# Locally checkable problems parameterized by treewidth, clique-width and mim-width 

Carolina Lucía Gonzalez ${ }^{1}$<br>${ }^{1}$ CONICET - Universidad de Buenos Aires, ICC, Buenos Aires, Argentina<br>${ }^{2}$ University of Fribourg, Department of Informatics, Fribourg, Switzerland

Joint work with:

- Flavia Bonomo-Braberman ${ }^{1}$ (treewidth)
- Narmina Baghirova ${ }^{2}$, Bernard Ries ${ }^{2}$ and David Schindl ${ }^{2}$ (clique-width)
- Felix Mann ${ }^{2}$ (mim-width)



## Introductory problems



Does there exist a function $c: V \rightarrow\{1, \ldots, k\}$ such that $c(v) \neq c(u) \forall v \in V, u \in N(v)$ ?

## Minimum Dominating Set



Minimum size of a set $D$ such that $N[v] \cap D \neq \emptyset$ for all $v \in V$ ?

Maximum Independent Set


Maximum size of a set $I$ such that $N(v) \cap I=\emptyset$ for all $v \in I$ ?

## Introductory problems



Does there exist a function $c: V \rightarrow\{1, \ldots, k\}$ such that $c(v) \neq c(u) \forall v \in V, u \in N(v)$ ?

## Minimum Dominating Set



Minimum size of a set $D$ such that $N[v] \cap D \neq \emptyset$ for all $v \in V$ ?

Maximum Independent Set


Maximum size of a set $I$ such that $N(v) \cap I=\emptyset$ for all $v \in I$ ?

What do they have in common?

## Introductory problems



Does there exist a function $c: V \rightarrow\{1, \ldots, k\}$ such that $c(v) \neq c(u) \forall v \in V, u \in N(v)$ ?

Minimum Dominating Set


Minimum size of a set $D$ such that $N[v] \cap D \neq \emptyset$ for all $v \in V$ ?

Maximum Independent Set


Maximum size of a set $I$ such that $N(v) \cap I=\emptyset$ for all $v \in I$ ?

What do they have in common?
They are partitioning (coloring) problems where a solution can be verified locally for each vertex.

## Introductory problems



Does there exist a function $c: V \rightarrow\{1, \ldots, k\}$ such that $c(v) \neq c(u) \forall v \in V, u \in N(v)$ ?

Minimum Dominating Set


Minimum size of a set $D$ such that $N[v] \cap D \neq \emptyset$ for all $v \in V$ ?

Maximum Independent Set


Maximum size of a set $I$ such that $N(v) \cap I=\emptyset$ for all $v \in I$ ?

What do they have in common?
They are partitioning (coloring) problems where a solution can be verified locally for each vertex.
$\rightarrow$ Locally checkable problems

## Related work

- Monadic Second Order Logic (Courcelle's theorem) [B. Courcelle 1990]
- DN-logic
[B. Bergougnoux, J. Dreier and L. Jaffke 2022]
- Locally Checkable Vertex Partitioning (LCVP) problems [J.A. Telle 1994]


## Introductory problems



Does there exist a function $c: V \rightarrow\{1, \ldots, k\}$ such that $c(v) \neq c(u) \forall v \in V, u \in N(v)$ ?

Minimum Dominating Set


Minimum size of a set $D$ such that $N[v] \cap D \neq \emptyset$ for all $v \in V$ ?

Maximum Independent Set


Maximum size of a set $I$ such that $N(v) \cap I=\emptyset$ for all $v \in I$ ?

What do they have in common?
They are partitioning (coloring) problems where a solution can be verified locally for each vertex.
$\rightarrow$ Locally checkable problems

## Our framework (simplified)

Given a graph $G$ and

- Colors: a set of colors,


## Our framework (simplified)

Given a graph $G$ and

- Colors: a set of colors,
- $\operatorname{check}(v, c)$ : a check function (input: vertex $v$ and coloring $c$ of $N[v]$, output: true or false),


## Our framework (simplified)

Given a graph $G$ and

- Colors: a set of colors,
- check $(v, c)$ : a check function (input: vertex $v$ and coloring $c$ of $N[v]$, output: true or false),
- $\mathrm{w}(v, c)$ : a weight function (input: vertex $v$ and coloring $c$ of $N[v]$, output: a weight),


## Our framework (simplified)

Given a graph $G$ and

- Colors: a set of colors,
- check $(v, c)$ : a check function (input: vertex $v$ and coloring $c$ of $N[v]$, output: true or false),
- $\mathrm{w}(v, c)$ : a weight function (input: vertex $v$ and coloring $c$ of $N[v]$, output: a weight),
- an order of the weights


## Our framework (simplified)

Given a graph $G$ and

- Colors: a set of colors,
- check $(v, c)$ : a check function (input: vertex $v$ and coloring $c$ of $N[v]$, output: true or false),
- $\mathrm{w}(v, c)$ : a weight function (input: vertex $v$ and coloring $c$ of $N[v]$, output: a weight),
- an order of the weights
find the minimum weight of a coloring $c$ such that

$$
\operatorname{check}\left(v,\left.c\right|_{N[v]}\right)=\text { True } \quad \forall v \in V(G) .
$$

## Our framework (simplified)

Given a graph $G$ and

- Colors: a set of colors,
- $\operatorname{check}(v, c)$ : a check function (input: vertex $v$ and coloring $c$ of $N[v]$, output: true or false),
- $\mathrm{w}(v, c)$ : a weight function (input: vertex $v$ and coloring $c$ of $N[v]$, output: a weight),
- an order of the weights
find the minimum weight of a coloring $c$ such that

$$
\operatorname{check}\left(v,\left.c\right|_{N[v]}\right)=\text { True } \quad \forall v \in V(G) .
$$

Minimum Dominating Set:
Colors $=\{\mathbf{s}, \overline{\mathbf{s}}\}$
$\mathrm{w}(v, c)=1$ if $c(v)=\mathbf{s}$, and 0 otherwise
Order of weights: $\leq$ $\operatorname{check}(v, c)=(c(v)=\mathbf{s} \vee \exists u \in N(v) \cdot c(u)=\mathbf{s})$

## Our framework (simplified)

Given a graph $G$ and

- Colors: a set of colors,
- check $(v, c)$ : a check function (input: vertex $v$ and coloring $c$ of $N[v]$, output: true or false),
- $\mathrm{w}(v, c)$ : a weight function (input: vertex $v$ and coloring $c$ of $N[v]$, output: a weight),
- an order of the weights
find the minimum weight of a coloring $c$ such that

$$
\operatorname{check}\left(v,\left.c\right|_{N[v]}\right)=\text { True } \quad \forall v \in V(G) .
$$

Goal: obtain efficient algorithms for different graph classes.

## Our framework (simplified)

Given a graph $G$ and

- Colors: a set of colors,
- check $(v, c)$ : a check function (input: vertex $v$ and coloring $c$ of $N[v]$, output: true or false),
- $\mathrm{w}(v, c)$ : a weight function (input: vertex $v$ and coloring $c$ of $N[v]$, output: a weight),
- an order of the weights
find the minimum weight of a coloring $c$ such that

$$
\operatorname{check}\left(v,\left.c\right|_{N[v]}\right)=\text { True } \quad \forall v \in V(G) .
$$

Goal: obtain efficient algorithms for different graph classes. $\rightarrow$ Under which conditions?

## Our framework (simplified)

Given a graph $G$ and

- Colors: a set of colors,
- check $(v, c)$ : a check function (input: vertex $v$ and coloring $c$ of $N[v]$, output: true or false),
- $\mathbf{W}(v, c)$ : a weight function (input: vertex $v$ and coloring $c$ of $N[v]$, output: a weight),
- an order of the weights
find the minimum weight of a coloring $c$ such that

$$
\operatorname{check}\left(v,\left.c\right|_{N[v]}\right)=\text { TRUE } \quad \forall v \in V(G)
$$

Goal: obtain efficient algorithms for different graph classes. $\rightarrow$ Under which conditions?
In particular, we focus on the parameterization by different width measures:

- treewidth
- clique-width
- mim-width


## Our framework (simplified)

Given a graph $G$ and

- Colors: a set of colors,
- check $(v, c)$ : a check function (input: vertex $v$ and coloring $c$ of $N[v]$, output: true or false),
- $\mathbf{W}(v, c)$ : a weight function (input: vertex $v$ and coloring $c$ of $N[v]$, output: a weight),
- an order of the weights
find the minimum weight of a coloring $c$ such that

$$
\operatorname{check}\left(v,\left.c\right|_{N[v]}\right)=\text { TRUE } \quad \forall v \in V(G)
$$

Goal: obtain efficient algorithms for different graph classes. $\rightarrow$ Under which conditions?
In particular, we focus on the parameterization by different width measures:

- treewidth $\rightarrow$ not today...
- clique-width
- mim-width


## Some conditions on check and w

Let Colors $=\left\{a_{1}, \ldots, a_{q}\right\}$ be a set of colors.

## Some conditions on check and w

Let Colors $=\left\{a_{1}, \ldots, a_{q}\right\}$ be a set of colors.
A function $f$ is color-counting if there exists $f^{\prime}$ such that

$$
f(v, c)=f^{\prime}\left(v, c(v),\left|N_{a_{1}}^{c}(v)\right|, \ldots,\left|N_{a_{q}}^{c}(v)\right|\right)
$$

for all vertex $v$, coloring $c$ of $N[v]$.

## Some conditions on check and w

Let Colors $=\left\{a_{1}, \ldots, a_{q}\right\}$ be a set of colors.
A function $f$ is color-counting if there exists $f^{\prime}$ such that

$$
f(v, c)=f^{\prime}\left(v, c(v),\left|N_{a_{1}}^{c}(v)\right|, \ldots,\left|N_{a_{q}}^{c}(v)\right|\right)
$$

for all vertex $v$, coloring $c$ of $N[v]$.
Informally: ...if $f$ only depends on the vertex, the color it receives and the number of neighbors of each color $\left(\Rightarrow\right.$ existence of $f^{\prime}\left(v, a, n_{1}, \ldots, n_{q}\right)$ )

## Some conditions on check and w

Let Colors $=\left\{a_{1}, \ldots, a_{q}\right\}$ be a set of colors.
A function $f$ is color-counting if there exists $f^{\prime}$ such that

$$
f(v, c)=f^{\prime}\left(v, c(v),\left|N_{a_{1}}^{c}(v)\right|, \ldots,\left|N_{a_{q}}^{c}(v)\right|\right)
$$

for all vertex $v$, coloring $c$ of $N[v]$.
Informally: ...if $f$ only depends on the vertex, the color it receives and the number of neighbors of each color $\left(\Rightarrow\right.$ existence of $f^{\prime}\left(v, a, n_{1}, \ldots, n_{q}\right)$ )


## Some conditions on check and w

Let Colors $=\left\{a_{1}, \ldots, a_{q}\right\}$ be a set of colors.
A function $f$ is color-counting if there exists $f^{\prime}$ such that

$$
f(v, c)=f^{\prime}\left(v, c(v),\left|N_{a_{1}}^{c}(v)\right|, \ldots,\left|N_{a_{q}}^{c}(v)\right|\right)
$$

for all vertex $v$, coloring $c$ of $N[v]$.
Informally: ...if $f$ only depends on the vertex, the color it receives and the number of neighbors of each color $\left(\Rightarrow\right.$ existence of $f^{\prime}\left(v, a, n_{1}, \ldots, n_{q}\right)$ )

$v$ is blue, 2 red neighbors, 1 blue neighbor

## Some conditions on check and w

Let Colors $=\left\{a_{1}, \ldots, a_{q}\right\}$ be a set of colors.
A function $f$ is color-counting if there exists $f^{\prime}$ such that

$$
f(v, c)=f^{\prime}\left(v, c(v),\left|N_{a_{1}}^{c}(v)\right|, \ldots,\left|N_{a_{q}}^{c}(v)\right|\right)
$$

for all vertex $v$, coloring $c$ of $N[v]$.
Informally: ...if $f$ only depends on the vertex, the color it receives and the number of neighbors of each color $\left(\Rightarrow\right.$ existence of $f^{\prime}\left(v, a, n_{1}, \ldots, n_{q}\right)$ )

$v$ is blue, 2 red neighbors, 1 blue neighbor

$$
f^{\prime}(v, \mathrm{~B}, 2,1)
$$

## Some conditions on check and w

Let Colors $=\left\{a_{1}, \ldots, a_{q}\right\}$ be a set of colors.
A function $f$ is color-counting if there exists $f^{\prime}$ such that

$$
f(v, c)=f^{\prime}\left(v, c(v),\left|N_{a_{1}}^{c}(v)\right|, \ldots,\left|N_{a_{q}}^{c}(v)\right|\right)
$$

for all vertex $v$, coloring $c$ of $N[v]$.
Informally: ...if $f$ only depends on the vertex, the color it receives and the number of neighbors of each color $\left(\Rightarrow\right.$ existence of $f^{\prime}\left(v, a, n_{1}, \ldots, n_{q}\right)$ )

Example: minimum dominating set
$\operatorname{check}(v, c)=(c(v)=\mathbf{s} \vee \exists u \in N(v) \cdot c(u)=\mathbf{s})$

## Some conditions on check and w

Let Colors $=\left\{a_{1}, \ldots, a_{q}\right\}$ be a set of colors.
A function $f$ is color-counting if there exists $f^{\prime}$ such that

$$
f(v, c)=f^{\prime}\left(v, c(v),\left|N_{a_{1}}^{c}(v)\right|, \ldots,\left|N_{a_{q}}^{c}(v)\right|\right)
$$

for all vertex $v$, coloring $c$ of $N[v]$.
Informally: ...if $f$ only depends on the vertex, the color it receives and the number of neighbors of each color $\left(\Rightarrow\right.$ existence of $\left.f^{\prime}\left(v, a, n_{1}, \ldots, n_{q}\right)\right)$

Example: minimum dominating set
$\operatorname{check}(v, c)=(c(v)=\mathbf{s} \vee \exists u \in N(v) \cdot c(u)=\mathbf{s})$
$\operatorname{check}^{\prime}\left(v, a, n_{\mathbf{S}}, n_{\overline{\mathbf{S}}}\right)=\left(a=\mathbf{s} \vee n_{\mathbf{S}} \geq 1\right)$

## Some conditions on check and w

Let Colors $=\left\{a_{1}, \ldots, a_{q}\right\}$ be a set of colors.
A function $f$ is color-counting if there exists $f^{\prime}$ such that

$$
f(v, c)=f^{\prime}\left(v, c(v),\left|N_{a_{1}}^{c}(v)\right|, \ldots,\left|N_{a_{q}}^{c}(v)\right|\right)
$$

for all vertex $v$, coloring $c$ of $N[v]$.
Informally: ...if $f$ only depends on the vertex, the color it receives and the number of neighbors of each color $\left(\Rightarrow\right.$ existence of $\left.f^{\prime}\left(v, a, n_{1}, \ldots, n_{q}\right)\right)$

Example: minimum dominating set
$\operatorname{check}(v, c)=(c(v)=\mathbf{s} \vee \exists u \in N(v) \cdot c(u)=\mathbf{s})$
$\operatorname{check}^{\prime}\left(v, a, n_{\mathbf{S}}, n_{\overline{\mathbf{S}}}\right)=\left(a=\mathbf{s} \vee n_{\mathbf{S}} \geq 1\right)$

We say $f$ is $d$-stable if it is color-counting and

$$
f^{\prime}\left(v, a, n_{1}, \ldots, n_{q}\right)=f^{\prime}\left(v, a, \min \left(d, n_{1}\right), \ldots, \min \left(d, n_{q}\right)\right)
$$

for all vertex $v$, color $a$, non-negative integers $n_{1}, \ldots, n_{q}$.

## Some conditions on check and w

Let Colors $=\left\{a_{1}, \ldots, a_{q}\right\}$ be a set of colors.
A function $f$ is color-counting if there exists $f^{\prime}$ such that

$$
f(v, c)=f^{\prime}\left(v, c(v),\left|N_{a_{1}}^{c}(v)\right|, \ldots,\left|N_{a_{q}}^{c}(v)\right|\right)
$$

for all vertex $v$, coloring $c$ of $N[v]$.
Informally: ...if $f$ only depends on the vertex, the color it receives and the number of neighbors of each color $\left(\Rightarrow\right.$ existence of $\left.f^{\prime}\left(v, a, n_{1}, \ldots, n_{q}\right)\right)$

Example: minimum dominating set
$\operatorname{check}(v, c)=(c(v)=\mathbf{s} \vee \exists u \in N(v) . c(u)=\mathbf{s})$
$\operatorname{check}^{\prime}\left(v, a, n_{\mathbf{S}}, n_{\overline{\mathbf{S}}}\right)=\left(a=\mathbf{s} \vee n_{\mathbf{S}} \geq 1\right) \rightarrow$ 1-stable

We say $f$ is $d$-stable if it is color-counting and

$$
f^{\prime}\left(v, a, n_{1}, \ldots, n_{q}\right)=f^{\prime}\left(v, a, \min \left(d, n_{1}\right), \ldots, \min \left(d, n_{q}\right)\right)
$$

for all vertex $v$, color $a$, non-negative integers $n_{1}, \ldots, n_{q}$.

## Complexity

- If |Colors| is not a constant:


## Complexity

- If |COLORS| is not a constant:

Precoloring Extension is NP-complete on graphs of clique-width $\leq 3$.
[F. Bonomo, G. Durán and J. Marenco 2006]

## Complexity

- If |Colors| is not a constant: para-NP-hard clique-width (even for 1 -stable check and w)

Precoloring Extension is NP-complete on graphs of clique-width $\leq 3$.
[F. Bonomo, G. Durán and J. Marenco 2006]

## Complexity

- If |Colors| is not a constant: para-NP-hard clique-width (even for 1 -stable check and w)
- If |Colors| is a constant:

| check,w | Clique-width | Mim-width |
| :---: | :---: | :---: |
| Non color-counting | para-NP-hard |  |
| Color-counting | XP | para-NP-hard |
| $d$-stable | FPT | XP |

## Complexity

- If $\mid$ Colors $\mid$ is not a constant: para-NP-hard clique-width (even for 1-stable check and w)
- If |Colors| is a constant:

| check, w | Clique-width | Mim-width |
| :---: | :---: | :---: |
| Non color-counting | para-NP-hard |  |
| Color-counting | XP | para-NP-hard |
| $d$-stable | FPT | XP |

We can reduce Minimum Dominating Set in general graphs to a locally checkable problem (with 2 colors) in complete graphs (clique-width $\leq 2$ ).

## Complexity

- If |Colors| is not a constant: para-NP-hard clique-width (even for 1 -stable check and w)
- If |Colors| is a constant:

| check, w | Clique-width | Mim-width |
| :---: | :---: | :---: |
| Non color-counting | para-NP-hard |  |
| Color-counting | XP | para-NP-hard |
| $d$-stable | FPT | XP |

Standard dynamic programming algorithm using clique-width expressions.

## Complexity

- If $\mid$ Colors $\mid$ is not a constant: para-NP-hard clique-width (even for 1-stable check and w)
- If |Colors| is a constant:

| check,w | Clique-width | Mim-width |
| :---: | :---: | :---: |
| Non color-counting | para-NP-hard |  |
| Color-counting | XP | para-NP-hard |
| $d$-stable | FPT | XP |

Max-Cut is color-counting with 2 colors, and W[1]-hard parameterized by clique-width.

## Complexity

- If |Colors| is not a constant: para-NP-hard clique-width (even for 1 -stable check and w)
- If |Colors| is a constant:

| check, w | Clique-width | Mim-width |
| :---: | :---: | :---: |
| Non color-counting | para-NP-hard |  |
| Color-counting | XP | para-NP-hard |
| $d$-stable | FPT | XP |

Dynamic programming algorithm based on [B.M. Bui-Xuan, J.A. Telle and M. Vatshelle 2013]. Alternative: modeling with DN-logic.

## Complexity

- If $\mid$ Colors $\mid$ is not a constant: para-NP-hard clique-width (even for 1-stable check and w)
- If |Colors| is a constant:

| check, w | Clique-width | Mim-width |
| :---: | :---: | :---: |
| Non color-counting | para-NP-hard |  |
| Color-counting | XP | para-NP-hard |
| $d$-stable | FPT | XP |

Minimum Dominating Set is 1 -stable with 2 colors, and W[1]-hard parameterized by mim-width. [F.V. Fomin, P.A. Golovach, J.F. Raymond 2018]

## Complexity

- If $\mid$ Colors $\mid$ is not a constant: para-NP-hard clique-width (even for 1-stable check and w)
- If |Colors| is a constant:

| check, w | Clique-width | Mim-width |
| :---: | :---: | :---: |
| Non color-counting | para-NP-hard |  |
| Color-counting | XP | para-NP-hard |
| $d$-stable | FPT | XP |

Max-Cut is color-counting with 2 colors, and NP-complete on interval graphs (mim-width $\leq 1$ ).

## Adding global properties

- Treewidth: size, connectivity, acyclicity
- Clique-width: size, connectivity
- Mim-width: size, connectivity and any other expressible in DN-logic


## Applications

Using this framework we proved that:

| Problem | clique-width | mim-width |
| :---: | :---: | :---: |
| [k]-Roman domination | (linear*) FPT | XP |
| Conflict-free $k$-coloring <br> Bhyravarapu, Hartmann, Kalyanasundaram and Vino | (linear*) FPT <br> 2021: similar results | XP |
| b-coloring with fixed number of colors Jaffke, Lima and Lokshtanov, 2020: XP parameteriz | (linear*) FPT <br> e-width with unfixe | $\underset{\mathrm{f} \text { colors }}{\mathrm{XP}}$ |
| $k$-community | XP | - |

and similar results for some variations of these problems.
$\left(^{*}\right)$ if a clique-width expression is given as input.

## Applications: $[k]$-Roman domination

Given a graph $G$, compute the minimum weight of a function $f: V \rightarrow\{0, \ldots, k+1\}$ such that

$$
f(v)+\sum_{\substack{u \in N(v) \\ f(u) \geq 1}}(f(u)-1) \geq k \quad \forall v \in V .
$$

## Applications: $[k]$-Roman domination

Given a graph $G$, compute the minimum weight of a function $f: V \rightarrow\{0, \ldots, k+1\}$ such that

$$
f(v)+\sum_{\substack{u \in N(v) \\ f(u) \geq 1}}(f(u)-1) \geq k \quad \forall v \in V .
$$

- Colors $=\{0, \ldots, k+1\}$
- $\mathrm{W}(v, c)=c(v)$
- Order of weights: $\leq$
- $\operatorname{check}(v, c)=\left(c(v)+\sum_{\substack{u \in N(v) \\ c(u) \geq 1}}(c(u)-1) \geq k\right)$


## Applications: $[k]$-Roman domination

Given a graph $G$, compute the minimum weight of a function $f: V \rightarrow\{0, \ldots, k+1\}$ such that

$$
f(v)+\sum_{\substack{u \in N(v) \\ f(u) \geq 1}}(f(u)-1) \geq k \quad \forall v \in V .
$$

- Colors $=\{0, \ldots, k+1\}$
- $\mathrm{W}(v, c)=c(v)$
- Order of weights: $\leq$
- $\operatorname{check}(v, c)=\left(c(v)+\sum_{\substack{u \in N(v) \\ c(u) \geq 1}}(c(u)-1) \geq k\right)$


## Applications: $[k]$-Roman domination

Given a graph $G$, compute the minimum weight of a function $f: V \rightarrow\{0, \ldots, k+1\}$ such that

$$
f(v)+\sum_{\substack{u \in N(v) \\ f(u) \geq 1}}(f(u)-1) \geq k \quad \forall v \in V .
$$

- Colors $=\{0, \ldots, k+1\}$
- $\mathrm{W}(v, c)=c(v)$
- Order of weights: $\leq$
- $\operatorname{check}(v, c)=\left(c(v)+\sum_{\substack{u \in N(v) \\ c(u) \geq 1}}(c(u)-1) \geq k\right)$
check and w are color-counting


## Applications: $[k]$-Roman domination

Given a graph $G$, compute the minimum weight of a function $f: V \rightarrow\{0, \ldots, k+1\}$ such that

$$
f(v)+\sum_{\substack{u \in N(v) \\ f(u) \geq 1}}(f(u)-1) \geq k \quad \forall v \in V .
$$

- Colors $=\{0, \ldots, k+1\}$
- $\mathrm{w}^{\prime}\left(v, i, n_{0}, \ldots, n_{k+1}\right)=i$
- Order of weights: $\leq$
- $\operatorname{check}(v, c)=\left(c(v)+\sum_{\substack{u \in N(v) \\ c(u) \geq 1}}(c(u)-1) \geq k\right)$
check and w are color-counting


## Applications: $[k]$-Roman domination

Given a graph $G$, compute the minimum weight of a function $f: V \rightarrow\{0, \ldots, k+1\}$ such that

$$
f(v)+\sum_{\substack{u \in N(v) \\ f(u) \geq 1}}(f(u)-1) \geq k \quad \forall v \in V .
$$

- Colors $=\{0, \ldots, k+1\}$
- $\mathrm{w}^{\prime}\left(v, i, n_{0}, \ldots, n_{k+1}\right)=i$
- Order of weights: $\leq$
- $\operatorname{check}^{\prime}\left(v, i, n_{0}, \ldots, n_{k+1}\right)=\left(i+\sum_{j=1}^{k+1}(j-1) \cdot n_{j} \geq k\right)$
check and w are color-counting


## Applications: $[k]$-Roman domination

Given a graph $G$, compute the minimum weight of a function $f: V \rightarrow\{0, \ldots, k+1\}$ such that

$$
f(v)+\sum_{\substack{u \in N(v) \\ f(u) \geq 1}}(f(u)-1) \geq k \quad \forall v \in V .
$$

- Colors $=\{0, \ldots, k+1\}$
- $\mathrm{w}^{\prime}\left(v, i, n_{0}, \ldots, n_{k+1}\right)=i$
- Order of weights: $\leq$
- $\operatorname{check}^{\prime}\left(v, i, n_{0}, \ldots, n_{k+1}\right)=\left(i+\sum_{j=1}^{k+1}(j-1) \cdot n_{j} \geq k\right)$
check and w are $k$-stable


## Applications: $[k]$-Roman domination

Given a graph $G$, compute the minimum weight of a function $f: V \rightarrow\{0, \ldots, k+1\}$ such that

$$
f(v)+\sum_{\substack{u \in N(v) \\ f(u) \geq 1}}(f(u)-1) \geq k \quad \forall v \in V .
$$

- Colors $=\{0, \ldots, k+1\}$
- $\mathrm{w}^{\prime}\left(v, i, n_{0}, \ldots, n_{k+1}\right)=i$
- Order of weights: $\leq$
- $\operatorname{check}^{\prime}\left(v, i, n_{0}, \ldots, n_{k+1}\right)=\left(i+\sum_{j=1}^{k+1}(j-1) \cdot n_{j} \geq k\right)$
check and w are $k$-stable
$\rightarrow$ FPT clique-width
$\rightarrow$ XP mim-width


## Applications: $k$-community

A community structure of a graph $G$ is a partition $\left\{C_{1}, \ldots, C_{k}\right\}$, with $k \geq 2$, of $V$ such that for each $i \in\{1, \ldots, k\}$ we have $\left|C_{i}\right| \geq 2$ and

$$
\frac{\left|N(v) \cap C_{i}\right|}{\left|C_{i}\right|-1} \geq \frac{\left|N(v) \cap C_{j}\right|}{\left|C_{j}\right|} \quad \forall v \in C_{i}, \forall j \in\{1, \ldots, k\} .
$$

## Applications: $k$-community

A community structure of a graph $G$ is a partition $\left\{C_{1}, \ldots, C_{k}\right\}$, with $k \geq 2$, of $V$ such that for each $i \in\{1, \ldots, k\}$ we have $\left|C_{i}\right| \geq 2$ and

$$
\frac{\left|N(v) \cap C_{i}\right|}{\left|C_{i}\right|-1} \geq \frac{\left|N(v) \cap C_{j}\right|}{\left|C_{j}\right|} \quad \forall v \in C_{i}, \forall j \in\{1, \ldots, k\} .
$$

## $k$-community problem

Decide if a given graph has a community structure with $k$ communities.

## Applications: $k$-community

A community structure of a graph $G$ is a partition $\left\{C_{1}, \ldots, C_{k}\right\}$, with $k \geq 2$, of $V$ such that for each $i \in\{1, \ldots, k\}$ we have $\left|C_{i}\right| \geq 2$ and

$$
\frac{\left|N(v) \cap C_{i}\right|}{\left|\boldsymbol{C}_{\boldsymbol{i}}\right|-1} \geq \frac{\left|N(v) \cap C_{j}\right|}{\left|\boldsymbol{C}_{\boldsymbol{j}}\right|} \quad \forall v \in C_{i}, \forall j \in\{1, \ldots, k\} .
$$

## $k$-community problem

Decide if a given graph has a community structure with $k$ communities.
$\rightarrow$ Not entirely locally checkable...

## Applications: $k$-community

A community structure of a graph $G$ is a partition $\left\{C_{1}, \ldots, C_{k}\right\}$, with $k \geq 2$, of $V$ such that for each $i \in\{1, \ldots, k\}$ we have $\left|C_{i}\right| \geq 2$ and

$$
\frac{\left|N(v) \cap C_{i}\right|}{\left|C_{i}\right|-1} \geq \frac{\left|N(v) \cap C_{j}\right|}{\left|C_{j}\right|} \quad \forall v \in C_{i}, \forall j \in\{1, \ldots, k\} .
$$

## Specified size $k$-community problem

Given a graph $G$ and $k$ integers $s_{1}, \ldots, s_{k} \geq 2$, determine if $G$ admits a community structure $\left\{C_{1}, \ldots, C_{k}\right\}$ such that $\left|C_{i}\right|=s_{i} \forall i \in\{1, \ldots, k\}$.

## Applications: $k$-community

A community structure of a graph $G$ is a partition $\left\{C_{1}, \ldots, C_{k}\right\}$, with $k \geq 2$, of $V$ such that for each $i \in\{1, \ldots, k\}$ we have $\left|C_{i}\right| \geq 2$ and

$$
\frac{\left|N(v) \cap C_{i}\right|}{\left|C_{i}\right|-1} \geq \frac{\left|N(v) \cap C_{j}\right|}{\left|C_{j}\right|} \quad \forall v \in C_{i}, \forall j \in\{1, \ldots, k\} .
$$

## Specified size $k$-community problem

Given a graph $G$ and $k$ integers $s_{1}, \ldots, s_{k} \geq 2$, determine if $G$ admits a community structure $\left\{C_{1}, \ldots, C_{k}\right\}$ such that $\left|C_{i}\right|=s_{i} \forall i \in\{1, \ldots, k\}$.

- Colors $=\{1, \ldots, k\}$
- $\operatorname{check}(v, c)=\left(\forall j \in\{1, \ldots, k\} . \frac{\left|N(v) \cap C_{c(v)}\right|}{s_{c(v)}-1} \geq \frac{\left|N(v) \cap C_{j}\right|}{s_{j}}\right)$
- for each color $i$, the size of the color class of $i$ has to be $s_{i}$.


## Applications: $k$-community

A community structure of a graph $G$ is a partition $\left\{C_{1}, \ldots, C_{k}\right\}$, with $k \geq 2$, of $V$ such that for each $i \in\{1, \ldots, k\}$ we have $\left|C_{i}\right| \geq 2$ and

$$
\frac{\left|N(v) \cap C_{i}\right|}{\left|C_{i}\right|-1} \geq \frac{\left|N(v) \cap C_{j}\right|}{\left|C_{j}\right|} \quad \forall v \in C_{i}, \forall j \in\{1, \ldots, k\} .
$$

## Specified size $k$-community problem

Given a graph $G$ and $k$ integers $s_{1}, \ldots, s_{k} \geq 2$, determine if $G$ admits a community structure $\left\{C_{1}, \ldots, C_{k}\right\}$ such that $\left|C_{i}\right|=s_{i} \forall i \in\{1, \ldots, k\}$.

- Colors $=\{1, \ldots, k\}$
- $\operatorname{check}^{\prime}\left(v, i, n_{1}, \ldots, n_{k}\right)=\left(\forall j \in\{1, \ldots, k\} \cdot \frac{n_{i}}{s_{i}-1} \geq \frac{n_{j}}{s_{j}}\right)$
- for each color $i$, the size of the color class of $i$ has to be $s_{i}$.


## Applications: $k$-community

A community structure of a graph $G$ is a partition $\left\{C_{1}, \ldots, C_{k}\right\}$, with $k \geq 2$, of $V$ such that for each $i \in\{1, \ldots, k\}$ we have $\left|C_{i}\right| \geq 2$ and

$$
\frac{\left|N(v) \cap C_{i}\right|}{\left|C_{i}\right|-1} \geq \frac{\left|N(v) \cap C_{j}\right|}{\left|C_{j}\right|} \quad \forall v \in C_{i}, \forall j \in\{1, \ldots, k\} .
$$

## Specified size $k$-community problem

Given a graph $G$ and $k$ integers $s_{1}, \ldots, s_{k} \geq 2$, determine if $G$ admits a community structure $\left\{C_{1}, \ldots, C_{k}\right\}$ such that $\left|C_{i}\right|=s_{i} \forall i \in\{1, \ldots, k\}$.

- Colors $=\{1, \ldots, k\}$
- $\operatorname{check}^{\prime}\left(v, i, n_{1}, \ldots, n_{k}\right)=\left(\forall j \in\{1, \ldots, k\} \cdot \frac{n_{i}}{s_{i}-1} \geq \frac{n_{j}}{s_{j}}\right)$
- for each color $i$, the size of the color class of $i$ has to be $s_{i}$.
$\rightarrow$ XP clique-width


## Applications: $k$-community

A community structure of a graph $G$ is a partition $\left\{C_{1}, \ldots, C_{k}\right\}$, with $k \geq 2$, of $V$ such that for each $i \in\{1, \ldots, k\}$ we have $\left|C_{i}\right| \geq 2$ and

$$
\frac{\left|N(v) \cap C_{i}\right|}{\left|C_{i}\right|-1} \geq \frac{\left|N(v) \cap C_{j}\right|}{\left|C_{j}\right|} \quad \forall v \in C_{i}, \forall j \in\{1, \ldots, k\} .
$$

## $k$-community problem

Decide if a given graph has a community structure with $k$ communities.

## Applications: $k$-community

A community structure of a graph $G$ is a partition $\left\{C_{1}, \ldots, C_{k}\right\}$, with $k \geq 2$, of $V$ such that for each $i \in\{1, \ldots, k\}$ we have $\left|C_{i}\right| \geq 2$ and

$$
\frac{\left|N(v) \cap C_{i}\right|}{\left|C_{i}\right|-1} \geq \frac{\left|N(v) \cap C_{j}\right|}{\left|C_{j}\right|} \quad \forall v \in C_{i}, \forall j \in\{1, \ldots, k\} .
$$

## $k$-community problem

Decide if a given graph has a community structure with $k$ communities.
For all $s_{1}, \ldots, s_{k}$ such that $\sum_{i=1}^{k} s_{i}=|V|$ and $s_{i} \geq 2 \forall i \in\{1, \ldots, k\}$, solve the corresponding specified size $k$-community problem.

## Applications: $k$-community

A community structure of a graph $G$ is a partition $\left\{C_{1}, \ldots, C_{k}\right\}$, with $k \geq 2$, of $V$ such that for each $i \in\{1, \ldots, k\}$ we have $\left|C_{i}\right| \geq 2$ and

$$
\frac{\left|N(v) \cap C_{i}\right|}{\left|C_{i}\right|-1} \geq \frac{\left|N(v) \cap C_{j}\right|}{\left|C_{j}\right|} \quad \forall v \in C_{i}, \forall j \in\{1, \ldots, k\} .
$$

## $k$-community problem

Decide if a given graph has a community structure with $k$ communities.
For all $s_{1}, \ldots, s_{k}$ such that $\sum_{i=1}^{k} s_{i}=|V|$ and $s_{i} \geq 2 \forall i \in\{1, \ldots, k\}$, solve the corresponding specified size $k$-community problem.
$\rightarrow$ XP clique-width

## Our framework (complete formulation)

## $r$-locally checkable problems

Given a graph $G$ and

- Colors: a set of colors,
- $L_{v}$ : for every vertex $v$, a subset of Colors of allowed colors,
- $\ell_{e}$ : for every edge $e$, a label,
- (Weights, $\preceq, ~ \oplus$ ): a weight set,
- $\mathbf{W}(v, c)$ : a weight function (input: vertex $v$ and coloring $c$ of $N^{r}[v]$, output: a weight),
- check $(v, c)$ : a check function (input: vertex $v$ and coloring $c$ of $N^{r}[v]$, output: true or false) find the minimum weight of a coloring $c$ such that $\operatorname{check}\left(v,\left.c\right|_{N^{r}[v]}\right)=\operatorname{TRUE} \forall v \in V(G)$.

| Width | $\mid$ Colors $\mid$ | $\ell_{e}$ | $c h e c k, \mathrm{w}$ | Global properties |
| :--- | :--- | :---: | :--- | :--- |
| tw | Polynomial | Yes | Polynomial partial neighborhood system | Size, connectivity, acyclicity |
| cw | Constant or log | No | Color-counting | Size, connectivity |
| mimw | Constant | No | $d$-stable | Size, connectivity and any <br> other expressible in DN-logic |

