Tree-layout based graph classes: the case of
proper chordal graphs

Evangelos Protopapas
LIRMM, Université de Montpellier, CNRS, Montpellier, France

GROW 2022

Joint work with:

Christophe Paul
LIRMM, Université de Montpellier, CNRS, Montpellier, France

Tree-layouts

Tree-layout T = (T, r, p) of a graph G:

Tree-layouts

Tree-layout T = (T, r, p) of a graph G:

G 1

qg 2?)
Y1
P =Y

1 (h)
PO e pla p(0) p(1) p(3)
]

¥ .
e 7 o) p»

Tree-layouts
Tree-layout T = (T, r, p) of a graph G:

G 1
qg 2?:
Y1
P =Y

1 (h)
PO e pla p(0) p(1) p(3)
]

¥
e(\\ (L\ p(»

u <t v iff p(x) is an ancestor of p(y) in T.
T is a tree-layout of G iff Vxy € E(G) : x <t y or y <71 x.

Tree-layout characterization of chordal graphs

G chordal: Admits a simplicial elimination ordering.

Tree-layout characterization of chordal graphs

G chordal: Admits a simplicial elimination ordering.

° ° °® ° °)

N(x) mdaces o dique
4o wne leg

Tree-layout characterization of chordal graphs

G chordal: Admits a simplicial elimination ordering.

° ° ° ' ° » o
N(x) wdaces o dique X
40 e leX
1
2

interval

Tree-layout characterization of chordal graphs

G chordal: Admits a simplicial elimination ordering.

® [}) ° e % 5
N(x) wduces o (liclqe X
‘o e l(’a&
1
2
| ,
r——o —0 —0—0 —o —0——»
t 1 3 [
intevval

G chordal: Admits tree-layout where the graph induced by every
root-leaf path is an interval graph.

Layout based classes

Specific configuration of layouts = Graph class characterization.

Layout based classes

Specific configuration of layouts = Graph class characterization.

L o £ LL.LL L o L

Layout based classes

Specific configuration of layouts = Graph class characterization.

L °« & L0 L0 Lo

* Y 2
Configuration Layouts Tree-Layouts
0@ Chordal Chordal
A\ Interval Chordal
AN

Proper Interval 77

Layout based classes

Specific configuration of layouts = Graph class characterization.

L °« & L0 L0 Lo
* Yy Z
Configuration Layouts Tree-Layouts
0@ Chordal Chordal
A\ Interval Chordal
'AA' Proper Interval 77

¢ ; +: indifference property

Proper Chordal graphs

G is a proper chordal iff it admits an indifference tree-layout.

Proper Chordal graphs

G is a proper chordal iff it admits an indifference tree-layout.

Proper Chordal graphs

G is a proper chordal iff it admits an indifference tree-layout.

Proper Chordal graphs

G is a proper chordal iff it admits an indifference tree-layout.

Proper Chordal graphs

G is a proper chordal iff it admits an indifference tree-layout.

i

Proper Chordal graphs

G is a proper chordal iff it admits an indifference tree-layout.

AA%A%%

Cece(6-9)

Proper Chordal graphs

G is a proper chordal iff it admits an indifference tree-layout.

%A%ﬂ*ﬁ

G ccr-(6-9)

Proper Chordal graphs

G is a proper chordal iff it admits an |nd|fference tree Iayout

%\ %\ %\ %)\/ e

D Gecc(6- -S)

A

Gecc(6-9) \,// (*

*
— a_—u——”

Proper Chordal graphs

G is a proper chordal iff it admits an indifference tree-layout.

%A%Aﬁw

e)
Cece(6-9) 720 2

Positioning of Proper Chordal graphs

chordal

strongly chordal

Figure: Relationship between proper chordal graphs and subclasses of
chordal graphs.

Blocks

Blocks

e GO\ C A\
» S is the set of ancestors of x on some indiff. tl. T;
C ecc(G-S);

» X is the set of ancestor-maximal and
(N(S) N V(C))-universal vertices in C.

Blocks

LAY /GO C A\ ¢
X X

» S is the set of ancestors of x on some indiff. tl. T;
C ecc(G-S);

» X is the set of ancestor-maximal and
(N(S) N V(C))-universal vertices in C.

We can prove that X has to appear first and consecutively.

Blocks

e GO\ C A\
» S is the set of ancestors of x on some indiff. tl. T;
C ecc(G-S);

» X is the set of ancestor-maximal and
(N(S) N V(C))-universal vertices in C.

We can prove that X has to appear first and consecutively.
We call X a block.

Block Tree

Block Tree

— — 27Ty

o Y \

There is a unique block tree rooted at each r € V(G).

a—

Block Tree

/—\J /’\J P \)
o Y Y Y

a—

There is a unique block tree rooted at each r € V(G).
To obtain an indifference tree-layout, it remains to:

1. Order vertices within blocks;

2. Properly attach children blocks to parent block.

Ordering blocks

n C
0 123
N /\ 23
3 1 Q Y 34
4 / '\ L by 3

Ordering blocks

1
1
3
4

X

1y
23

LY 4
L beyre. 3

The order of X needs to satisfy certain convexity conditions:
» N(u)N X, where u € V(C — X) has to appear consecutively;

» For each component of C — X we need to respect the
inclusion ordering (maximal to minimal neighbourhood).

Ordering blocks

1
2
3
4

X

1y
23

LY 4
L beyt 34

The order of X needs to satisfy certain convexity conditions:
» N(u)N X, where u € V(C — X) has to appear consecutively;

» For each component of C — X we need to respect the
inclusion ordering (maximal to minimal neighbourhood).

Unique OPQ-tree represents all possible permutations of X.

Canonical representation

)

Canonical representation
G —y X —) % — <
\l

Unique OPQ-hierarchy represents all indifference tree-layouts of
G rooted at r € V(G).

Canonical representation
G —y X —) % — <
\l

Unique OPQ-hierarchy represents all indifference tree-layouts of
G rooted at r € V(G).

Remark: We can compute it in poly-time and has size linear in
Gl.

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G:
» For every u € V(G);
» Compute block tree rooted at u;
» Compute OPQ-tree corresponding to each block;

» Verify that each block has a valid convex order.

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!
Recognition for a graph G:

» For every u € V(G);

» Compute block tree rooted at u;

» Compute OPQ-tree corresponding to each block;

» Verify that each block has a valid convex order.

What about GRAPH ISOMORPHISM?

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!
Recognition for a graph G:

» For every u € V(G);

» Compute block tree rooted at u;

» Compute OPQ-tree corresponding to each block;

» Verify that each block has a valid convex order.

What about GRAPH ISOMORPHISM?

We can solve it...

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!
Recognition for a graph G:

» For every u € V(G);

» Compute block tree rooted at u;

» Compute OPQ-tree corresponding to each block;

» Verify that each block has a valid convex order.

What about GRAPH ISOMORPHISM?

We can solve it... maybe...

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G:
» For every u € V(G);
» Compute block tree rooted at u;
» Compute OPQ-tree corresponding to each block;

» Verify that each block has a valid convex order.

What about GRAPH ISOMORPHISM?
We can solve it... maybe...
Depends on whether we can do isomorphism for OPQ-hierarchies.

Recognition & Isomorphism
Recognition of proper chordal graphs is in P.

Corollary of the canonical representation!

Recognition for a graph G:
» For every u € V(G);
» Compute block tree rooted at u;
» Compute OPQ-tree corresponding to each block;

» Verify that each block has a valid convex order.

What about GRAPH ISOMORPHISM?

We can solve it... maybe...

Depends on whether we can do isomorphism for OPQ-hierarchies.
Lemma

Two proper chordal graphs G and H are isomorphic iff there exist

u € V(G) and v € V(H) such that the OPQ-hierarchies rooted at
u and v are isomorphic.

Conclusion

Recap:

Conclusion

Recap:

» We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

Conclusion

Recap:

» We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

> We showed how to canonically represent all indifference
tree-layouts.

Conclusion

Recap:
» We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.
> We showed how to canonically represent all indifference
tree-layouts.

» Results based on OPQ-hierarchies.

Conclusion

Recap:

» We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

> We showed how to canonically represent all indifference
tree-layouts.

» Results based on OPQ-hierarchies.

Questions:

Conclusion

Recap:

» We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

> We showed how to canonically represent all indifference
tree-layouts.

» Results based on OPQ-hierarchies.
Questions:

» Combinatorics of the root of an indifference tree-layout?

Conclusion

Recap:

» We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

> We showed how to canonically represent all indifference
tree-layouts.

» Results based on OPQ-hierarchies.
Questions:
» Combinatorics of the root of an indifference tree-layout?

> What about other problems on Proper Chordal graphs?

Conclusion

Recap:

» We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

> We showed how to canonically represent all indifference
tree-layouts.

» Results based on OPQ-hierarchies.

Questions:
» Combinatorics of the root of an indifference tree-layout?
> What about other problems on Proper Chordal graphs?

» HAMILTONIAN CYCLE? We can solve it when the input
graph is also a Split graph, but we failed in general.

Conclusion

Recap:

» We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

> We showed how to canonically represent all indifference
tree-layouts.

» Results based on OPQ-hierarchies.

Questions:
» Combinatorics of the root of an indifference tree-layout?
> What about other problems on Proper Chordal graphs?

» HAMILTONIAN CYCLE? We can solve it when the input
graph is also a Split graph, but we failed in general.

» Other classes of graphs? E.g. Tree Permutation graphs?

Conclusion

Recap:

» We introduced a new subclass of Chordal graphs, which we
call Proper Chordal graphs via tree-layouts.

> We showed how to canonically represent all indifference
tree-layouts.

» Results based on OPQ-hierarchies.

Questions:
» Combinatorics of the root of an indifference tree-layout?
> What about other problems on Proper Chordal graphs?

» HAMILTONIAN CYCLE? We can solve it when the input
graph is also a Split graph, but we failed in general.

» Other classes of graphs? E.g. Tree Permutation graphs?
» Other applications of OPQ-hierarchies?

Thank you!

