
Locally checkable problems parameterized by
treewidth, clique-width and mim-width

Carolina Lućıa Gonzalez1

1CONICET - Universidad de Buenos Aires, ICC, Buenos Aires, Argentina
2University of Fribourg, Department of Informatics, Fribourg, Switzerland

Joint work with:

Flavia Bonomo-Braberman1 (treewidth)

Narmina Baghirova2, Bernard Ries2 and David Schindl2 (clique-width)

Felix Mann2 (mim-width)

Introductory problems

k-coloring

Does there exist a function
c : V → {1, . . . , k} such that
c(v) ̸= c(u) ∀v ∈ V, u ∈ N(v)?

Minimum Dominating Set

Minimum size of a set D such
thatN [v]∩D ̸= ∅ for all v ∈ V ?

Maximum Independent Set

Maximum size of a set I such
that N(v)∩I = ∅ for all v ∈ I?

What do they have in common?

They are partitioning (coloring) problems where a solution can be verified locally for each vertex.

→ Locally checkable problems

Introductory problems

k-coloring

Does there exist a function
c : V → {1, . . . , k} such that
c(v) ̸= c(u) ∀v ∈ V, u ∈ N(v)?

Minimum Dominating Set

Minimum size of a set D such
thatN [v]∩D ̸= ∅ for all v ∈ V ?

Maximum Independent Set

Maximum size of a set I such
that N(v)∩I = ∅ for all v ∈ I?

What do they have in common?

They are partitioning (coloring) problems where a solution can be verified locally for each vertex.

→ Locally checkable problems

Introductory problems

k-coloring

Does there exist a function
c : V → {1, . . . , k} such that
c(v) ̸= c(u) ∀v ∈ V, u ∈ N(v)?

Minimum Dominating Set

Minimum size of a set D such
thatN [v]∩D ̸= ∅ for all v ∈ V ?

Maximum Independent Set

Maximum size of a set I such
that N(v)∩I = ∅ for all v ∈ I?

What do they have in common?

They are partitioning (coloring) problems where a solution can be verified locally for each vertex.

→ Locally checkable problems

Introductory problems

k-coloring

Does there exist a function
c : V → {1, . . . , k} such that
c(v) ̸= c(u) ∀v ∈ V, u ∈ N(v)?

Minimum Dominating Set

Minimum size of a set D such
thatN [v]∩D ̸= ∅ for all v ∈ V ?

Maximum Independent Set

Maximum size of a set I such
that N(v)∩I = ∅ for all v ∈ I?

What do they have in common?

They are partitioning (coloring) problems where a solution can be verified locally for each vertex.

→ Locally checkable problems

Related work

Monadic Second Order Logic (Courcelle’s theorem)
[B. Courcelle 1990]

DN-logic
[B. Bergougnoux, J. Dreier and L. Jaffke 2022]

Locally Checkable Vertex Partitioning (LCVP) problems
[J.A. Telle 1994]

Introductory problems

k-coloring

Does there exist a function
c : V → {1, . . . , k} such that
c(v) ̸= c(u) ∀v ∈ V, u ∈ N(v)?

Minimum Dominating Set

Minimum size of a set D such
thatN [v]∩D ̸= ∅ for all v ∈ V ?

Maximum Independent Set

Maximum size of a set I such
that N(v)∩I = ∅ for all v ∈ I?

What do they have in common?

They are partitioning (coloring) problems where a solution can be verified locally for each vertex.

→ Locally checkable problems

Our framework (simplified)

Given a graph G and

Colors: a set of colors,

check(v, c): a check function (input: vertex v and coloring c of N [v], output: true or false),

w(v, c): a weight function (input: vertex v and coloring c of N [v], output: a weight),

an order of the weights

find the minimum weight of a coloring c such that

check(v, c|N [v]) = True ∀ v ∈ V (G).

Our framework (simplified)

Given a graph G and

Colors: a set of colors,

check(v, c): a check function (input: vertex v and coloring c of N [v], output: true or false),

w(v, c): a weight function (input: vertex v and coloring c of N [v], output: a weight),

an order of the weights

find the minimum weight of a coloring c such that

check(v, c|N [v]) = True ∀ v ∈ V (G).

Our framework (simplified)

Given a graph G and

Colors: a set of colors,

check(v, c): a check function (input: vertex v and coloring c of N [v], output: true or false),

w(v, c): a weight function (input: vertex v and coloring c of N [v], output: a weight),

an order of the weights

find the minimum weight of a coloring c such that

check(v, c|N [v]) = True ∀ v ∈ V (G).

Our framework (simplified)

Given a graph G and

Colors: a set of colors,

check(v, c): a check function (input: vertex v and coloring c of N [v], output: true or false),

w(v, c): a weight function (input: vertex v and coloring c of N [v], output: a weight),

an order of the weights

find the minimum weight of a coloring c such that

check(v, c|N [v]) = True ∀ v ∈ V (G).

Our framework (simplified)

Given a graph G and

Colors: a set of colors,

check(v, c): a check function (input: vertex v and coloring c of N [v], output: true or false),

w(v, c): a weight function (input: vertex v and coloring c of N [v], output: a weight),

an order of the weights

find the minimum weight of a coloring c such that

check(v, c|N [v]) = True ∀ v ∈ V (G).

Our framework (simplified)

Given a graph G and

Colors: a set of colors,

check(v, c): a check function (input: vertex v and coloring c of N [v], output: true or false),

w(v, c): a weight function (input: vertex v and coloring c of N [v], output: a weight),

an order of the weights

find the minimum weight of a coloring c such that

check(v, c|N [v]) = True ∀ v ∈ V (G).

Minimum Dominating Set:

Colors = {s, s}
w(v, c) = 1 if c(v) = s, and 0 otherwise

Order of weights: ≤
check(v, c) = (c(v) = s ∨ ∃u ∈ N(v). c(u) = s)

Our framework (simplified)

Given a graph G and

Colors: a set of colors,

check(v, c): a check function (input: vertex v and coloring c of N [v], output: true or false),

w(v, c): a weight function (input: vertex v and coloring c of N [v], output: a weight),

an order of the weights

find the minimum weight of a coloring c such that

check(v, c|N [v]) = True ∀ v ∈ V (G).

Goal: obtain efficient algorithms for different graph classes.

Our framework (simplified)

Given a graph G and

Colors: a set of colors,

check(v, c): a check function (input: vertex v and coloring c of N [v], output: true or false),

w(v, c): a weight function (input: vertex v and coloring c of N [v], output: a weight),

an order of the weights

find the minimum weight of a coloring c such that

check(v, c|N [v]) = True ∀ v ∈ V (G).

Goal: obtain efficient algorithms for different graph classes. → Under which conditions?

Our framework (simplified)

Given a graph G and

Colors: a set of colors,

check(v, c): a check function (input: vertex v and coloring c of N [v], output: true or false),

w(v, c): a weight function (input: vertex v and coloring c of N [v], output: a weight),

an order of the weights

find the minimum weight of a coloring c such that

check(v, c|N [v]) = True ∀ v ∈ V (G).

Goal: obtain efficient algorithms for different graph classes. → Under which conditions?

In particular, we focus on the parameterization by different width measures:

treewidth

clique-width

mim-width

Our framework (simplified)

Given a graph G and

Colors: a set of colors,

check(v, c): a check function (input: vertex v and coloring c of N [v], output: true or false),

w(v, c): a weight function (input: vertex v and coloring c of N [v], output: a weight),

an order of the weights

find the minimum weight of a coloring c such that

check(v, c|N [v]) = True ∀ v ∈ V (G).

Goal: obtain efficient algorithms for different graph classes. → Under which conditions?

In particular, we focus on the parameterization by different width measures:

treewidth → not today...

clique-width

mim-width

Some conditions on check and w

Let Colors = {a1, . . . , aq} be a set of colors.

A function f is color-counting if there exists f ′ such that

f(v, c) = f ′(v, c(v), |N c
a1
(v)|, . . . , |N c

aq
(v)|)

for all vertex v, coloring c of N [v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (⇒ existence of f ′(v, a, n1, . . . , nq))

Example: minimum dominating set
check(v, c) = (c(v) = s ∨ ∃u ∈ N(v). c(u) = s)

check′(v, a, ns, ns) = (a = s ∨ ns ≥ 1) → 1-stable

We say f is d-stable if it is color-counting and

f ′(v, a, n1, . . . , nq) = f ′(v, a,min(d, n1), . . . ,min(d, nq))

for all vertex v, color a, non-negative integers n1, . . . , nq.

Some conditions on check and w

Let Colors = {a1, . . . , aq} be a set of colors.

A function f is color-counting if there exists f ′ such that

f(v, c) = f ′(v, c(v), |N c
a1
(v)|, . . . , |N c

aq
(v)|)

for all vertex v, coloring c of N [v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (⇒ existence of f ′(v, a, n1, . . . , nq))

Example: minimum dominating set
check(v, c) = (c(v) = s ∨ ∃u ∈ N(v). c(u) = s)

check′(v, a, ns, ns) = (a = s ∨ ns ≥ 1) → 1-stable

We say f is d-stable if it is color-counting and

f ′(v, a, n1, . . . , nq) = f ′(v, a,min(d, n1), . . . ,min(d, nq))

for all vertex v, color a, non-negative integers n1, . . . , nq.

Some conditions on check and w

Let Colors = {a1, . . . , aq} be a set of colors.

A function f is color-counting if there exists f ′ such that

f(v, c) = f ′(v, c(v), |N c
a1
(v)|, . . . , |N c

aq
(v)|)

for all vertex v, coloring c of N [v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (⇒ existence of f ′(v, a, n1, . . . , nq))

Example: minimum dominating set
check(v, c) = (c(v) = s ∨ ∃u ∈ N(v). c(u) = s)

check′(v, a, ns, ns) = (a = s ∨ ns ≥ 1) → 1-stable

We say f is d-stable if it is color-counting and

f ′(v, a, n1, . . . , nq) = f ′(v, a,min(d, n1), . . . ,min(d, nq))

for all vertex v, color a, non-negative integers n1, . . . , nq.

Some conditions on check and w

Let Colors = {a1, . . . , aq} be a set of colors.

A function f is color-counting if there exists f ′ such that

f(v, c) = f ′(v, c(v), |N c
a1
(v)|, . . . , |N c

aq
(v)|)

for all vertex v, coloring c of N [v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (⇒ existence of f ′(v, a, n1, . . . , nq))

v

a b c

Example: minimum dominating set
check(v, c) = (c(v) = s ∨ ∃u ∈ N(v). c(u) = s)

check′(v, a, ns, ns) = (a = s ∨ ns ≥ 1) → 1-stable

We say f is d-stable if it is color-counting and

f ′(v, a, n1, . . . , nq) = f ′(v, a,min(d, n1), . . . ,min(d, nq))

for all vertex v, color a, non-negative integers n1, . . . , nq.

Some conditions on check and w

Let Colors = {a1, . . . , aq} be a set of colors.

A function f is color-counting if there exists f ′ such that

f(v, c) = f ′(v, c(v), |N c
a1
(v)|, . . . , |N c

aq
(v)|)

for all vertex v, coloring c of N [v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (⇒ existence of f ′(v, a, n1, . . . , nq))

v

a b c

v is blue, 2 red neighbors, 1 blue neighbor

Example: minimum dominating set
check(v, c) = (c(v) = s ∨ ∃u ∈ N(v). c(u) = s)

check′(v, a, ns, ns) = (a = s ∨ ns ≥ 1) → 1-stable

We say f is d-stable if it is color-counting and

f ′(v, a, n1, . . . , nq) = f ′(v, a,min(d, n1), . . . ,min(d, nq))

for all vertex v, color a, non-negative integers n1, . . . , nq.

Some conditions on check and w

Let Colors = {a1, . . . , aq} be a set of colors.

A function f is color-counting if there exists f ′ such that

f(v, c) = f ′(v, c(v), |N c
a1
(v)|, . . . , |N c

aq
(v)|)

for all vertex v, coloring c of N [v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (⇒ existence of f ′(v, a, n1, . . . , nq))

v

a b c

v is blue, 2 red neighbors, 1 blue neighbor

f ′(v,b, 2, 1)

Example: minimum dominating set
check(v, c) = (c(v) = s ∨ ∃u ∈ N(v). c(u) = s)

check′(v, a, ns, ns) = (a = s ∨ ns ≥ 1) → 1-stable

We say f is d-stable if it is color-counting and

f ′(v, a, n1, . . . , nq) = f ′(v, a,min(d, n1), . . . ,min(d, nq))

for all vertex v, color a, non-negative integers n1, . . . , nq.

Some conditions on check and w

Let Colors = {a1, . . . , aq} be a set of colors.

A function f is color-counting if there exists f ′ such that

f(v, c) = f ′(v, c(v), |N c
a1
(v)|, . . . , |N c

aq
(v)|)

for all vertex v, coloring c of N [v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (⇒ existence of f ′(v, a, n1, . . . , nq))

Example: minimum dominating set
check(v, c) = (c(v) = s ∨ ∃u ∈ N(v). c(u) = s)

check′(v, a, ns, ns) = (a = s ∨ ns ≥ 1) → 1-stable

We say f is d-stable if it is color-counting and

f ′(v, a, n1, . . . , nq) = f ′(v, a,min(d, n1), . . . ,min(d, nq))

for all vertex v, color a, non-negative integers n1, . . . , nq.

Some conditions on check and w

Let Colors = {a1, . . . , aq} be a set of colors.

A function f is color-counting if there exists f ′ such that

f(v, c) = f ′(v, c(v), |N c
a1
(v)|, . . . , |N c

aq
(v)|)

for all vertex v, coloring c of N [v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (⇒ existence of f ′(v, a, n1, . . . , nq))

Example: minimum dominating set
check(v, c) = (c(v) = s ∨ ∃u ∈ N(v). c(u) = s)
check′(v, a, ns, ns) = (a = s ∨ ns ≥ 1)

→ 1-stable

We say f is d-stable if it is color-counting and

f ′(v, a, n1, . . . , nq) = f ′(v, a,min(d, n1), . . . ,min(d, nq))

for all vertex v, color a, non-negative integers n1, . . . , nq.

Some conditions on check and w

Let Colors = {a1, . . . , aq} be a set of colors.

A function f is color-counting if there exists f ′ such that

f(v, c) = f ′(v, c(v), |N c
a1
(v)|, . . . , |N c

aq
(v)|)

for all vertex v, coloring c of N [v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (⇒ existence of f ′(v, a, n1, . . . , nq))

Example: minimum dominating set
check(v, c) = (c(v) = s ∨ ∃u ∈ N(v). c(u) = s)
check′(v, a, ns, ns) = (a = s ∨ ns ≥ 1)

→ 1-stable

We say f is d-stable if it is color-counting and

f ′(v, a, n1, . . . , nq) = f ′(v, a,min(d, n1), . . . ,min(d, nq))

for all vertex v, color a, non-negative integers n1, . . . , nq.

Some conditions on check and w

Let Colors = {a1, . . . , aq} be a set of colors.

A function f is color-counting if there exists f ′ such that

f(v, c) = f ′(v, c(v), |N c
a1
(v)|, . . . , |N c

aq
(v)|)

for all vertex v, coloring c of N [v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each
color (⇒ existence of f ′(v, a, n1, . . . , nq))

Example: minimum dominating set
check(v, c) = (c(v) = s ∨ ∃u ∈ N(v). c(u) = s)
check′(v, a, ns, ns) = (a = s ∨ ns ≥ 1) → 1-stable

We say f is d-stable if it is color-counting and

f ′(v, a, n1, . . . , nq) = f ′(v, a,min(d, n1), . . . ,min(d, nq))

for all vertex v, color a, non-negative integers n1, . . . , nq.

Complexity

If |Colors| is not a constant:

para-NP-hard clique-width (even for 1-stable check and w)

Precoloring Extension is NP-complete on graphs of clique-width ≤ 3.
[F. Bonomo, G. Durán and J. Marenco 2006]

If |Colors| is a constant:

check,w Clique-width Mim-width

Non color-counting para-NP-hard

Color-counting XP para-NP-hard

d-stable FPT XP

Complexity

If |Colors| is not a constant:

para-NP-hard clique-width (even for 1-stable check and w)

Precoloring Extension is NP-complete on graphs of clique-width ≤ 3.
[F. Bonomo, G. Durán and J. Marenco 2006]

If |Colors| is a constant:

check,w Clique-width Mim-width

Non color-counting para-NP-hard

Color-counting XP para-NP-hard

d-stable FPT XP

Complexity

If |Colors| is not a constant: para-NP-hard clique-width (even for 1-stable check and w)

Precoloring Extension is NP-complete on graphs of clique-width ≤ 3.
[F. Bonomo, G. Durán and J. Marenco 2006]

If |Colors| is a constant:

check,w Clique-width Mim-width

Non color-counting para-NP-hard

Color-counting XP para-NP-hard

d-stable FPT XP

Complexity

If |Colors| is not a constant: para-NP-hard clique-width (even for 1-stable check and w)

Precoloring Extension is NP-complete on graphs of clique-width ≤ 3.
[F. Bonomo, G. Durán and J. Marenco 2006]

If |Colors| is a constant:

check,w Clique-width Mim-width

Non color-counting para-NP-hard

Color-counting XP para-NP-hard

d-stable FPT XP

Complexity

If |Colors| is not a constant: para-NP-hard clique-width (even for 1-stable check and w)

Precoloring Extension is NP-complete on graphs of clique-width ≤ 3.
[F. Bonomo, G. Durán and J. Marenco 2006]

If |Colors| is a constant:

check,w Clique-width Mim-width

Non color-counting para-NP-hard

Color-counting XP para-NP-hard

d-stable FPT XP

We can reduce Minimum Dominating Set in general graphs to a locally checkable problem (with 2
colors) in complete graphs (clique-width ≤ 2).

Complexity

If |Colors| is not a constant: para-NP-hard clique-width (even for 1-stable check and w)

Precoloring Extension is NP-complete on graphs of clique-width ≤ 3.
[F. Bonomo, G. Durán and J. Marenco 2006]

If |Colors| is a constant:

check,w Clique-width Mim-width

Non color-counting para-NP-hard

Color-counting XP para-NP-hard

d-stable FPT XP

Standard dynamic programming algorithm using clique-width expressions.

Complexity

If |Colors| is not a constant: para-NP-hard clique-width (even for 1-stable check and w)

Precoloring Extension is NP-complete on graphs of clique-width ≤ 3.
[F. Bonomo, G. Durán and J. Marenco 2006]

If |Colors| is a constant:

check,w Clique-width Mim-width

Non color-counting para-NP-hard

Color-counting XP para-NP-hard

d-stable FPT XP

Max-Cut is color-counting with 2 colors, and W[1]-hard parameterized by clique-width.
[F.V. Fomin, P.A. Golovach, D. Lokshtanov and S. Saurabh 2014]

Complexity

If |Colors| is not a constant: para-NP-hard clique-width (even for 1-stable check and w)

Precoloring Extension is NP-complete on graphs of clique-width ≤ 3.
[F. Bonomo, G. Durán and J. Marenco 2006]

If |Colors| is a constant:

check,w Clique-width Mim-width

Non color-counting para-NP-hard

Color-counting XP para-NP-hard

d-stable FPT XP

Dynamic programming algorithm based on [B.M. Bui-Xuan, J.A. Telle and M. Vatshelle 2013].

Alternative: modeling with DN-logic.

Complexity

If |Colors| is not a constant: para-NP-hard clique-width (even for 1-stable check and w)

Precoloring Extension is NP-complete on graphs of clique-width ≤ 3.
[F. Bonomo, G. Durán and J. Marenco 2006]

If |Colors| is a constant:

check,w Clique-width Mim-width

Non color-counting para-NP-hard

Color-counting XP para-NP-hard

d-stable FPT XP

Minimum Dominating Set is 1-stable with 2 colors, and W[1]-hard parameterized by mim-width.
[F.V. Fomin, P.A. Golovach, J.F. Raymond 2018]

Complexity

If |Colors| is not a constant: para-NP-hard clique-width (even for 1-stable check and w)

Precoloring Extension is NP-complete on graphs of clique-width ≤ 3.
[F. Bonomo, G. Durán and J. Marenco 2006]

If |Colors| is a constant:

check,w Clique-width Mim-width

Non color-counting para-NP-hard

Color-counting XP para-NP-hard

d-stable FPT XP

Max-Cut is color-counting with 2 colors, and NP-complete on interval graphs (mim-width ≤ 1).
[R. Adhikary, K. Bose, S. Mukherjee, B. Roy 2020]

Adding global properties

Treewidth: size, connectivity, acyclicity

Clique-width: size, connectivity

Mim-width: size, connectivity and any other expressible in DN-logic

Applications

Using this framework we proved that:

Problem clique-width mim-width

[k]-Roman domination (linear∗) FPT XP

Conflict-free k-coloring (linear∗) FPT XP
Bhyravarapu, Hartmann, Kalyanasundaram and Vinod Reddy, 2021: similar results for clique-width

b-coloring with fixed number of colors (linear∗) FPT XP
Jaffke, Lima and Lokshtanov, 2020: XP parameterized by clique-width with unfixed number of colors

k-community XP —

and similar results for some variations of these problems.

(*) if a clique-width expression is given as input.

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f : V → {0, . . . , k + 1} such that

f(v) +
∑

u∈N(v)
f(u)≥1

(f(u)− 1) ≥ k ∀ v ∈ V .

Order of weights: ≤

→ FPT clique-width
→ XP mim-width

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f : V → {0, . . . , k + 1} such that

f(v) +
∑

u∈N(v)
f(u)≥1

(f(u)− 1) ≥ k ∀ v ∈ V .

Colors = {0, . . . , k + 1}
w(v, c) = c(v)

Order of weights: ≤

check(v, c) =

c(v) +
∑

u∈N(v)
c(u)≥1

(c(u)− 1) ≥ k



→ FPT clique-width
→ XP mim-width

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f : V → {0, . . . , k + 1} such that

f(v) +
∑

u∈N(v)
f(u)≥1

(f(u)− 1) ≥ k ∀ v ∈ V .

Colors= {0, . . . , k + 1}
w(v, c) = c(v)

Order of weights: ≤

check(v, c) =

c(v) +
∑

u∈N(v)
c(u)≥1

(c(u)− 1) ≥ k



→ FPT clique-width
→ XP mim-width

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f : V → {0, . . . , k + 1} such that

f(v) +
∑

u∈N(v)
f(u)≥1

(f(u)− 1) ≥ k ∀ v ∈ V .

Colors= {0, . . . , k + 1}
w(v, c) = c(v)

Order of weights: ≤

check(v, c) =

c(v) +
∑

u∈N(v)
c(u)≥1

(c(u)− 1) ≥ k


check and w are color-counting

→ FPT clique-width
→ XP mim-width

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f : V → {0, . . . , k + 1} such that

f(v) +
∑

u∈N(v)
f(u)≥1

(f(u)− 1) ≥ k ∀ v ∈ V .

Colors= {0, . . . , k + 1}
w′(v, i, n0, . . . , nk+1) = i

Order of weights: ≤

check(v, c) =

c(v) +
∑

u∈N(v)
c(u)≥1

(c(u)− 1) ≥ k


check and w are color-counting

→ FPT clique-width
→ XP mim-width

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f : V → {0, . . . , k + 1} such that

f(v) +
∑

u∈N(v)
f(u)≥1

(f(u)− 1) ≥ k ∀ v ∈ V .

Colors= {0, . . . , k + 1}
w′(v, i, n0, . . . , nk+1) = i

Order of weights: ≤

check′(v, i, n0, . . . , nk+1) =

i+

k+1∑
j=1

(j − 1) · nj ≥ k


check and w are color-counting

→ FPT clique-width
→ XP mim-width

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f : V → {0, . . . , k + 1} such that

f(v) +
∑

u∈N(v)
f(u)≥1

(f(u)− 1) ≥ k ∀ v ∈ V .

Colors= {0, . . . , k + 1}
w′(v, i, n0, . . . , nk+1) = i

Order of weights: ≤

check′(v, i, n0, . . . , nk+1) =

i+

k+1∑
j=1

(j − 1) · nj ≥ k


check and w are k-stable

→ FPT clique-width
→ XP mim-width

Applications: [k]-Roman domination

Given a graph G, compute the minimum weight of a function f : V → {0, . . . , k + 1} such that

f(v) +
∑

u∈N(v)
f(u)≥1

(f(u)− 1) ≥ k ∀ v ∈ V .

Colors= {0, . . . , k + 1}
w′(v, i, n0, . . . , nk+1) = i

Order of weights: ≤

check′(v, i, n0, . . . , nk+1) =

i+

k+1∑
j=1

(j − 1) · nj ≥ k


check and w are k-stable

→ FPT clique-width
→ XP mim-width

Applications: k-community

A community structure of a graph G is a partition {C1, . . . , Ck}, with k ≥ 2, of V such that for each
i ∈ {1, . . . , k} we have |Ci| ≥ 2 and

|N(v) ∩ Ci|
|Ci| − 1

≥ |N(v) ∩ Cj |
|Cj |

∀v ∈ Ci, ∀j ∈ {1, . . . , k}.

Applications: k-community

A community structure of a graph G is a partition {C1, . . . , Ck}, with k ≥ 2, of V such that for each
i ∈ {1, . . . , k} we have |Ci| ≥ 2 and

|N(v) ∩ Ci|
|Ci| − 1

≥ |N(v) ∩ Cj |
|Cj |

∀v ∈ Ci, ∀j ∈ {1, . . . , k}.

k-community problem

Decide if a given graph has a community structure with k communities.

Applications: k-community

A community structure of a graph G is a partition {C1, . . . , Ck}, with k ≥ 2, of V such that for each
i ∈ {1, . . . , k} we have |Ci| ≥ 2 and

|N(v) ∩ Ci|
|Ci|− 1

≥ |N(v) ∩ Cj |
|Cj|

∀v ∈ Ci, ∀j ∈ {1, . . . , k}.

k-community problem

Decide if a given graph has a community structure with k communities.

→ Not entirely locally checkable...

Applications: k-community

A community structure of a graph G is a partition {C1, . . . , Ck}, with k ≥ 2, of V such that for each
i ∈ {1, . . . , k} we have |Ci| ≥ 2 and

|N(v) ∩ Ci|
|Ci| − 1

≥ |N(v) ∩ Cj |
|Cj |

∀v ∈ Ci, ∀j ∈ {1, . . . , k}.

Specified size k-community problem

Given a graphG and k integers s1, . . . , sk ≥ 2, determine ifG admits a community structure {C1, . . . , Ck}
such that |Ci| = si ∀i ∈ {1, . . . , k}.

Applications: k-community

A community structure of a graph G is a partition {C1, . . . , Ck}, with k ≥ 2, of V such that for each
i ∈ {1, . . . , k} we have |Ci| ≥ 2 and

|N(v) ∩ Ci|
|Ci| − 1

≥ |N(v) ∩ Cj |
|Cj |

∀v ∈ Ci, ∀j ∈ {1, . . . , k}.

Specified size k-community problem

Given a graphG and k integers s1, . . . , sk ≥ 2, determine ifG admits a community structure {C1, . . . , Ck}
such that |Ci| = si ∀i ∈ {1, . . . , k}.

Colors = {1, . . . , k}

check(v, c) =

(
∀j ∈ {1, . . . , k}.

|N(v) ∩ Cc(v)|
sc(v) − 1

≥ |N(v) ∩ Cj |
sj

)
for each color i, the size of the color class of i has to be si.

Applications: k-community

A community structure of a graph G is a partition {C1, . . . , Ck}, with k ≥ 2, of V such that for each
i ∈ {1, . . . , k} we have |Ci| ≥ 2 and

|N(v) ∩ Ci|
|Ci| − 1

≥ |N(v) ∩ Cj |
|Cj |

∀v ∈ Ci, ∀j ∈ {1, . . . , k}.

Specified size k-community problem

Given a graphG and k integers s1, . . . , sk ≥ 2, determine ifG admits a community structure {C1, . . . , Ck}
such that |Ci| = si ∀i ∈ {1, . . . , k}.

Colors = {1, . . . , k}

check′(v, i, n1, . . . , nk) =

(
∀j ∈ {1, . . . , k}. ni

si − 1
≥ nj

sj

)
for each color i, the size of the color class of i has to be si.

Applications: k-community

A community structure of a graph G is a partition {C1, . . . , Ck}, with k ≥ 2, of V such that for each
i ∈ {1, . . . , k} we have |Ci| ≥ 2 and

|N(v) ∩ Ci|
|Ci| − 1

≥ |N(v) ∩ Cj |
|Cj |

∀v ∈ Ci, ∀j ∈ {1, . . . , k}.

Specified size k-community problem

Given a graphG and k integers s1, . . . , sk ≥ 2, determine ifG admits a community structure {C1, . . . , Ck}
such that |Ci| = si ∀i ∈ {1, . . . , k}.

Colors = {1, . . . , k}

check′(v, i, n1, . . . , nk) =

(
∀j ∈ {1, . . . , k}. ni

si − 1
≥ nj

sj

)
for each color i, the size of the color class of i has to be si.

→ XP clique-width

Applications: k-community

A community structure of a graph G is a partition {C1, . . . , Ck}, with k ≥ 2, of V such that for each
i ∈ {1, . . . , k} we have |Ci| ≥ 2 and

|N(v) ∩ Ci|
|Ci| − 1

≥ |N(v) ∩ Cj |
|Cj |

∀v ∈ Ci, ∀j ∈ {1, . . . , k}.

k-community problem

Decide if a given graph has a community structure with k communities.

Applications: k-community

A community structure of a graph G is a partition {C1, . . . , Ck}, with k ≥ 2, of V such that for each
i ∈ {1, . . . , k} we have |Ci| ≥ 2 and

|N(v) ∩ Ci|
|Ci| − 1

≥ |N(v) ∩ Cj |
|Cj |

∀v ∈ Ci, ∀j ∈ {1, . . . , k}.

k-community problem

Decide if a given graph has a community structure with k communities.

For all s1, . . . , sk such that
k∑

i=1

si = |V | and si ≥ 2 ∀i ∈ {1, . . . , k}, solve the corresponding specified

size k-community problem.

Applications: k-community

A community structure of a graph G is a partition {C1, . . . , Ck}, with k ≥ 2, of V such that for each
i ∈ {1, . . . , k} we have |Ci| ≥ 2 and

|N(v) ∩ Ci|
|Ci| − 1

≥ |N(v) ∩ Cj |
|Cj |

∀v ∈ Ci, ∀j ∈ {1, . . . , k}.

k-community problem

Decide if a given graph has a community structure with k communities.

For all s1, . . . , sk such that
k∑

i=1

si = |V | and si ≥ 2 ∀i ∈ {1, . . . , k}, solve the corresponding specified

size k-community problem.

→ XP clique-width

Our framework (complete formulation)

r-locally checkable problems

Given a graph G and

Colors: a set of colors,

Lv: for every vertex v, a subset of Colors of allowed colors,

ℓe: for every edge e, a label,

(Weights,⪯,⊕): a weight set,

w(v, c): a weight function (input: vertex v and coloring c of Nr[v], output: a weight),

check(v, c): a check function (input: vertex v and coloring c of Nr[v], output: true or false)

find the minimum weight of a coloring c such that check(v, c|Nr[v]) = True ∀ v ∈ V (G).

Width |Colors| ℓe check,w Global properties

tw Polynomial Yes Polynomial partial neighborhood system Size, connectivity, acyclicity

cw Constant or log No Color-counting Size, connectivity

mimw Constant No d-stable
Size, connectivity and any
other expressible in DN-logic

	Introduction and preliminaries
	Main results
	Applications
	Conclusion

