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Positioning of Proper Chordal graphs
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Figure: Relationship between proper chordal graphs and subclasses of
chordal graphs.
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I S is the set of ancestors of x on some indiff. tl. T;
C ∈ cc(G − S);

I X is the set of ancestor-maximal and
(N(S) ∩ V (C ))-universal vertices in C .

We can prove that X has to appear first and consecutively.

We call X a block.
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I N(u) ∩ X , where u ∈ V (C − X ) has to appear consecutively;

I For each component of C − X we need to respect the
inclusion ordering (maximal to minimal neighbourhood).

Unique OPQ-tree represents all possible permutations of X .
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Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G :

I For every u ∈ V (G );

I Compute block tree rooted at u;

I Compute OPQ-tree corresponding to each block;

I Verify that each block has a valid convex order.

What about Graph Isomorphism?

We can solve it... maybe...

Depends on whether we can do isomorphism for OPQ-hierarchies.

Lemma
Two proper chordal graphs G and H are isomorphic iff there exist
u ∈ V (G ) and v ∈ V (H) such that the OPQ-hierarchies rooted at
u and v are isomorphic.
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Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?



Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?



Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?



Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?



Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?



Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?



Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?



Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?



Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?



Conclusion

Recap:

I We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

I We showed how to canonically represent all indifference
tree-layouts.

I Results based on OPQ-hierarchies.

Questions:

I Combinatorics of the root of an indifference tree-layout?

I What about other problems on Proper Chordal graphs?

I Hamiltonian Cycle? We can solve it when the input
graph is also a Split graph, but we failed in general.

I Other classes of graphs? E.g. Tree Permutation graphs?

I Other applications of OPQ-hierarchies?



Thank you!


