Locally checkable problems parameterized by treewidth, clique-width and mim-width

Carolina Lucía Gonzalez¹

¹CONICET - Universidad de Buenos Aires, ICC, Buenos Aires, Argentina ²University of Fribourg, Department of Informatics, Fribourg, Switzerland

Joint work with:

- Flavia Bonomo-Braberman¹ (treewidth)
- Narmina Baghirova², Bernard Ries² and David Schindl² (clique-width)
- Felix Mann² (mim-width)

Minimum Dominating Set

Maximum Independent Set

Does there exist a function $c: V \rightarrow \{1, \dots, k\}$ such that $c(v) \neq c(u) \ \forall v \in V, u \in N(v)$?

Minimum size of a set D such that $N[v] \cap D \neq \emptyset$ for all $v \in V$?

Maximum size of a set I such that $N(v) \cap I = \emptyset$ for all $v \in I$?

Minimum Dominating Set

Maximum Independent Set

Does there exist a function $c: V \rightarrow \{1, \ldots, k\}$ such that $c(v) \neq c(u) \ \forall v \in V, u \in N(v)$?

 $\begin{array}{l} \mbox{Minimum size of a set } D \mbox{ such} \\ \mbox{that } N[v] \cap D \neq \emptyset \mbox{ for all } v \in V? \end{array}$

Maximum size of a set I such that $N(v) \cap I = \emptyset$ for all $v \in I$?

What do they have in common?

Minimum Dominating Set

Maximum Independent Set

Does there exist a function $c: V \rightarrow \{1, \dots, k\}$ such that $c(v) \neq c(u) \ \forall v \in V, u \in N(v)$?

Minimum size of a set D such that $N[v] \cap D \neq \emptyset$ for all $v \in V$?

Maximum size of a set I such that $N(v) \cap I = \emptyset$ for all $v \in I$?

What do they have in common?

They are partitioning (coloring) problems where a solution can be verified locally for each vertex.

Minimum Dominating Set

Maximum Independent Set

Does there exist a function $c: V \rightarrow \{1, \dots, k\}$ such that $c(v) \neq c(u) \ \forall v \in V, u \in N(v)$?

 $\begin{array}{l} \mbox{Minimum size of a set D such} \\ \mbox{that $N[v] \cap D \neq \emptyset$ for all $v \in V$?} \end{array} \end{array}$

Maximum size of a set I such that $N(v) \cap I = \emptyset$ for all $v \in I$?

What do they have in common?

They are partitioning (coloring) problems where a solution can be verified locally for each vertex. \rightarrow Locally checkable problems

Related work

• Monadic Second Order Logic (Courcelle's theorem) [B. Courcelle 1990]

- DN-logic
 - [B. Bergougnoux, J. Dreier and L. Jaffke 2022]
- Locally Checkable Vertex Partitioning (LCVP) problems [J.A. Telle 1994]

Minimum Dominating Set

Maximum Independent Set

Does there exist a function $c: V \rightarrow \{1, \dots, k\}$ such that $c(v) \neq c(u) \ \forall v \in V, u \in N(v)$?

 $\begin{array}{l} \mbox{Minimum size of a set D such} \\ \mbox{that $N[v] \cap D \neq \emptyset$ for all $v \in V$?} \end{array} \end{array}$

Maximum size of a set I such that $N(v) \cap I = \emptyset$ for all $v \in I$?

What do they have in common?

They are partitioning (coloring) problems where a solution can be verified locally for each vertex. \rightarrow Locally checkable problems

Given a graph ${\boldsymbol{G}}$ and

• COLORS: a set of colors,

Given a graph ${\boldsymbol{G}}$ and

- COLORS: a set of colors,
- check(v, c): a check function (input: vertex v and coloring c of N[v], output: true or false),

Given a graph ${\boldsymbol{G}}$ and

- COLORS: a set of colors,
- check(v, c): a check function (input: vertex v and coloring c of N[v], output: true or false),
- $\mathbf{w}(v, c)$: a weight function (input: vertex v and coloring c of N[v], output: a weight),

Given a graph G and

- COLORS: a set of colors,
- check(v, c): a check function (input: vertex v and coloring c of N[v], output: true or false),
- $\mathbf{w}(\boldsymbol{v}, \boldsymbol{c})$: a weight function (input: vertex v and coloring c of N[v], output: a weight),
- an order of the weights

Given a graph ${\boldsymbol{G}}$ and

- COLORS: a set of colors,
- check(v, c): a check function (input: vertex v and coloring c of N[v], output: true or false),
- $\mathbf{w}(\boldsymbol{v}, \boldsymbol{c})$: a weight function (input: vertex v and coloring c of N[v], output: a weight),
- an order of the weights

find the minimum weight of a coloring c such that

 $check(v, c|_{N[v]}) = TRUE \quad \forall v \in V(G).$

Given a graph ${\boldsymbol{G}}$ and

- COLORS: a set of colors,
- check(v, c): a check function (input: vertex v and coloring c of N[v], output: true or false),
- $\mathbf{w}(\mathbf{v}, \mathbf{c})$: a weight function (input: vertex v and coloring c of N[v], output: a weight),
- an order of the weights

find the minimum weight of a coloring c such that

 $check(v, c|_{N[v]}) = TRUE \quad \forall v \in V(G).$

Minimum Dominating Set:

COLORS = $\{\mathbf{s}, \overline{\mathbf{s}}\}$ W(v, c) = 1 if $c(v) = \mathbf{s}$, and 0 otherwise Order of weights: \leq $check(v, c) = (c(v) = \mathbf{s} \lor \exists u \in N(v). c(u) = \mathbf{s})$

Given a graph ${\boldsymbol{G}}$ and

- COLORS: a set of colors,
- check(v, c): a check function (input: vertex v and coloring c of N[v], output: true or false),
- $\mathbf{w}(\boldsymbol{v}, \boldsymbol{c})$: a weight function (input: vertex v and coloring c of N[v], output: a weight),
- an order of the weights

find the minimum weight of a coloring \boldsymbol{c} such that

 $check(v, c|_{N[v]}) = TRUE \quad \forall v \in V(G).$

Goal: obtain efficient algorithms for different graph classes.

Given a graph ${\boldsymbol{G}}$ and

- COLORS: a set of colors,
- check(v, c): a check function (input: vertex v and coloring c of N[v], output: true or false),
- $\mathbf{w}(v, c)$: a weight function (input: vertex v and coloring c of N[v], output: a weight),
- an order of the weights

find the minimum weight of a coloring c such that

 $check(v, c|_{N[v]}) = \text{TRUE} \quad \forall v \in V(G).$

Goal: obtain efficient algorithms for different graph classes. \rightarrow Under which conditions?

Given a graph ${\boldsymbol{G}}$ and

- COLORS: a set of colors,
- check(v, c): a check function (input: vertex v and coloring c of N[v], output: true or false),
- $\mathbf{w}(\mathbf{v}, \mathbf{c})$: a weight function (input: vertex v and coloring c of N[v], output: a weight),
- an order of the weights

find the minimum weight of a coloring \boldsymbol{c} such that

 $check(v, c|_{N[v]}) = TRUE \quad \forall v \in V(G).$

Goal: obtain efficient algorithms for different graph classes. \rightarrow Under which conditions?

In particular, we focus on the parameterization by different width measures:

- treewidth
- clique-width
- mim-width

Given a graph ${\boldsymbol{G}}$ and

- COLORS: a set of colors,
- check(v, c): a check function (input: vertex v and coloring c of N[v], output: true or false),
- $\mathbf{w}(\mathbf{v}, \mathbf{c})$: a weight function (input: vertex v and coloring c of N[v], output: a weight),
- an order of the weights

find the minimum weight of a coloring c such that

 $check(v, c|_{N[v]}) = \text{TRUE} \quad \forall v \in V(G).$

Goal: obtain efficient algorithms for different graph classes. \rightarrow Under which conditions?

In particular, we focus on the parameterization by different width measures:

- treewidth \rightarrow not today...
- clique-width
- mim-width

Let $COLORS = \{a_1, \ldots, a_q\}$ be a set of colors.

Let $COLORS = \{a_1, \ldots, a_q\}$ be a set of colors.

A function f is $\operatorname{{\bf color-counting}}$ if there exists f' such that

$$(v,c) = f'(v,c(v), |N_{a_1}^c(v)|, \dots, |N_{a_q}^c(v)|)$$

for all vertex v, coloring c of N[v].

Let $COLORS = \{a_1, \ldots, a_q\}$ be a set of colors.

A function f is **color-counting** if there exists f' such that

$$(v,c) = f'(v,c(v),|N_{a_1}^c(v)|,\ldots,|N_{a_q}^c(v)|)$$

for all vertex v, coloring c of N[v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each color (\Rightarrow existence of $f'(v, a, n_1, \ldots, n_q)$)

Let $COLORS = \{a_1, \ldots, a_q\}$ be a set of colors.

A function f is **color-counting** if there exists f' such that

$$f(v,c) = f'(v,c(v), |N_{a_1}^c(v)|, \dots, |N_{a_q}^c(v)|)$$

for all vertex v, coloring c of N[v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each color (\Rightarrow existence of $f'(v, a, n_1, \ldots, n_q)$)

Let $COLORS = \{a_1, \ldots, a_q\}$ be a set of colors.

A function f is **color-counting** if there exists f' such that

$$f(v,c) = f'(v,c(v), |N_{a_1}^c(v)|, \dots, |N_{a_q}^c(v)|)$$

for all vertex v, coloring c of N[v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each color (\Rightarrow existence of $f'(v, a, n_1, \ldots, n_q)$)

v is blue, 2 red neighbors, 1 blue neighbor

Let $COLORS = \{a_1, \ldots, a_q\}$ be a set of colors.

A function f is **color-counting** if there exists f' such that

$$f(v,c) = f'(v,c(v), |N_{a_1}^c(v)|, \dots, |N_{a_q}^c(v)|)$$

for all vertex v, coloring c of N[v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each color (\Rightarrow existence of $f'(v, a, n_1, \ldots, n_q)$)

v is blue, 2 red neighbors, 1 blue neighbor $f'(v, \mathbf{B}, \mathbf{2}, 1)$

Let $COLORS = \{a_1, \ldots, a_q\}$ be a set of colors.

A function f is **color-counting** if there exists f' such that

$$f'(v,c) = f'(v,c(v), |N_{a_1}^c(v)|, \dots, |N_{a_q}^c(v)|)$$

for all vertex v, coloring c of N[v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each color (\Rightarrow existence of $f'(v, a, n_1, \dots, n_q)$)

Example: minimum dominating set $check(v, c) = (c(v) = \mathbf{s} \lor \exists u \in N(v). c(u) = \mathbf{s})$

Let $COLORS = \{a_1, \ldots, a_q\}$ be a set of colors.

A function f is **color-counting** if there exists f' such that

$$f'(v,c) = f'(v,c(v), |N_{a_1}^c(v)|, \dots, |N_{a_q}^c(v)|)$$

for all vertex v, coloring c of N[v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each color (\Rightarrow existence of $f'(v, a, n_1, \ldots, n_q)$)

Example: minimum dominating set $check(v,c) = (c(v) = \mathbf{s} \lor \exists u \in N(v). c(u) = \mathbf{s})$ $check'(v, a, n_{\mathbf{S}}, n_{\overline{\mathbf{s}}}) = (a = \mathbf{s} \lor n_{\mathbf{S}} \ge 1)$

Let $COLORS = \{a_1, \ldots, a_q\}$ be a set of colors.

A function f is **color-counting** if there exists f' such that

$$f'(v,c) = f'(v,c(v), |N_{a_1}^c(v)|, \dots, |N_{a_q}^c(v)|)$$

for all vertex v, coloring c of N[v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each color (\Rightarrow existence of $f'(v, a, n_1, \ldots, n_q)$)

Example: minimum dominating set $check(v,c) = (c(v) = \mathbf{s} \lor \exists u \in N(v). c(u) = \mathbf{s})$ $check'(v, a, n_{\mathbf{S}}, n_{\overline{\mathbf{s}}}) = (a = \mathbf{s} \lor n_{\mathbf{S}} \ge 1)$

We say f is *d*-stable if it is color-counting and

$$f'(v, a, n_1, \dots, n_q) = f'(v, a, \min(d, n_1), \dots, \min(d, n_q))$$

for all vertex v, color a, non-negative integers n_1, \ldots, n_q .

Let $COLORS = \{a_1, \ldots, a_q\}$ be a set of colors.

A function f is **color-counting** if there exists f' such that

$$f'(v,c) = f'(v,c(v), |N_{a_1}^c(v)|, \dots, |N_{a_q}^c(v)|)$$

for all vertex v, coloring c of N[v].

Informally: ...if f only depends on the vertex, the color it receives and the number of neighbors of each color (\Rightarrow existence of $f'(v, a, n_1, \ldots, n_q)$)

Example: minimum dominating set $check(v,c) = (c(v) = \mathbf{s} \lor \exists u \in N(v). c(u) = \mathbf{s})$ $check'(v, a, n_{\mathbf{S}}, n_{\overline{\mathbf{S}}}) = (a = \mathbf{s} \lor n_{\mathbf{S}} \ge 1) \rightarrow \mathbf{1}$ -stable

We say f is *d*-stable if it is color-counting and

$$f'(v, a, n_1, \dots, n_q) = f'(v, a, \min(d, n_1), \dots, \min(d, n_q))$$

for all vertex v, color a, non-negative integers n_1, \ldots, n_q .

• If |COLORS| is not a constant:

• If |COLORS| is not a constant:

Precoloring Extension is NP-complete on graphs of clique-width ≤ 3 .

[F. Bonomo, G. Durán and J. Marenco 2006]

• If |COLORS| is not a constant: para-NP-hard clique-width (even for 1-stable *check* and W)

Precoloring Extension is **NP-complete** on graphs of clique-width ≤ 3 .

[F. Bonomo, G. Durán and J. Marenco 2006]

• If |COLORS| is not a constant: para-NP-hard clique-width (even for 1-stable *check* and W)

• If |COLORS| is a constant:

check, w	Clique-width	Mim-width
Non color-counting	para-NP-hard	
Color-counting	XP	para-NP-hard
<i>d</i> -stable	FPT	XP

• If |COLORS| is not a constant: para-NP-hard clique-width (even for 1-stable *check* and W)

• If |COLORS| is a constant:

check, w	Clique-width	Mim-width
Non color-counting	para-NP-hard	
Color-counting	XP	para-NP-hard
d-stable	FPT	XP

We can reduce Minimum Dominating Set in general graphs to a locally checkable problem (with 2 colors) in complete graphs (clique-width ≤ 2).

• If |COLORS| is not a constant: para-NP-hard clique-width (even for 1-stable *check* and W)

• If |COLORS| is a constant:

check, W	Clique-width	Mim-width
Non color-counting	para-NP-hard	
Color-counting	ХР	para-NP-hard
d-stable	FPT	XP

Standard dynamic programming algorithm using clique-width expressions.

• If |COLORS| is not a constant: para-NP-hard clique-width (even for 1-stable *check* and W)

• If |COLORS| is a constant:

check, W	Clique-width	Mim-width
Non color-counting	para-NP-hard	
Color-counting	ХР	para-NP-hard
d-stable	FPT	XP

Max-Cut is color-counting with 2 colors, and W[1]-hard parameterized by clique-width.

[F.V. Fomin, P.A. Golovach, D. Lokshtanov and S. Saurabh 2014]

• If |COLORS| is not a constant: para-NP-hard clique-width (even for 1-stable *check* and W)

• If |COLORS| is a constant:

check, W	Clique-width	Mim-width
Non color-counting	para-NP-hard	
Color-counting	XP	para-NP-hard
d-stable	FPT	XP

Dynamic programming algorithm based on [B.M. Bui-Xuan, J.A. Telle and M. Vatshelle 2013]. Alternative: modeling with DN-logic.

• If |COLORS| is not a constant: para-NP-hard clique-width (even for 1-stable *check* and W)

• If |COLORS| is a constant:

check, w	Clique-width	Mim-width
Non color-counting	para-NP-hard	
Color-counting	XP	para-NP-hard
d-stable	FPT	ХР

Minimum Dominating Set is 1-stable with 2 colors, and W[1]-hard parameterized by mim-width.

[F.V. Fomin, P.A. Golovach, J.F. Raymond 2018]

Complexity

• If |COLORS| is not a constant: para-NP-hard clique-width (even for 1-stable *check* and W)

• If |COLORS| is a constant:

check, W	Clique-width	Mim-width	
Non color-counting	para-NP-hard		
Color-counting	ХР	para-NP-hard	
d-stable	FPT	XP	

Max-Cut is color-counting with 2 colors, and **NP-complete** on interval graphs (mim-width ≤ 1). [R. Adhikary, K. Bose, S. Mukherjee, B. Roy 2020]

Adding global properties

• Treewidth: size, connectivity, acyclicity

• Clique-width: size, connectivity

• Mim-width: size, connectivity and any other expressible in DN-logic

Applications

Using this framework we proved that:

Problem	clique-width	mim-width
[k]-Roman domination	$(linear^*)$ FPT	XP
Conflict-free <i>k</i> -coloring Bhyravarapu, Hartmann, Kalyanasundaram and Vinod Red	(linear*) FPT Idy, 2021: similar results for cli	XP que-width
b-coloring with fixed number of colors Jaffke, Lima and Lokshtanov, 2020: XP parameterized by	(linear*) FPT clique-width with unfixed num	XP ber of colors
<i>k</i> -community	ХР	_

and similar results for some variations of these problems.

(*) if a clique-width expression is given as input.

Given a graph G, compute the minimum weight of a function $f \colon V \to \{0, \dots, k+1\}$ such that

$$f(v) + \sum_{\substack{u \in N(v) \\ f(u) \ge 1}} (f(u) - 1) \ge k \quad \forall \ v \in V.$$

Given a graph G, compute the minimum weight of a function $f \colon V \to \{0, \dots, k+1\}$ such that

$$f(v) + \sum_{\substack{u \in N(v) \\ f(u) \ge 1}} (f(u) - 1) \ge k \quad \forall v \in V.$$

- Colors = $\{0, ..., k+1\}$
- W(v,c) = c(v)
- \bullet Order of weights: \leq

•
$$check(v,c) = \left(c(v) + \sum_{\substack{u \in N(v) \\ c(u) \ge 1}} (c(u) - 1) \ge k\right)$$

Given a graph G, compute the minimum weight of a function $f \colon V \to \{0, \dots, k+1\}$ such that

$$f(v) + \sum_{\substack{u \in N(v) \\ f(u) \ge 1}} (f(u) - 1) \ge k \quad \forall v \in V.$$

- Colors= $\{0, \ldots, k+1\}$
- $\mathbf{W}(v,c) = c(v)$
- \bullet Order of weights: \leq

•
$$check(v,c) = \left(c(v) + \sum_{\substack{u \in N(v) \\ c(u) \ge 1}} (c(u) - 1) \ge k\right)$$

Given a graph G, compute the minimum weight of a function $f \colon V \to \{0, \dots, k+1\}$ such that

$$f(v) + \sum_{\substack{u \in N(v) \\ f(u) \ge 1}} (f(u) - 1) \ge k \quad \forall v \in V.$$

- Colors= $\{0, \ldots, k+1\}$
- $\bullet \ \mathrm{W}(v,c) = c(v)$
- \bullet Order of weights: \leq

•
$$check(v,c) = \left(c(v) + \sum_{\substack{u \in N(v) \\ c(u) \ge 1}} (c(u) - 1) \ge k\right)$$

 $check \ {\rm and} \ {\rm w} \ {\rm are} \ {\rm color-counting}$

Given a graph G, compute the minimum weight of a function $f \colon V \to \{0, \dots, k+1\}$ such that

$$f(v) + \sum_{\substack{u \in N(v) \\ f(u) \ge 1}} (f(u) - 1) \ge k \quad \forall v \in V.$$

- Colors= $\{0, \ldots, k+1\}$
- $W'(v, i, n_0, \dots, n_{k+1}) = i$
- $\bullet~$ Order of weights: $\leq~$

•
$$check(v,c) = \left(c(v) + \sum_{\substack{u \in N(v) \\ c(u) \ge 1}} (c(u) - 1) \ge k\right)$$

 $check \ {\rm and} \ w$ are color-counting

Given a graph G, compute the minimum weight of a function $f \colon V \to \{0, \dots, k+1\}$ such that

$$f(v) + \sum_{\substack{u \in N(v) \\ f(u) \ge 1}} (f(u) - 1) \ge k \quad \forall v \in V.$$

- Colors= $\{0, \ldots, k+1\}$
- $W'(v, i, n_0, \dots, n_{k+1}) = i$
- $\bullet~$ Order of weights: $\leq~$

•
$$check'(v, i, n_0, \dots, n_{k+1}) = \left(i + \sum_{j=1}^{k+1} (j-1) \cdot n_j \ge k\right)$$

 $check \ {\rm and} \ w$ are color-counting

Given a graph G, compute the minimum weight of a function $f \colon V \to \{0, \dots, k+1\}$ such that

$$f(v) + \sum_{\substack{u \in N(v) \\ f(u) \ge 1}} (f(u) - 1) \ge k \quad \forall v \in V.$$

- Colors= $\{0, \ldots, k+1\}$
- $W'(v, i, n_0, ..., n_{k+1}) = i$
- $\bullet~$ Order of weights: $\leq~$

•
$$check'(v, i, n_0, \dots, n_{k+1}) = \left(i + \sum_{j=1}^{k+1} (j-1) \cdot n_j \ge k\right)$$

check and w are k-stable

Given a graph G, compute the minimum weight of a function $f \colon V \to \{0, \dots, k+1\}$ such that

$$f(v) + \sum_{\substack{u \in N(v) \\ f(u) \ge 1}} (f(u) - 1) \ge k \quad \forall v \in V.$$

- Colors= $\{0, \ldots, k+1\}$
- $W'(v, i, n_0, ..., n_{k+1}) = i$
- $\bullet~$ Order of weights: \leq

•
$$check'(v, i, n_0, \dots, n_{k+1}) = \left(i + \sum_{j=1}^{k+1} (j-1) \cdot n_j \ge k\right)$$

check and w are k-stable

- \rightarrow FPT clique-width
- \rightarrow XP mim-width

A community structure of a graph G is a partition $\{C_1, \ldots, C_k\}$, with $k \ge 2$, of V such that for each $i \in \{1, \ldots, k\}$ we have $|C_i| \ge 2$ and

$$\frac{|N(v) \cap C_i|}{|C_i| - 1} \ge \frac{|N(v) \cap C_j|}{|C_j|} \quad \forall v \in C_i, \, \forall j \in \{1, \dots, k\}.$$

A community structure of a graph G is a partition $\{C_1, \ldots, C_k\}$, with $k \ge 2$, of V such that for each $i \in \{1, \ldots, k\}$ we have $|C_i| \ge 2$ and

$$\frac{N(v) \cap C_i}{|C_i| - 1} \ge \frac{|N(v) \cap C_j|}{|C_j|} \quad \forall v \in C_i, \, \forall j \in \{1, \dots, k\}.$$

k-community problem

Decide if a given graph has a community structure with k communities.

A community structure of a graph G is a partition $\{C_1, \ldots, C_k\}$, with $k \ge 2$, of V such that for each $i \in \{1, \ldots, k\}$ we have $|C_i| \ge 2$ and

$$\frac{N(v) \cap C_i}{|C_i| - 1} \ge \frac{|N(v) \cap C_j|}{|C_j|} \quad \forall v \in C_i, \, \forall j \in \{1, \dots, k\}.$$

k-community problem

Decide if a given graph has a community structure with k communities.

 \rightarrow Not entirely locally checkable...

A community structure of a graph G is a partition $\{C_1, \ldots, C_k\}$, with $k \ge 2$, of V such that for each $i \in \{1, \ldots, k\}$ we have $|C_i| \ge 2$ and

$$\frac{N(v) \cap C_i}{|C_i| - 1} \ge \frac{|N(v) \cap C_j|}{|C_j|} \quad \forall v \in C_i, \, \forall j \in \{1, \dots, k\}.$$

Specified size *k*-community problem

Given a graph G and k integers $s_1, \ldots, s_k \ge 2$, determine if G admits a community structure $\{C_1, \ldots, C_k\}$ such that $|C_i| = s_i \ \forall i \in \{1, \ldots, k\}$.

A community structure of a graph G is a partition $\{C_1, \ldots, C_k\}$, with $k \ge 2$, of V such that for each $i \in \{1, \ldots, k\}$ we have $|C_i| \ge 2$ and

$$\frac{N(v) \cap C_i}{|C_i| - 1} \ge \frac{|N(v) \cap C_j|}{|C_j|} \quad \forall v \in C_i, \, \forall j \in \{1, \dots, k\}.$$

Specified size *k*-community problem

Given a graph G and k integers $s_1, \ldots, s_k \ge 2$, determine if G admits a community structure $\{C_1, \ldots, C_k\}$ such that $|C_i| = s_i \ \forall i \in \{1, \ldots, k\}$.

• Colors = $\{1, \ldots, k\}$

•
$$check(v,c) = \left(\forall j \in \{1,\ldots,k\}, \frac{|N(v) \cap C_{c(v)}|}{s_{c(v)}-1} \ge \frac{|N(v) \cap C_j|}{s_j} \right)$$

• for each color i, the size of the color class of i has to be s_i .

A community structure of a graph G is a partition $\{C_1, \ldots, C_k\}$, with $k \ge 2$, of V such that for each $i \in \{1, \ldots, k\}$ we have $|C_i| \ge 2$ and

$$\frac{N(v) \cap C_i}{|C_i| - 1} \ge \frac{|N(v) \cap C_j|}{|C_j|} \quad \forall v \in C_i, \, \forall j \in \{1, \dots, k\}.$$

Specified size *k*-community problem

Given a graph G and k integers $s_1, \ldots, s_k \ge 2$, determine if G admits a community structure $\{C_1, \ldots, C_k\}$ such that $|C_i| = s_i \ \forall i \in \{1, \ldots, k\}$.

- Colors = $\{1, \ldots, k\}$
- $check'(v, i, n_1, \dots, n_k) = \left(\forall j \in \{1, \dots, k\}, \frac{n_i}{s_i 1} \ge \frac{n_j}{s_j} \right)$
- for each color i, the size of the color class of i has to be s_i .

A community structure of a graph G is a partition $\{C_1, \ldots, C_k\}$, with $k \ge 2$, of V such that for each $i \in \{1, \ldots, k\}$ we have $|C_i| \ge 2$ and

$$\frac{N(v) \cap C_i}{|C_i| - 1} \ge \frac{|N(v) \cap C_j|}{|C_j|} \quad \forall v \in C_i, \, \forall j \in \{1, \dots, k\}.$$

Specified size *k*-community problem

Given a graph G and k integers $s_1, \ldots, s_k \ge 2$, determine if G admits a community structure $\{C_1, \ldots, C_k\}$ such that $|C_i| = s_i \ \forall i \in \{1, \ldots, k\}$.

• Colors = $\{1, \ldots, k\}$

•
$$check'(v, i, n_1, \dots, n_k) = \left(\forall j \in \{1, \dots, k\}, \frac{n_i}{s_i - 1} \ge \frac{n_j}{s_j} \right)$$

• for each color i, the size of the color class of i has to be s_i .

 \rightarrow XP clique-width

A community structure of a graph G is a partition $\{C_1, \ldots, C_k\}$, with $k \ge 2$, of V such that for each $i \in \{1, \ldots, k\}$ we have $|C_i| \ge 2$ and

$$\frac{N(v) \cap C_i}{|C_i| - 1} \ge \frac{|N(v) \cap C_j|}{|C_j|} \quad \forall v \in C_i, \, \forall j \in \{1, \dots, k\}.$$

k-community problem

Decide if a given graph has a community structure with k communities.

A community structure of a graph G is a partition $\{C_1, \ldots, C_k\}$, with $k \ge 2$, of V such that for each $i \in \{1, \ldots, k\}$ we have $|C_i| \ge 2$ and

$$\frac{N(v) \cap C_i}{|C_i| - 1} \ge \frac{|N(v) \cap C_j|}{|C_j|} \quad \forall v \in C_i, \, \forall j \in \{1, \dots, k\}.$$

k-community problem

Decide if a given graph has a community structure with k communities.

For all s_1, \ldots, s_k such that $\sum_{i=1}^k s_i = |V|$ and $s_i \ge 2 \ \forall i \in \{1, \ldots, k\}$, solve the corresponding specified size k-community problem.

A community structure of a graph G is a partition $\{C_1, \ldots, C_k\}$, with $k \ge 2$, of V such that for each $i \in \{1, \ldots, k\}$ we have $|C_i| \ge 2$ and

$$\frac{N(v) \cap C_i}{|C_i| - 1} \ge \frac{|N(v) \cap C_j|}{|C_j|} \quad \forall v \in C_i, \, \forall j \in \{1, \dots, k\}.$$

k-community problem

Decide if a given graph has a community structure with k communities.

For all s_1, \ldots, s_k such that $\sum_{i=1}^k s_i = |V|$ and $s_i \ge 2 \ \forall i \in \{1, \ldots, k\}$, solve the corresponding specified size k-community problem.

\rightarrow XP clique-width

Our framework (complete formulation)

r-locally checkable problems

Given a graph ${\boldsymbol{G}}$ and

- COLORS: a set of colors,
- L_v : for every vertex v, a subset of COLORS of allowed colors,
- ℓ_e : for every edge e, a label,
- (WEIGHTS, \leq , \oplus): a weight set,
- $\mathbf{w}(v, c)$: a weight function (input: vertex v and coloring c of $N^{r}[v]$, output: a weight),
- check(v, c): a check function (input: vertex v and coloring c of $N^{r}[v]$, output: true or false) find the minimum weight of a coloring c such that $check(v, c|_{N^{r}[v]}) = TRUE \forall v \in V(G)$.

Width	Colors	ℓ_e	$check, { m W}$	Global properties
tw	Polynomial	Yes	Polynomial partial neighborhood system	Size, connectivity, acyclicity
cw	Constant or log	No	Color-counting	Size, connectivity
mimw	Constant	No	<i>d</i> -stable	Size, connectivity and any other expressible in DN-logic