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Tree-layouts
Tree-layout T = (T, r, p) of a graph G:
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u <t v iff p(x) is an ancestor of p(y) in T.
T is a tree-layout of G iff Vxy € E(G) : x <t y or y <71 x.
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G chordal: Admits a simplicial elimination ordering.
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Tree-layout characterization of chordal graphs

G chordal: Admits a simplicial elimination ordering.
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G chordal: Admits tree-layout where the graph induced by every
root-leaf path is an interval graph.
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Layout based classes

Specific configuration of layouts = Graph class characterization.
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G is a proper chordal iff it admits an indifference tree-layout.
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Proper Chordal graphs

G is a proper chordal iff it admits an |nd|fference tree Iayout
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Proper Chordal graphs

G is a proper chordal iff it admits an indifference tree-layout.
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Positioning of Proper Chordal graphs

chordal

strongly chordal

Figure: Relationship between proper chordal graphs and subclasses of
chordal graphs.
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Blocks

e GO\ C A\
» S is the set of ancestors of x on some indiff. tl. T;
C ecc(G-S);

» X is the set of ancestor-maximal and
(N(S) N V(C))-universal vertices in C.

We can prove that X has to appear first and consecutively.
We call X a block.
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Block Tree
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There is a unique block tree rooted at each r € V(G).
To obtain an indifference tree-layout, it remains to:

1. Order vertices within blocks;

2. Properly attach children blocks to parent block.
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The order of X needs to satisfy certain convexity conditions:
» N(u)N X, where u € V(C — X) has to appear consecutively;

» For each component of C — X we need to respect the
inclusion ordering (maximal to minimal neighbourhood).
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The order of X needs to satisfy certain convexity conditions:
» N(u)N X, where u € V(C — X) has to appear consecutively;

» For each component of C — X we need to respect the
inclusion ordering (maximal to minimal neighbourhood).

Unique OPQ-tree represents all possible permutations of X.
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Canonical representation
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Unique OPQ-hierarchy represents all indifference tree-layouts of
G rooted at r € V(G).

Remark: We can compute it in poly-time and has size linear in
Gl.
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Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G:
» For every u € V(G);
» Compute block tree rooted at u;
» Compute OPQ-tree corresponding to each block;

» Verify that each block has a valid convex order.

What about GRAPH ISOMORPHISM?

We can solve it... maybe...

Depends on whether we can do isomorphism for OPQ-hierarchies.
Lemma

Two proper chordal graphs G and H are isomorphic iff there exist

u € V(G) and v € V(H) such that the OPQ-hierarchies rooted at
u and v are isomorphic.
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Conclusion

Recap:

» We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

> We showed how to canonically represent all indifference
tree-layouts.

» Results based on OPQ-hierarchies.

Questions:
» Combinatorics of the root of an indifference tree-layout?
> What about other problems on Proper Chordal graphs?

» HAMILTONIAN CYCLE? We can solve it when the input
graph is also a Split graph, but we failed in general.

» Other classes of graphs? E.g. Tree Permutation graphs?
» Other applications of OPQ-hierarchies?



Thank you!



