Locally checkable problems parameterized by

treewidth, clique-width and mim-width

Carolina Lucia Gonzalez!

'CONICET - Universidad de Buenos Aires, ICC, Buenos Aires, Argentina

2University of Fribourg, Department of Informatics, Fribourg, Switzerland
Joint work with:

@ Flavia Bonomo-Braberman! (treewidth)
@ Narmina Baghirova?, Bernard Ries? and David Schindl? (clique-width)

@ Felix Mann? (mim-width)
2
’
KOPER
SLOVENIA

Introductory problems

k-coloring Minimum Dominating Set Maximum Independent Set

Does there exist a function Minimum size of a set D such Maximum size of a set I such
c: V. — {1,...,k} such that that N[v]ND # @ forallv € V7? that N(v)NI =0 forallv € I?
c(v) # c(u) Vv € V,u € N(v)?

Introductory problems

k-coloring Minimum Dominating Set Maximum Independent Set

Does there exist a function Minimum size of a set D such Maximum size of a set I such
c: V. — {1,...,k} such that that N[v]ND # @ forallv € V7? that N(v)NI =0 forallv € I?
c(v) # c(u) Vv € V,u € N(v)?

What do they have in common?

Introductory problems

k-coloring Minimum Dominating Set Maximum Independent Set

Does there exist a function Minimum size of a set D such Maximum size of a set I such
c: V. — {1,...,k} such that that N[v]ND # () forallv € V? that N(v)NI =0 forallv e I?
c(v) # c(u) Vv € V,u € N(v)?

What do they have in common?

They are partitioning (coloring) problems where a solution can be verified locally for each vertex.

Introductory problems

k-coloring Minimum Dominating Set Maximum Independent Set

Does there exist a function Minimum size of a set D such Maximum size of a set I such
c: V. — {1,...,k} such that that N[v]ND # @ forallv € V7? that N(v)NI =0 forallv € I?
c(v) # c(u) Vv € V,u € N(v)?

What do they have in common?

They are partitioning (coloring) problems where a solution can be verified locally for each vertex.
— Locally checkable problems

Related work

@ Monadic Second Order Logic (Courcelle’s theorem)

[B. Courcelle 1990]

@ DN-logic
[B. Bergougnoux, J. Dreier and L. Jaffke 2022]

o Locally Checkable Vertex Partitioning (LCVP) problems
[J.A. Telle 1994]

Introductory problems

k-coloring Minimum Dominating Set Maximum Independent Set

Does there exist a function Minimum size of a set D such Maximum size of a set I such
c: V. — {1,...,k} such that that N[v]ND # @ forallv € V7? that N(v)NI =0 forallv € I?
c(v) # c(u) Vv € V,u € N(v)?

What do they have in common?

They are partitioning (coloring) problems where a solution can be verified locally for each vertex.
— Locally checkable problems

Given a graph G and
o COLORS: a set of colors,

Our framework (simplified)

Given a graph G and
o COLORS: a set of colors,

@ check(v, c): a check function (input: vertex v and coloring ¢ of N|[v], output: true or false),

Our framework (simplified)

Given a graph G and
@ COLORS: a set of colors,

@ check(v, c): a check function (input: vertex v and coloring ¢ of N|[v], output: true or false),

e W(v,c): a weight function (input: vertex v and coloring ¢ of N[v], output: a weight),

Our framework (simplified)

Given a graph G and
@ COLORS: a set of colors,

@ check(v, c): a check function (input: vertex v and coloring ¢ of N|[v], output: true or false),
e W(v,c): a weight function (input: vertex v and coloring ¢ of N[v], output: a weight),

@ an order of the weights

Our framework (simplified)

Given a graph G and
@ COLORS: a set of colors,

@ check(v, c): a check function (input: vertex v and coloring ¢ of N|[v], output: true or false),
e W(v,c): a weight function (input: vertex v and coloring ¢ of N[v], output: a weight),
@ an order of the weights

find the minimum weight of a coloring ¢ such that
check(v,c|np) = TRUE Vv e V(G).

Our framework (simplified)

Given a graph G and
@ COLORS: a set of colors,

@ check(v, c): a check function (input: vertex v and coloring ¢ of N|[v], output: true or false),
e W(v,c): a weight function (input: vertex v and coloring ¢ of N[v], output: a weight),
@ an order of the weights

find the minimum weight of a coloring ¢ such that
check(v,c|np) = TRUE Vv e V(G).

Minimum Dominating Set:
CoLoRs = {s,5}
w(v,c) =1if ¢(v) =, and 0 otherwise
Order of weights: <
check(v,c) = (c(v) =8V Iu € N(v).c(u) =5)

Our framework (simplified)

Given a graph G and
@ COLORS: a set of colors,

@ check(v, c): a check function (input: vertex v and coloring ¢ of N|[v], output: true or false),
e W(v,c): a weight function (input: vertex v and coloring ¢ of N[v], output: a weight),
@ an order of the weights

find the minimum weight of a coloring ¢ such that
check(v,c|np) = TRUE Vv e V(G).

Goal: obtain efficient algorithms for different graph classes.

Our framework (simplified)

Given a graph G and
@ COLORS: a set of colors,

@ check(v, c): a check function (input: vertex v and coloring ¢ of N|[v], output: true or false),
e W(v,c): a weight function (input: vertex v and coloring ¢ of N[v], output: a weight),
@ an order of the weights

find the minimum weight of a coloring ¢ such that
check(v,c|np) = TRUE Vv e V(G).

Goal: obtain efficient algorithms for different graph classes. — Under which conditions?

Our framework (simplified)

Given a graph G and
@ COLORS: a set of colors,

@ check(v, c): a check function (input: vertex v and coloring ¢ of N|[v], output: true or false),
e W(v,c): a weight function (input: vertex v and coloring ¢ of N[v], output: a weight),

@ an order of the weights

find the minimum weight of a coloring ¢ such that
check(v,c|np) = TRUE Vv e V(G).

Goal: obtain efficient algorithms for different graph classes. — Under which conditions?

In particular, we focus on the parameterization by different width measures:
o treewidth
o clique-width
@ mim-width

Our framework (simplified)

Given a graph G and
@ COLORS: a set of colors,

@ check(v, c): a check function (input: vertex v and coloring ¢ of N|[v], output: true or false),
e W(v,c): a weight function (input: vertex v and coloring ¢ of N[v], output: a weight),

@ an order of the weights

find the minimum weight of a coloring ¢ such that
check(v, c|npy)) = TRUE Vv € V(G).

Goal: obtain efficient algorithms for different graph classes. — Under which conditions?

In particular, we focus on the parameterization by different width measures:
o treewidth — not today...
o clique-width
@ mim-width

Let COLORS = {aq,...,a,} be a set of colors.

Some conditions on check and W
Let COLORS = {a1,...,aq} be a set of colors.

A function f is color-counting if there exists f’ such that

f(v,c) = f'(v,c(v), |N;1 (U)|7 000 |N§q(v)|)

for all vertex v, coloring ¢ of Nv].

Some conditions on check and W
Let COLORS = {a1,...,aq} be a set of colors.

A function f is color-counting if there exists f’ such that
fv,¢) = f'(v, (), NG, W), - .., NG, (v)])

for all vertex v, coloring ¢ of N|v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (= existence of f'(v,a,n1,...,ng))

Some conditions on check and W
Let COLORS = {a1,...,aq} be a set of colors.

A function f is color-counting if there exists f’ such that
fv,¢) = f'(v, (), NG, W), - .., NG, (v)])

for all vertex v, coloring ¢ of N|v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (= existence of f'(v,a,n1,...,ng))

Some conditions on check and W
Let COLORS = {a1,...,aq} be a set of colors.

A function f is color-counting if there exists f’ such that
fv,¢) = f'(v, (), NG, W), - .., NG, (v)])

for all vertex v, coloring ¢ of N|v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (= existence of f'(v,a,n1,...,ng))

(%

v is blue, 2 red neighbors, 1 blue neighbor

Some conditions on check and W
Let COLORS = {a1,...,aq} be a set of colors.

A function f is color-counting if there exists f’ such that
fv,¢) = f'(v, (), NG, W), - .., NG, (v)])

for all vertex v, coloring ¢ of N|v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (= existence of f'(v,a,n1,...,ng))

(%

v is blue, 2 red neighbors, 1 blue neighbor
f/('l), Ba 27 1)

Some conditions on check and W
Let COLORS = {a1,...,aq} be a set of colors.

A function f is color-counting if there exists f’ such that

f(v7c> = f,(v’c(v)> |N;1 (U)‘v 000 |N§q(v)|)

for all vertex v, coloring ¢ of N|v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (= existence of f'(v,a,n1,...,ng))

Example: minimum dominating set
check(v,c) = (¢(v) =8V Iu € N(v).c(u) =)

Some conditions on check and W
Let COLORS = {a1,...,aq} be a set of colors.

A function f is color-counting if there exists f’ such that

f(v7c> = f,(v’c(v)> |N;1 (U)‘v 000 |N§q(v)|)

for all vertex v, coloring ¢ of N|v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (= existence of f'(v,a,n1,...,ng))

Example: minimum dominating set
check(v,c) = (¢(v) =8V Iu € N(v).c(u) =)
check'(v,a,ng,ng) = (a =SV ng > 1)

Some conditions on check and W
Let COLORS = {a1,...,aq} be a set of colors.

A function f is color-counting if there exists f’ such that

f(U,C) = f,(vac(v)> |N;1 (U)‘v 000 |N§q(v)|)

for all vertex v, coloring ¢ of N|v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (= existence of f'(v,a,n1,...,ng))

Example: minimum dominating set
check(v,c) = (¢(v) =8V Iu € N(v).c(u) =)
check'(v,a,ng,ng) = (a =SV ng > 1)

We say f is d-stable if it is color-counting and
f'(v,a,ny,...,ng) = f'(v,a,min(d,ny),...,min(d, n,))

for all vertex v, color @, non-negative integers nq,...,n,.

Some conditions on check and W
Let COLORS = {a1,...,aq} be a set of colors.

A function f is color-counting if there exists f’ such that

f(U,C) = f,(v’c(v)> |N;1 (U)‘v 000 |N§q(v)|)

for all vertex v, coloring ¢ of N|v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (= existence of f'(v,a,n1,...,ng))

Example: minimum dominating set
check(v,c) = (¢(v) =8V Iu € N(v).c(u) =)
check'(v,a,ng,ng) = (a =SV ng > 1) — l-stable

We say f is d-stable if it is color-counting and
f'(v,a,ny,...,ng) = f'(v,a,min(d,ny),...,min(d, n,))

for all vertex v, color @, non-negative integers nq,...,n,.

o If |[COLORS| is not a constant:

o If |[COLORS| is not a constant:

Precoloring Extension is NP-complete on graphs of clique-width < 3.
[F. Bonomo, G. Duran and J. Marenco 2006]

Complexity

o If |COLORS| is not a constant: ~ para-NP-hard clique-width (even for 1-stable check and w)

Precoloring Extension is NP-complete on graphs of clique-width < 3.
[F. Bonomo, G. Duran and J. Marenco 2006]

Complexity

o If |COLORS| is not a constant: = para-NP-hard clique-width

o If |COLORS| is a constant:

(even for 1-stable check and w)

check, w

Clique-width

Mim-width

Non color-counting

para-NP-hard

Color-counting

XP

para-NP-hard

d-stable

FPT

XP

Complexity

o If |COLORS| is not a constant: ~ para-NP-hard clique-width (even for 1-stable check and w)

o If |COLORS| is a constant:

check, w Clique-width Mim-width
Non color-counting para-NP-hard
Color-counting XP para-NP-hard

d-stable FPT XP

We can reduce Minimum Dominating Set in general graphs to a locally checkable problem (with 2
colors) in complete graphs (clique-width < 2).

Complexity

o If |COLORS| is not a constant: = para-NP-hard clique-width

o If |COLORS| is a constant:

(even for 1-stable check and w)

check, w

Clique-width

Mim-width

Non color-counting

Color-counting

para-NP-hard

para-NP-hard

d-stable

XP

Standard dynamic programming algorithm using clique-width expressions.

Complexity

o If |COLORS| is not a constant: ~ para-NP-hard clique-width (even for 1-stable check and w)

o If |COLORS| is a constant:

check, w Clique-width Mim-width

Non color-counting para-NP-hard

Color-counting

d-stable

Max-Cut is color-counting with 2 colors, and W[1]-hard parameterized by clique-width.
[F.V. Fomin, P.A. Golovach, D. Lokshtanov and S. Saurabh 2014]

Complexity

o If |COLORS| is not a constant: ~ para-NP-hard clique-width (even for 1-stable check and w)

o If |COLORS| is a constant:

check, w Clique-width Mim-width
Non color-counting para-NP-hard
Color-counting XP para-NP-hard
d-stable FPT

Dynamic programming algorithm based on [B.M. Bui-Xuan, J.A. Telle and M. Vatshelle 2013].

Alternative: modeling with DN-logic.

Complexity

o If |COLORS| is not a constant: ~ para-NP-hard clique-width (even for 1-stable check and w)

o If |COLORS| is a constant:

check, w Clique-width Mim-width
Non color-counting para-NP-hard
Color-counting XP para-NP-hard
d-stable FPT

Minimum Dominating Set is 1-stable with 2 colors, and W[1]-hard parameterized by mim-width.
[F.V. Fomin, P.A. Golovach, J.F. Raymond 2018]

Complexity

o If |COLORS| is not a constant: ~ para-NP-hard clique-width (even for 1-stable check and w)

o If |COLORS| is a constant:

check, w

Clique-width Mim-width

Non color-counting

para-NP-hard

Color-counting

XP para-NP-hard

d-stable

FPT

Max-Cut is color-counting with 2 colors, and NP-complete on interval graphs (mim-width <1).

[R. Adhikary, K. Bose, S. Mukherjee, B. Roy 2020]

Adding global properties

@ Treewidth: size, connectivity, acyclicity

o Clique-width: size, connectivity

@ Mim-width: size, connectivity and any other expressible in DN-logic

Applications

Using this framework we proved that:

Problem clique-width mim-width
[k]-Roman domination (linear*) FPT XP
Conflict-free k-coloring (linear*) FPT XP

Bhyravarapu, Hartmann, Kalyanasundaram and Vinod Reddy, 2021: similar results for clique-width

b-coloring with fixed number of colors (linear*) FPT XP

Jaffke, Lima and Lokshtanov, 2020: XP parameterized by clique-width with unfixed number of colors

k-community XP —

and similar results for some variations of these problems.

(*) if a clique-width expression is given as input.

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f: V' — {0,...,k 4 1} such that

fo+ Y (fw)-1)zk YoeV.
uwEN (v)
f(u)>1

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f: V' — {0,...,k 4 1} such that

fv) + Z (flu)=1) >k YoveV.
u€N (v)
fu)=>1

@ CoLors ={0,...,k+1}
° wW(v,c) =c(v)
@ Order of weights: <

@ check(v,c) = | c(v) + Z (c(u) —1) >k

wEN (v)
c(u)>1

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f: V' — {0,...,k 4 1} such that

fo+ Y (fw)-1)zk YoeV.
uwEN (v)
f(u)>1

e CoLors= {0,...,k+ 1}
° wW(v,c) =c(v)
@ Order of weights: <

e check(v,c) = | c(v) + Z (c(u) —1) >k

u€N (v)
c(u)>1

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f: V' — {0,...,k 4 1} such that

fo+ Y (fw)-1)zk YoeV.
uwEN (v)
f(u)>1

e CoLors= {0,...,k+ 1}
° wW(v,c) =c(v)
@ Order of weights: <

e check(v,c) = | c(v) + Z (c(u) —1) >k

u€N (v)
c(u)>1

check and w are color-counting

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f: V' — {0,...,k 4 1} such that

fo+ Y (fw)-1)zk YoeV.
uwEN (v)
f(u)>1

e CoLors= {0,...,k+ 1}
° W/(U?i7n07 s 7nk+1) =1

@ Order of weights: <

e check(v,c) = | c(v) + Z (c(u) —1) >k

u€N (v)
c(u)>1

check and w are color-counting

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f: V' — {0,...,k 4 1} such that

fo+ Y (fw)-1)zk YoeV.

uwEN (v)
flu)>1
e CoLors= {0,...,k+ 1}
o W (v,i,ng,...,nEy1) =1
@ Order of weights: <
k41
e check'(v,i,ng,...,ngy1) = |7+ Z(] —-1)-n; >k
j=1

check and w are color-counting

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f: V' — {0,...,k 4 1} such that

fo+ Y (fw)-1)zk YoeV.

uwEN (v)
flu)>1
e CoLors= {0,...,k+ 1}
o W (v,i,ng,...,nEy1) =1
@ Order of weights: <
k41
e check'(v,i,ng,...,ngy1) = |7+ Z(] —-1)-n; >k
j=1

check and w are k-stable

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f: V' — {0,...,k 4 1} such that

fo+ Y (fw)-1)zk YoeV.

uwEN (v)
flu)>1
e CoLors= {0,...,k+ 1}
o W (v,i,ng,...,nEy1) =1
@ Order of weights: <
k41
e check'(v,i,ng,...,ngy1) = |7+ Z(] —-1)-n; >k
j=1

check and w are k-stable

— FPT clique-width
— XP mim-width

Applications: k-community

A community structure of a graph G is a partition {C1,...,Ck}, with k > 2, of V such that for each
ie€{l,...,k} we have |C;| > 2 and
IN@) NG| _ [N(v) NG
Cil -1~ (&

Yo e C;, Vje{l,... k}.

Applications: k-community
A community structure of a graph G is a partition {C1,...,Ck}, with k > 2, of V such that for each
ie€{l,...,k} we have |C;| > 2 and
IN@) NG| _ [N(v) NG
Cil -1~ |C5]

Yo e C;, Vje{l,... k}.

k-community problem

Decide if a given graph has a community structure with £ communities.

Applications: k-community
A community structure of a graph G is a partition {C1,...,Ck}, with k > 2, of V such that for each
ie€{l,...,k} we have |C;| > 2 and
IN@) NG| | [N(v) NG
ICil -1 — |G

Yo e C;, Vje{l,... k}.

k-community problem

Decide if a given graph has a community structure with £ communities.

— Not entirely locally checkable...

Applications: k-community
A community structure of a graph G is a partition {C1,...,Ck}, with k > 2, of V such that for each
ie€{l,...,k} we have |C;| > 2 and
IN@) NG| _ [N(v) NG
Cil -1~ |C5]

Yo e C;, Vje{l,... k}.

Specified size k-community problem

Given a graph G and k integers s1, . .., S, > 2, determine if G admits a community structure {C1, ..., Cy}
such that |C;| = s; Vi € {1,...,k}.

Applications: k-community
A community structure of a graph G is a partition {C1,...,Ck}, with k > 2, of V such that for each
ie€{l,...,k} we have |C;| > 2 and
IN@) NG| _ [N(v) NG
Cil -1~ (&

Yo e C;, Vje{l,... k}.

Specified size k-community problem

Given a graph G and k integers s1, . .., S, > 2, determine if G admits a community structure {C1, ..., Cy}
such that |C;| = s; Vi € {1,...,k}.

e CoLors ={1,...,k}

o check(v,c) = <Vj e{l,... k). |N(v) N Ceo) S IN(v)N C’j|)

Sc(v) — 1 N S
@ for each color i, the size of the color class of 7 has to be s;.

Applications: k-community
A community structure of a graph G is a partition {C1,...,Ck}, with k > 2, of V such that for each
ie€{l,...,k} we have |C;| > 2 and
IN@) NG| _ [N(v) NG
Cil -1~ (&

Yo e C;, Vje{l,... k}.

Specified size k-community problem

Given a graph G and k integers s1, . .., S, > 2, determine if G admits a community structure {C1, ..., Cy}
such that |C;| = s; Vi € {1,...,k}.

e CoLors ={1,...,k}

n

ocheck:’(v,i,nl,...,nk)—(Vje{l,...,k}. : an>
Si—l Sy

@ for each color i, the size of the color class of i has to be s;.

Applications: k-community
A community structure of a graph G is a partition {C1,...,Ck}, with k > 2, of V such that for each
ie€{l,...,k} we have |C;| > 2 and
IN@) NG| _ [N(v) NG
Cil -1~ (&

Yo e C;, Vje{l,... k}.

Specified size k-community problem

Given a graph G and k integers s1, . .., S, > 2, determine if G admits a community structure {C1, ..., Cy}
such that |C;| = s; Vi € {1,...,k}.

e CoLors ={1,...,k}

e check'(v,i,ny,...,ny) = (Vj e{l,...,k}. ni > nj)
Si—l Sy

@ for each color i, the size of the color class of i has to be s;.
— XP clique-width

Applications: k-community
A community structure of a graph G is a partition {C1,...,Ck}, with k > 2, of V such that for each
ie€{l,...,k} we have |C;| > 2 and
IN@) NG| _ [N(v) NG
Cil -1~ |C5]

Yo e C;, Vje{l,... k}.

k-community problem

Decide if a given graph has a community structure with £ communities.

Applications: k-community
A community structure of a graph G is a partition {C1,...,Ck}, with k > 2, of V such that for each
ie€{l,...,k} we have |C;| > 2 and
IN@) NG| _ [N(v) NG
Cil -1~ (&

Yo e C;, Vje{l,... k}.

k-community problem

Decide if a given graph has a community structure with £ communities.

k

For all s1,..., s such that Zsi = |V|and s; > 2Vi € {1,...,k}, solve the corresponding specified
i=1

size k-community problem.

Applications: k-community
A community structure of a graph G is a partition {C1,...,Ck}, with k > 2, of V such that for each
ie€{l,...,k} we have |C;| > 2 and
IN@) NG| _ [N(v) NG
Cil -1~ (&

Yo e C;, Vje{l,... k}.

k-community problem

Decide if a given graph has a community structure with £ communities.

k

For all s1,..., s such that Zsi = |V|and s; > 2Vi € {1,...,k}, solve the corresponding specified
i=1

size k-community problem.

— XP clique-width

Our framework (complete formulation)

r-locally checkable problems

Given a graph G and

o COLORS: a set of colors,

L,,: for every vertex v, a subset of COLORS of allowed colors,
L for every edge e, a label,

(WEIGHTS, <, ®): a weight set,

w (v, ¢): a weight function (input: vertex v and coloring ¢ of N"[v], output: a weight),
check(v, c): a check function (input: vertex v and coloring ¢ of N"[v], output: true or false)
find the minimum weight of a coloring c such that check(v, c|yr[,)) = TRUE Vv € V(G).

Width |COLORS| Le check, w Global properties
tw Polynomial Yes Polynomial partial neighborhood system Size, connectivity, acyclicity
cw Constant or log No Color-counting Size, connectivity
mimw Constant No d-stable Size, connectivity and any

other expressible in DN-logic

	Introduction and preliminaries
	Main results
	Applications
	Conclusion

