tree-layouts.

Recap:

- We introduced a new subclass of Chordal graphs, which we call Proper Chordal graphs via tree-layouts.
- We showed how to canonically represent all indifference tree-layouts.
- Results based on OPQ-hierarchies.

Recap:

- We introduced a new subclass of Chordal graphs, which we call Proper Chordal graphs via tree-layouts.
- We showed how to canonically represent all indifference tree-layouts.
- Results based on OPQ-hierarchies.

Recap:

- We introduced a new subclass of Chordal graphs, which we call Proper Chordal graphs via tree-layouts.
- We showed how to canonically represent all indifference tree-layouts.
- Results based on OPQ-hierarchies.

Questions:

Combinatorics of the root of an indifference tree-layout?

Recap:

- We introduced a new subclass of Chordal graphs, which we call Proper Chordal graphs via tree-layouts.
- We showed how to canonically represent all indifference tree-layouts.
- Results based on OPQ-hierarchies.

- Combinatorics of the **root** of an indifference tree-layout?
- What about other problems on Proper Chordal graphs?

Recap:

- We introduced a new subclass of Chordal graphs, which we call Proper Chordal graphs via tree-layouts.
- We showed how to canonically represent all indifference tree-layouts.
- Results based on OPQ-hierarchies.

- Combinatorics of the root of an indifference tree-layout?
- What about other problems on Proper Chordal graphs?
- ► HAMILTONIAN CYCLE? We can solve it when the input graph is also a Split graph, but we failed in general.

Recap:

- We introduced a new subclass of Chordal graphs, which we call Proper Chordal graphs via tree-layouts.
- We showed how to canonically represent all indifference tree-layouts.
- Results based on OPQ-hierarchies.

- Combinatorics of the root of an indifference tree-layout?
- What about other problems on Proper Chordal graphs?
- ► HAMILTONIAN CYCLE? We can solve it when the input graph is also a Split graph, but we failed in general.
- Other classes of graphs? E.g. Tree Permutation graphs?

Recap:

- We introduced a new subclass of Chordal graphs, which we call Proper Chordal graphs via tree-layouts.
- We showed how to canonically represent all indifference tree-layouts.
- Results based on OPQ-hierarchies.

- Combinatorics of the root of an indifference tree-layout?
- What about other problems on Proper Chordal graphs?
- HAMILTONIAN CYCLE? We can solve it when the input graph is also a Split graph, but we failed in general.
- Other classes of graphs? E.g. Tree Permutation graphs?
- Other applications of OPQ-hierarchies?

Thank you!