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ABSTRACT CONVEXITY

Let V be a finite set and let C be a collection of subsets of V with
the properties:

1. ∅ ∈ C and V ∈ C
2. A ∈ C and B ∈ C implies A ∩B ∈ C.

We call the pair (V, C) a convexity space on the ground set V .

The elements of C are called convex sets.

The convex hull of X ⊂ V , namely conv(X), is the smallest convex
set containing X.

An element p ∈ X is called an extreme point of X if
p /∈ conv(X − p) and the set of all of these points is ex(X)
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CONVEX GEOMETRY

Such an abstract convexity is very general and applies to many very
different objects.

It is necessary to add other properties/axioms to make this useful.

A convexity space is a convex geometry if for any convex set X:

p, q ∈ V \X and q ∈ conv(X + p) implies p /∈ conv(X + q).

This property is also called the anti-exchange property.

Theorem (Edelman and Jamison, 1985)
Let (V, C) be a convexity space. Then the following statements are
equivalent:
1. (V, C) is a convex geometry.
2. For every convex set X there exists a point p ∈ V \X such that X + p is

convex.
3. We have conv(ex(X)) = X for every convex set X.
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CHVÁTAL PROPERTY

We can also define a convexity using intervals.

Any two points a and b in V are assigned an interval I[a, b] ⊆ V .

Such an interval operator generates a convexity where a set X ⊆ V
is convex if for any two points a, b ∈ X we have I[a, b] ⊆ X.

The following property of an interval operator implies a form of
1-dimensionality.

Definition (Chvátal Property)
For all a, b, c ∈ V and y ∈ I[b, c] and z ∈ I[a, y] it holds that z ∈ I[a, b]
or z ∈ I[a, c] or z ∈ I[b, c].

An interval operator that fulfils the Chvátal Property generates a
convex geometry.
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CHVÁTAL PROPERTY

We can also define a convexity using intervals.

Any two points a and b in V are assigned an interval I[a, b] ⊆ V .

Such an interval operator generates a convexity where a set X ⊆ V
is convex if for any two points a, b ∈ X we have I[a, b] ⊆ X.

The following property of an interval operator implies a form of
1-dimensionality.

Definition (Chvátal Property)
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MONOPHONIC CONVEXITY

Chordal graphs where among the first to be characterized with a
convex geometry.

We say that z is in the monophonic interval of a and b, denoted as
z ∈ Imon[a, b] if and only if z is on an induced a-b-path.

Figure: In this graph we have c, d ∈ Imon[a, b] and e /∈ Imon[a, b].
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MONOPHONIC CONVEXITY

The interval convexity (V, Cmon) induced by this operator is called
the monophonic convexity.

Theorem (Farber and Jamison, 1986)
A graph is chordal if and only if its monophonic convexity is a convex
geometry.

Furthermore, Chvátal showed in 2009 that monophonic intervals
fulfil the Chvátal Property.

This gives a general template with which to characterise a given
graph class G with some associated convexity CG :

A graph G is contained in G if and only if CG is a convex geometry.
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INTERVAL GRAPHS

Graphs constructed from such intervals are called interval graphs.

The interval model implies a strong convex structure to be found in
the graph.

4 · Interval Graphs 7
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AT-FREE GRAPHS

Definition
An asteroidal triple of a graph is a set of three independent vertices such
that there is a path between each pair of these vertices that does not
contain any vertex of the neighbourhood of the third. A graph is called
asteroidal triple free (AT-free) if it does not contain such an asteroidal
triple.

Figure: Examples of graphs containing asteroidal triples.
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LINE INTERVALS

The following is one of the most famous characterizations of interval
graphs.

Theorem (Lekkerkerker and Boland, 1962)
A graph G is an interval graph if and only if it is chordal and AT-free.

We will prove an analogous characterization using the language of
convexity.

Similar to chordal graphs, AT-free graphs are characterized using
domination intervals Idom.

Combining domination and monophonic intervals, we get line
intervals:

Iline[a, b] := Imon[a, b] ∪ Idom[a, b].
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CONVEXITY IN INTERVAL GRAPHS

Alcon et al. showed in 2015 that a similar definition not using the
Lekkerkerker and Boland Theorem yields a convex geometry.

The following also shows that the Chvátal Property holds.

Theorem (B. 2020)
For any graph G = (V,E) the following properties are equivalent:
1. G is an interval graph;
2. The line interval operator Iline of G fulfils the Chvátal Property;
3. The line convexity of G is a convex geometry.

It is shown that 1. ⇒ 2. ⇒ 3. ⇒ 1.

2. ⇒ 3. was already shown by Chvátal when he introduced that
property.

3. ⇒ 1. is shown by proving that a large induced cycle or an
asteroidal triple contradicts the anti-exchange property.

1. ⇒ 2. is the main part of the proof.
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property.

3. ⇒ 1. is shown by proving that a large induced cycle or an
asteroidal triple contradicts the anti-exchange property.

1. ⇒ 2. is the main part of the proof.

4 · Interval Graphs 10



CONVEXITY IN INTERVAL GRAPHS

Alcon et al. showed in 2015 that a similar definition not using the
Lekkerkerker and Boland Theorem yields a convex geometry.

The following also shows that the Chvátal Property holds.
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property.

3. ⇒ 1. is shown by proving that a large induced cycle or an
asteroidal triple contradicts the anti-exchange property.

1. ⇒ 2. is the main part of the proof.

4 · Interval Graphs 10



CARATHÉODORY NUMBER

We say that (V, C) has Carathéodory number d if d is the smallest
positive integer, such that for every X ⊆ V and every p ∈ conv(X)
there is a subset X ′ ⊆ X with p ∈ conv(X ′) and |X ′| ≤ d.

For the conventional notion of convexity in Rd the Carathéodory
number is d+ 1.

(0,1)

(0,0) (1,0)

(1,1)

(1/4, 1/4)

5 · Carathéodory Number 11
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number is d+ 1.

(0,1)

(0,0) (1,0)

(1,1)

(1/4, 1/4)
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CARATHÉODORY NUMBER

This gives a measure of the complexity of the convexity space,
similar to a dimension.

Lemma (Chvátal 2009)
An interval space (V, I) that fulfils the Chvátal Property has
Carathéodory number 2.

In particular, this shows that any monophonic convexity has
Carathéodory number 2.

and also that line convexity has Carathéodory number 2.

This settles a question by Alcon et al. from 2015.

For AT-free graphs the Carathéodory number is not known.

However, it is known to be ≥ 3.
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CARATHÉODORY NUMBER

This gives a measure of the complexity of the convexity space,
similar to a dimension.

Lemma (Chvátal 2009)
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Carathéodory number 2.

and also that line convexity has Carathéodory number 2.
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MAXIMUM WEIGHT CONVEX SETS

Adding a weight function w : V (G)→ R, we can search for a
maximum weighted convex set.

Note that for w : V (G)→ R+ this is trivial as we can choose V .

This problem is solved for trees (Korte and Lovasz 1989).

For split graphs (Cardinal et al. 2017) and chordal graphs (Cardinal
et al. 2018).

For many classes such as interval graphs this question is still open.
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Thank you for your attention!
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