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SEMI-PROPER INTERVAL GRAPHS
AN IDEA IS COMING BACK TO KOPER. . .
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ONCE UPON A TIME IN KOPER. . .

A perfect elimination ordering (PEO) of a graph

is a vertex ordering (v1, . . . , vn) such that

vi is simplicial in G − {vi+1, . . . , vn}.

Let’s look at connected orderings, i.e., vivi+1 ∈ E(G) for any i ∈ {1, . . . , n − 1}.

Claim (of Koper)
A graph has a connected PEO if and only if it is a connected proper interval graph.
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IDEA OF “PROOF”

proper interval graphs have proper interval orderings.

✓
Easy to show: Proper interval orderings of connected graphs are connected PEOs.

For the other direction we consider the forbidden subgraphs of proper interval graphs:

3 5

2

1

4

✗
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WHAT ELSE. . . ?

Theorem
A vertex ordering is a connected PEO if and only if it is a connected interval ordering.

Corollary
Graphs having a connected PEO are connected interval graphs.
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INTERVAL MODEL

How does an interval model of a graph with a connected PEO look like?

Consider personnel policies of SP Inc.

employee needs
replacement

replacement must be
subordinate

subordinates were
hired later

an employee can
replace several other
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INTERVAL MODEL

Definition
An interval model I = {Iv}v∈V(G) of a graph G is called semi-proper

if for every vertex v ∈ V(G) except from one

there is a vertex w ∈ V(G) with

ℓ(Iv) ≤ ℓ(Iw) ≤ r(Iv) < r(Iw).
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SEMI-PROPER INTERVAL GRAPHS

Theorem
The following conditions are equivalent for a graph G:

1. G has a connected PEO.

2. G has a semi-proper interval model.

3. G has a semi-proper clique ordering.

Definition
A consecutive clique ordering Φ = (C1, . . . ,Ck) of G is a semi-proper clique ordering

if for any i with 1 < i < k there is a vertex v ∈ (Ci ∩ Ci+1) \ Ci−1.
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RECOGNITION

Idea:

1. compute vertex ordering that is a connected PEO if such an ordering exists.

2. check in linear time whether this ordering is a connected PEO.

We use multi-sweep graph searches similar to:

1 sweep of LBFS gives PEO [Rose, Tarjan, Lueker, 1976]

n sweeps of LBFS give interval ordering [Dusart, Habib, 2017]

O(1) sweeps of LBFS (with special tie-breaking) give interval ordering
[Corneil, Olariu, Stewart, 2010] [Li, Wu, 2014] [Cao, 2021]

3 sweeps of LBFS give proper interval ordering [Corneil, 2004]
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GRAPH SEARCHES

Inclusion property:

If set of visited neighbors of vertex x is strict subset of the visited neighbors of vertex y ,

then x cannot be visited next.

Tie property:

If sets of visited neighbors of vertices x and y are equal,

then both or none of them can be visited next.

Strictly monotone graph search:

Has inclusion property and tie property.

Examples are LBFS, LDFS, MCS, and MNS.

9
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THE ALGORITHM

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

v

rightmost vertex ordering
(for semi-proper clique ordering)

if rΦ(x) < rΦ(y), then y ≺σ x

lexicographic vertex ordering
(for any consecutive clique ordering)

if (ℓΦ(x), rΦ(x)) < (ℓΦ(y), rΦ(y)), then x ≺σ y
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THE ALGORITHM

Lemma
A lexicographic vertex ordering of a semi-proper clique ordering is a connected PEO.

Theorem
A 2-sweep of any strictly monotone graph search

starting in end vertex v of a connected PEO

results in a connected PEO ending with v.
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HOW TO FIND THE END VERTEX?
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Corollary
Every semi-proper interval graph has at most two semi-proper clique orderings.

Theorem
There is a linear-time recognition algorithm for semi-proper interval graphs.

1. compute PQ-tree

2. check whether the tree can have the right structure

3. rearrange the tree such that it has the right structure

4. find the two semi-proper clique orderings and two respective end vertices

5. make a 2-sweep of LBFS starting with both end vertices

6. check whether one of these vertex orderings is a connected PEO

14
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Corollary
Semi-proper interval graphs with k maximal cliques have ≤ 2k−1 consecutive clique orderings.
This bound is tight.

Observation
Connected interval graphs with k maximal cliques can have k! consecutive clique orderings.

Observation
Connected proper interval graphs have at most two consecutive clique orderings.
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HAMILTONIAN PATHS AND CYCLES

Corollary
The longest path and the longest cycle of an semi-proper interval graph

can be found in linear time.
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HAMILTONIAN PATHS AND CYCLES

Theorem (Bertossi, 1983; Chen et al, 1997; Broersma et al, 2015)
Let G be a proper interval graph.

1. G has a Hamiltonian path if and only if G is connected.

2. G has a Hamiltonian cycle if and only if G is 2-connected.

3. G is k-Hamilton-connected if and only if G is (k + 3)-connected.

Corollary
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HAMILTONIAN PATHS AND CYCLES

Theorem (S, 2022)
Let G be a semi-proper interval graph.

1. G has a Hamiltonian path if and only if G is connected.

2. G has a Hamiltonian cycle if and only if G is 2-connected.

3. G is k-Hamilton-connected if and only if G is (k + 3)-connected.

Corollary
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FURTHER RESEARCH

complexity of problems that are hard or open on interval graphs

max-cut
(hard on interval, open on proper interval)

geodetic number and optimal linear arrangement
(hard on interval, polynomial on proper interval)

x-y-Hamiltonian path problem
(open on interval, polynomial on proper interval)

Thanks. . . !
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