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Given a graph G and
@ COLORS: a set of colors,

@ check(v, c): a check function (input: vertex v and coloring ¢ of N|[v], output: true or false),
e W(v,c): a weight function (input: vertex v and coloring ¢ of N[v], output: a weight),

@ an order of the weights

find the minimum weight of a coloring ¢ such that
check(v, c|npy)) = TRUE Vv € V(G).

Goal: obtain efficient algorithms for different graph classes. — Under which conditions?

In particular, we focus on the parameterization by different width measures:
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Non color-counting para-NP-hard
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d-stable FPT XP

We can reduce Minimum Dominating Set in general graphs to a locally checkable problem (with 2
colors) in complete graphs (clique-width < 2).
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o If |COLORS| is a constant:

check, w Clique-width Mim-width
Non color-counting para-NP-hard
Color-counting XP para-NP-hard
d-stable FPT

Dynamic programming algorithm based on [B.M. Bui-Xuan, J.A. Telle and M. Vatshelle 2013].

Alternative: modeling with DN-logic.
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Complexity

o If |COLORS| is not a constant: ~ para-NP-hard clique-width (even for 1-stable check and w)

o If |COLORS| is a constant:

check, w

Clique-width Mim-width

Non color-counting

para-NP-hard

Color-counting

XP para-NP-hard

d-stable

FPT

Max-Cut is color-counting with 2 colors, and NP-complete on interval graphs (mim-width <1).

[R. Adhikary, K. Bose, S. Mukherjee, B. Roy 2020]



Adding global properties

@ Treewidth: size, connectivity, acyclicity

o Clique-width: size, connectivity

@ Mim-width: size, connectivity and any other expressible in DN-logic



Applications

Using this framework we proved that:

Problem clique-width mim-width
[k]-Roman domination (linear*) FPT XP
Conflict-free k-coloring (linear*) FPT XP

Bhyravarapu, Hartmann, Kalyanasundaram and Vinod Reddy, 2021: similar results for clique-width

b-coloring with fixed number of colors (linear*) FPT XP

Jaffke, Lima and Lokshtanov, 2020: XP parameterized by clique-width with unfixed number of colors

k-community XP —

and similar results for some variations of these problems.

(*) if a clique-width expression is given as input.
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Our framework (complete formulation)

r-locally checkable problems

Given a graph G and

o COLORS: a set of colors,

L,,: for every vertex v, a subset of COLORS of allowed colors,
L for every edge e, a label,

(WEIGHTS, <, ®): a weight set,

w (v, ¢): a weight function (input: vertex v and coloring ¢ of N"[v], output: a weight),
check(v, c): a check function (input: vertex v and coloring ¢ of N"[v], output: true or false)
find the minimum weight of a coloring c such that check(v, c|yr[,)) = TRUE Vv € V(G).

Width  |COLORS| Le check, w Global properties
tw Polynomial Yes Polynomial partial neighborhood system Size, connectivity, acyclicity
cw Constant or log No Color-counting Size, connectivity
mimw  Constant No d-stable Size, connectivity and any

other expressible in DN-logic
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