
Tree-layout based graph classes: the case of
proper chordal graphs

Evangelos Protopapas

LIRMM, Université de Montpellier, CNRS, Montpellier, France

GROW 2022

Joint work with:

Christophe Paul

LIRMM, Université de Montpellier, CNRS, Montpellier, France

Tree-layouts

Tree-layout T = (T , r , ρ) of a graph G :

u <T v iff ρ(x) is an ancestor of ρ(y) in T .
T is a tree-layout of G iff ∀xy ∈ E (G) : x <T y or y <T x .

Tree-layouts

Tree-layout T = (T , r , ρ) of a graph G :

u <T v iff ρ(x) is an ancestor of ρ(y) in T .
T is a tree-layout of G iff ∀xy ∈ E (G) : x <T y or y <T x .

Tree-layouts

Tree-layout T = (T , r , ρ) of a graph G :

u <T v iff ρ(x) is an ancestor of ρ(y) in T .
T is a tree-layout of G iff ∀xy ∈ E (G) : x <T y or y <T x .

Tree-layout characterization of chordal graphs

G chordal: Admits a simplicial elimination ordering.

G chordal: Admits tree-layout where the graph induced by every
root-leaf path is an interval graph.

Tree-layout characterization of chordal graphs

G chordal: Admits a simplicial elimination ordering.

G chordal: Admits tree-layout where the graph induced by every
root-leaf path is an interval graph.

Tree-layout characterization of chordal graphs

G chordal: Admits a simplicial elimination ordering.

G chordal: Admits tree-layout where the graph induced by every
root-leaf path is an interval graph.

Tree-layout characterization of chordal graphs

G chordal: Admits a simplicial elimination ordering.

G chordal: Admits tree-layout where the graph induced by every
root-leaf path is an interval graph.

Layout based classes

Specific configuration of layouts ⇒ Graph class characterization.

Configuration Layouts Tree-Layouts

Chordal Chordal

Interval Chordal

Proper Interval ???

: indifference property

Layout based classes

Specific configuration of layouts ⇒ Graph class characterization.

Configuration Layouts Tree-Layouts

Chordal Chordal

Interval Chordal

Proper Interval ???

: indifference property

Layout based classes

Specific configuration of layouts ⇒ Graph class characterization.

Configuration Layouts Tree-Layouts

Chordal Chordal

Interval Chordal

Proper Interval ???

: indifference property

Layout based classes

Specific configuration of layouts ⇒ Graph class characterization.

Configuration Layouts Tree-Layouts

Chordal Chordal

Interval Chordal

Proper Interval ???

: indifference property

Proper Chordal graphs

G is a proper chordal iff it admits an indifference tree-layout.

Proper Chordal graphs
G is a proper chordal iff it admits an indifference tree-layout.

Proper Chordal graphs
G is a proper chordal iff it admits an indifference tree-layout.

Proper Chordal graphs
G is a proper chordal iff it admits an indifference tree-layout.

Proper Chordal graphs
G is a proper chordal iff it admits an indifference tree-layout.

Proper Chordal graphs
G is a proper chordal iff it admits an indifference tree-layout.

Proper Chordal graphs
G is a proper chordal iff it admits an indifference tree-layout.

Proper Chordal graphs
G is a proper chordal iff it admits an indifference tree-layout.

Proper Chordal graphs

G is a proper chordal iff it admits an indifference tree-layout.

Positioning of Proper Chordal graphs

prop
er ch

ordal

proper interval

interval

directed path

strongly chordal

chordal

Figure: Relationship between proper chordal graphs and subclasses of
chordal graphs.

Blocks

I S is the set of ancestors of x on some indiff. tl. T;
C ∈ cc(G − S);

I X is the set of ancestor-maximal and
(N(S) ∩ V (C))-universal vertices in C .

We can prove that X has to appear first and consecutively.

We call X a block.

Blocks

I S is the set of ancestors of x on some indiff. tl. T;
C ∈ cc(G − S);

I X is the set of ancestor-maximal and
(N(S) ∩ V (C))-universal vertices in C .

We can prove that X has to appear first and consecutively.

We call X a block.

Blocks

I S is the set of ancestors of x on some indiff. tl. T;
C ∈ cc(G − S);

I X is the set of ancestor-maximal and
(N(S) ∩ V (C))-universal vertices in C .

We can prove that X has to appear first and consecutively.

We call X a block.

Blocks

I S is the set of ancestors of x on some indiff. tl. T;
C ∈ cc(G − S);

I X is the set of ancestor-maximal and
(N(S) ∩ V (C))-universal vertices in C .

We can prove that X has to appear first and consecutively.

We call X a block.

Block Tree

There is a unique block tree rooted at each r ∈ V (G).

To obtain an indifference tree-layout, it remains to:

1. Order vertices within blocks;

2. Properly attach children blocks to parent block.

Block Tree

There is a unique block tree rooted at each r ∈ V (G).

To obtain an indifference tree-layout, it remains to:

1. Order vertices within blocks;

2. Properly attach children blocks to parent block.

Block Tree

There is a unique block tree rooted at each r ∈ V (G).

To obtain an indifference tree-layout, it remains to:

1. Order vertices within blocks;

2. Properly attach children blocks to parent block.

Ordering blocks

The order of X needs to satisfy certain convexity conditions:

I N(u) ∩ X , where u ∈ V (C − X) has to appear consecutively;

I For each component of C − X we need to respect the
inclusion ordering (maximal to minimal neighbourhood).

Unique OPQ-tree represents all possible permutations of X .

Ordering blocks

The order of X needs to satisfy certain convexity conditions:

I N(u) ∩ X , where u ∈ V (C − X) has to appear consecutively;

I For each component of C − X we need to respect the
inclusion ordering (maximal to minimal neighbourhood).

Unique OPQ-tree represents all possible permutations of X .

Ordering blocks

The order of X needs to satisfy certain convexity conditions:

I N(u) ∩ X , where u ∈ V (C − X) has to appear consecutively;

I For each component of C − X we need to respect the
inclusion ordering (maximal to minimal neighbourhood).

Unique OPQ-tree represents all possible permutations of X .

Canonical representation

Unique OPQ-hierarchy represents all indifference tree-layouts of
G rooted at r ∈ V (G).

Remark: We can compute it in poly-time and has size linear in
|G |.

Canonical representation

Unique OPQ-hierarchy represents all indifference tree-layouts of
G rooted at r ∈ V (G).

Remark: We can compute it in poly-time and has size linear in
|G |.

Canonical representation

Unique OPQ-hierarchy represents all indifference tree-layouts of
G rooted at r ∈ V (G).

Remark: We can compute it in poly-time and has size linear in
|G |.

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G :

I For every u ∈ V (G);

I Compute block tree rooted at u;

I Compute OPQ-tree corresponding to each block;

I Verify that each block has a valid convex order.

What about Graph Isomorphism?

We can solve it... maybe...

Depends on whether we can do isomorphism for OPQ-hierarchies.

Lemma
Two proper chordal graphs G and H are isomorphic iff there exist
u ∈ V (G) and v ∈ V (H) such that the OPQ-hierarchies rooted at
u and v are isomorphic.

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G :

I For every u ∈ V (G);

I Compute block tree rooted at u;

I Compute OPQ-tree corresponding to each block;

I Verify that each block has a valid convex order.

What about Graph Isomorphism?

We can solve it... maybe...

Depends on whether we can do isomorphism for OPQ-hierarchies.

Lemma
Two proper chordal graphs G and H are isomorphic iff there exist
u ∈ V (G) and v ∈ V (H) such that the OPQ-hierarchies rooted at
u and v are isomorphic.

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G :

I For every u ∈ V (G);

I Compute block tree rooted at u;

I Compute OPQ-tree corresponding to each block;

I Verify that each block has a valid convex order.

What about Graph Isomorphism?

We can solve it... maybe...

Depends on whether we can do isomorphism for OPQ-hierarchies.

Lemma
Two proper chordal graphs G and H are isomorphic iff there exist
u ∈ V (G) and v ∈ V (H) such that the OPQ-hierarchies rooted at
u and v are isomorphic.

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G :

I For every u ∈ V (G);

I Compute block tree rooted at u;

I Compute OPQ-tree corresponding to each block;

I Verify that each block has a valid convex order.

What about Graph Isomorphism?

We can solve it... maybe...

Depends on whether we can do isomorphism for OPQ-hierarchies.

Lemma
Two proper chordal graphs G and H are isomorphic iff there exist
u ∈ V (G) and v ∈ V (H) such that the OPQ-hierarchies rooted at
u and v are isomorphic.

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G :

I For every u ∈ V (G);

I Compute block tree rooted at u;

I Compute OPQ-tree corresponding to each block;

I Verify that each block has a valid convex order.

What about Graph Isomorphism?

We can solve it...

maybe...

Depends on whether we can do isomorphism for OPQ-hierarchies.

Lemma
Two proper chordal graphs G and H are isomorphic iff there exist
u ∈ V (G) and v ∈ V (H) such that the OPQ-hierarchies rooted at
u and v are isomorphic.

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G :

I For every u ∈ V (G);

I Compute block tree rooted at u;

I Compute OPQ-tree corresponding to each block;

I Verify that each block has a valid convex order.

What about Graph Isomorphism?

We can solve it... maybe...

Depends on whether we can do isomorphism for OPQ-hierarchies.

Lemma
Two proper chordal graphs G and H are isomorphic iff there exist
u ∈ V (G) and v ∈ V (H) such that the OPQ-hierarchies rooted at
u and v are isomorphic.

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G :

I For every u ∈ V (G);

I Compute block tree rooted at u;

I Compute OPQ-tree corresponding to each block;

I Verify that each block has a valid convex order.

What about Graph Isomorphism?

We can solve it... maybe...

Depends on whether we can do isomorphism for OPQ-hierarchies.

Lemma
Two proper chordal graphs G and H are isomorphic iff there exist
u ∈ V (G) and v ∈ V (H) such that the OPQ-hierarchies rooted at
u and v are isomorphic.

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G :

I For every u ∈ V (G);

I Compute block tree rooted at u;

I Compute OPQ-tree corresponding to each block;

I Verify that each block has a valid convex order.

What about Graph Isomorphism?

We can solve it... maybe...

Depends on whether we can do isomorphism for OPQ-hierarchies.

Lemma
Two proper chordal graphs G and H are isomorphic iff there exist
u ∈ V (G) and v ∈ V (H) such that the OPQ-hierarchies rooted at
u and v are isomorphic.

Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?

Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?

Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?

Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?

Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?

Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?

Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?

Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?

Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?

Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?

Thank you!

