Mixed graph searching games are all monotone

Christophe PAUL
(CNRS - Univ. Montpellier, LIRMM, France)

Joint work with
Dimitrios M. Thilikos and Guillaume Mescoff

September 22, 2022

Back to the roots - Let us revisit mixed search games

Mixed search game

The fugitive is located on an edge

A play of a mixed search game is a sequence

$$
\mathcal{P}=\left\langle\emptyset, a_{4} b_{4}, \ldots\right\rangle
$$

Mixed search game

The fugitive is located on an edge

Searchers' move :
\rightsquigarrow placement of a searcher on a vertex

A play of a mixed search game is a sequence

$$
\mathcal{P}=\left\langle\emptyset, a_{4} b_{4},\left\{a_{2}\right\}, \ldots\right\rangle
$$

Mixed search game

The fugitive is located on an edge
\rightsquigarrow the fugitive slides along a pathway

Searchers' move :
\rightsquigarrow placement of a searcher on a vertex

A play of a mixed search game is a sequence

$$
\mathcal{P}=\left\langle\emptyset, a_{4} b_{4},\left\{a_{2}\right\}, a_{7} b_{7}, \ldots\right\rangle
$$

Mixed search game

The fugitive is located on an edge
\rightsquigarrow the fugitive slides along a pathway

Searchers' move :
\rightsquigarrow placement of a searcher on a vertex

A play of a mixed search game is a sequence

$$
\mathcal{P}=\left\langle\emptyset, a_{4} b_{4},\left\{a_{2}\right\}, a_{7} b_{7},\left\{a_{2}, b_{2}\right\}, \ldots\right\rangle
$$

Mixed search game

The fugitive is located on an edge
\rightsquigarrow the fugitive slides along a pathway
\rightsquigarrow the fugitive may stay at its location

Searchers' move :
\rightsquigarrow placement of a searcher on a vertex

A play of a mixed search game is a sequence
$\mathcal{P}=\left\langle\emptyset, a_{4} b_{4},\left\{a_{2}\right\}, a_{7} b_{7},\left\{a_{2}, b_{2}\right\}, a_{7} b_{7}, \ldots\right\rangle$

Mixed search game

The fugitive is located on an edge
\rightsquigarrow the fugitive slides along a pathway
\rightsquigarrow the fugitive may stay at its location

Searchers' move :
\rightsquigarrow placement of a searcher on a vertex
\rightsquigarrow sliding a searcher along an edge

A play of a mixed search game is a sequence

$$
\mathcal{P}=\left\langle\emptyset, a_{4} b_{4},\left\{a_{2}\right\}, a_{7} b_{7},\left\{a_{2}, b_{2}\right\}, a_{7} b_{7},\left\{a_{2}, b_{3}\right\}, \ldots\right\rangle
$$

Mixed search game

The fugitive is located on an edge
\rightsquigarrow the fugitive slides along a pathway
\rightsquigarrow the fugitive may stay at its location

Searchers' move:
\rightsquigarrow placement of a searcher on a vertex
\rightsquigarrow sliding a searcher along an edge

A play of a mixed search game is a sequence

$$
\mathcal{P}=\left\langle\emptyset, a_{4} b_{4},\left\{a_{2}\right\}, a_{7} b_{7},\left\{a_{2}, b_{2}\right\}, a_{7} b_{7},\left\{a_{2}, b_{3}\right\}, a_{3} a_{7}, \ldots\right\rangle
$$

Mixed search game

The fugitive is located on an edge
\rightsquigarrow the fugitive slides along a pathway
\rightsquigarrow the fugitive may stay at its location

Searchers' move:
\rightsquigarrow placement of a searcher on a vertex
\rightsquigarrow sliding a searcher along an edge
\rightsquigarrow removal of a searcher

A play of a mixed search game is a sequence

$$
\mathcal{P}=\left\langle\emptyset, a_{4} b_{4},\left\{a_{2}\right\}, a_{7} b_{7},\left\{a_{2}, b_{2}\right\}, a_{7} b_{7},\left\{a_{2}, b_{3}\right\}, a_{3} a_{7},\left\{b_{3}\right\}, \ldots\right\rangle
$$

Mixed search game

The fugitive is located on an edge
\rightsquigarrow the fugitive slides along a pathway
\rightsquigarrow the fugitive may stay at its location

Searchers' move:
\rightsquigarrow placement of a searcher on a vertex
\rightsquigarrow sliding a searcher along an edge
\rightsquigarrow removal of a searcher

A play of a mixed search game is a sequence
$\mathcal{P}=\left\langle\emptyset, a_{4} b_{4},\left\{a_{2}\right\}, a_{7} b_{7},\left\{a_{2}, b_{2}\right\}, a_{7} b_{7},\left\{a_{2}, b_{3}\right\}, a_{3} a_{7},\left\{b_{3}\right\}, a_{1} a_{2}, \ldots\right\rangle$

Mixed search game

The fugitive is located on an edge
\rightsquigarrow the fugitive slides along a pathway
\rightsquigarrow the fugitive may stay at its location

Searchers' move:
\rightsquigarrow placement of a searcher on a vertex
\rightsquigarrow sliding a searcher along an edge
\rightsquigarrow removal of a searcher

A play of a mixed search game is a sequence

$$
\mathcal{P}=\left\langle\emptyset, a_{4} b_{4},\left\{a_{2}\right\}, a_{7} b_{7},\left\{a_{2}, b_{2}\right\}, a_{7} b_{7},\left\{a_{2}, b_{3}\right\}, a_{3} a_{7},\left\{b_{3}\right\}, a_{1} a_{2}, \ldots\right\rangle
$$

\rightsquigarrow The fugitive is captured if it cannot escape its location: the two vertices incident to its location are occupied by searchers.

Known results on (node/mixed) search games (1/3)

\rightsquigarrow width parameters

[Ellis, Subdbourough, Turner'94]

Known results on (node/mixed) search games (1/3)

\rightsquigarrow width parameters

[Ellis, Subdbourough, Turner'94]
ctp - Cartesian Tree Product number [Harvey'14]; also known as
la - Largeur arborescente [Colin de Verdière'98]

Known results on (node/mixed) search games (2/3)

\rightsquigarrow monotonicity (recontamination does not help the capture)
[Dendris, Kirousis, Thilikos'97]

[Kirousis, Papadimitrou'86]

Known results on (node/mixed) search games (2/3)

\rightsquigarrow monotonicity (recontamination does not help the capture)
[Dendris, Kirousis, Thilikos'97]

[Kirousis, Papadimitrou'86]

Known results on (node/mixed) search games (3/3)

\rightsquigarrow obstacle / certificate

Our result

Theorem:

Let G be a graph and $k \in \mathbb{N}$. Then the following conditions are equivalent:

1. G has a loose tree-decomposition of width k;
2. $\operatorname{ctp}(G) \leq k \rightsquigarrow G$ is a minor of $T^{(k)}=T \square K_{k}$;
3. every tight bramble of G has order at most k;
4. $\operatorname{avms}(G) \leq k \rightsquigarrow$ the mixed search number against an agile and visible fugitive is at most k;
5. $\operatorname{mavms}(G) \leq k \rightsquigarrow$ the monotone mixed search number against an agile and visible fugitive is at most k.

Mixed search strategy (against a visible fugitive)

A mixed search strategy is a function

$$
\mathbf{s}_{G}: 2^{V(G)} \times E(G) \rightarrow 2^{V(G)}
$$

st. $\forall(S, e) \in 2^{V(G)} \times E(G),\left(S, \mathbf{s}_{G}(S, e)\right)$ is a legitimate searchers' move:
\rightsquigarrow [Placement of a searcher]: $\mathbf{s}_{G}(S, e)=S \cup\{x\} ;$
$\rightsquigarrow\left[\right.$ Removal of a searcher]: $\mathbf{s}_{G}(S, e)=S \backslash\{x\}$;
\rightsquigarrow [Sliding on an edge]: $\mathbf{s}_{G}(S, e) \ominus S=\{x, y\}$ and $x y \in E(G)$.

Mixed search strategy (against a visible fugitive)

A mixed search strategy is a function

$$
\mathbf{s}_{G}: 2^{V(G)} \times E(G) \rightarrow 2^{V(G)}
$$

st. $\forall(S, e) \in 2^{V(G)} \times E(G),\left(S, \mathbf{s}_{G}(S, e)\right)$ is a legitimate searchers' move:
\rightsquigarrow [Placement of a searcher]: $\mathbf{s}_{G}(S, e)=S \cup\{x\} ;$
$\rightsquigarrow\left[\right.$ Removal of a searcher]: $\mathbf{s}_{G}(S, e)=S \backslash\{x\}$;
\rightsquigarrow [Sliding on an edge]: $\mathbf{s}_{G}(S, e) \ominus S=\{x, y\}$ and $x y \in E(G)$.

A legitimate searchers' move $\left(S, S^{\prime}\right)$ clears the following set of edges:

$$
\operatorname{Clear}_{G}\left(S, S^{\prime}\right)=\left\{\begin{array}{cl}
\{x y \mid y \in S\} \cap E(G), & \text { if } S^{\prime} \backslash S=\{x\} \\
\emptyset, & \text { if } S^{\prime} \backslash S=\emptyset
\end{array}\right.
$$

The (agile) fugitive strategy (1/2)

The set of accessible edges of G from e is:
$\operatorname{Acc}_{G}\left(S, e, S^{\prime}\right)=\left\{\left.e^{\prime} \in E(G) \backslash\binom{S^{\prime}}{2} \right\rvert\, \exists\right.$ an $\left(S, S^{\prime}\right)$-avoiding $\left(e, e^{\prime}\right)$-pathway $\}$.

The (agile) fugitive strategy (1/2)

The set of accessible edges of G from e is:
$\operatorname{Acc}_{G}\left(S, e, S^{\prime}\right)=\left\{\left.e^{\prime} \in E(G) \backslash\binom{S^{\prime}}{2} \right\rvert\, \exists\right.$ an $\left(S, S^{\prime}\right)$-avoiding $\left(e, e^{\prime}\right)$-pathway $\}$.
The fugitive space is:

$$
\operatorname{freeSp}_{G}\left(S, e, S^{\prime}\right)=\left(\{e\} \backslash \operatorname{Clear}_{G}\left(S, S^{\prime}\right)\right) \cup \operatorname{Acc}_{G}\left(S, e, S^{\prime}\right) .
$$

Search program and mixed search number

A fugitive strategy on G is a pair $\left(e_{1}, \mathbf{f}_{G}\right)$ with $e_{1} \in E(G)$ and

$$
\mathbf{f}_{G}: 2^{V(G)} \times E(G) \times 2^{V(G)} \rightarrow E \cup\{\star\} .
$$

and such that

- if free $S_{G}\left(S, e, S^{\prime}\right) \neq \emptyset$, then $\mathbf{f}_{G}\left(S, e, S^{\prime}\right) \in \operatorname{free} \mathrm{Pp}_{G}\left(S, e, S^{\prime}\right)$
- otherwise $\mathrm{f}_{G}\left(S, e, S^{\prime}\right)=\star \quad$ (the fugitive is captured).

Search program and mixed search number

A fugitive strategy on G is a pair $\left(e_{1}, \mathbf{f}_{G}\right)$ with $e_{1} \in E(G)$ and

$$
\mathbf{f}_{G}: 2^{V(G)} \times E(G) \times 2^{V(G)} \rightarrow E \cup\{\star\} .
$$

A search program on G is a pair $\left(\mathbf{s}_{G},\left(e_{1}, \mathbf{f}_{G}\right)\right)$ generating a play:

$$
\mathcal{P}\left(\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G}\right)=\left\langle S_{0}, e_{1}, S_{1}, \ldots, S_{i-1}, e_{i}, S_{i}, e_{i+1}, \ldots\right\rangle
$$

where for each $i \geq 1$,

- $S_{i}=\mathbf{s}_{G}\left(S_{i-1}, e_{i-1}\right)$ and
- $e_{i+1}=\mathbf{f}_{G}\left(S_{i-1}, e_{i}, S_{i}\right)$.

Search program and mixed search number

A fugitive strategy on G is a pair $\left(e_{1}, \mathbf{f}_{G}\right)$ with $e_{1} \in E(G)$ and

$$
\mathbf{f}_{G}: 2^{V(G)} \times E(G) \times 2^{V(G)} \rightarrow E \cup\{\star\} .
$$

A search program on G is a pair $\left(\mathbf{s}_{G},\left(e_{1}, \mathbf{f}_{G}\right)\right)$ generating a play:

$$
\mathcal{P}\left(\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G}\right)=\left\langle S_{0}, e_{1}, S_{1}, \ldots, S_{i-1}, e_{i}, S_{i}, e_{i+1}, \ldots\right\rangle
$$

The cost of a search program is:

$$
\operatorname{cost}\left(\mathcal{P}\left(\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G}\right)\right)=\max _{i \geq 1}\left|S_{i}\right|
$$

Search program and mixed search number

A fugitive strategy on G is a pair $\left(e_{1}, \mathbf{f}_{G}\right)$ with $e_{1} \in E(G)$ and

$$
\mathbf{f}_{G}: 2^{V(G)} \times E(G) \times 2^{V(G)} \rightarrow E \cup\{\star\} .
$$

A search program on G is a pair $\left(\mathbf{s}_{G},\left(e_{1}, \mathbf{f}_{G}\right)\right)$ generating a play:

$$
\mathcal{P}\left(\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G}\right)=\left\langle S_{0}, e_{1}, S_{1}, \ldots, S_{i-1}, e_{i}, S_{i}, e_{i+1}, \ldots\right\rangle
$$

The cost of a search program is:

$$
\operatorname{cost}\left(\mathcal{P}\left(\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G}\right)\right)=\max _{i \geq 1}\left|S_{i}\right|
$$

\rightsquigarrow The mixed search number (against an agile and visible fugitive) is:
$\operatorname{avms}(G)=\min _{\mathbf{s}_{G} \text { winning }} \max \left\{\boldsymbol{\operatorname { c o s t }}\left(\mathcal{P}\left(\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G}\right)\right) \mid\left(e_{1}, \mathbf{f}_{G}\right)\right.$ is a fugitive strategy $\}$.

Monotone search program

\rightsquigarrow The search program ($\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G}$) is monotone if, in $\mathcal{P}\left(\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G}\right)$, for every $i \geq 1$, the edge e_{i+1} has not been cleared at any step prior to i, that is:

$$
\forall j \leq i, e_{i} \notin \operatorname{Clear}_{G}\left(S_{j-1}, S_{j}\right)
$$

Monotone search program

\rightsquigarrow The search program ($\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G}$) is monotone if, in $\mathcal{P}\left(\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G}\right)$, for every $i \geq 1$, the edge e_{i+1} has not been cleared at any step prior to i, that is:

$$
\forall j \leq i, e_{i} \notin \operatorname{Clear}_{G}\left(S_{j-1}, S_{j}\right)
$$

\rightsquigarrow A search strategy \mathbf{s}_{G} is monotone if for every fugitive strategy $\left(e_{1}, \mathbf{f}_{G}\right)$, the program $\left(\mathbf{s}_{G},\left(e_{1}, \mathbf{f}_{G}\right)\right)$ is monotone.

Monotone search program

\rightsquigarrow The search program ($\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G}$) is monotone if, in $\mathcal{P}\left(\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G}\right)$, for every $i \geq 1$, the edge e_{i+1} has not been cleared at any step prior to i, that is:

$$
\forall j \leq i, e_{i} \notin \operatorname{Clear}_{G}\left(S_{j-1}, S_{j}\right)
$$

\rightsquigarrow A search strategy \mathbf{s}_{G} is monotone if for every fugitive strategy $\left(e_{1}, \mathbf{f}_{G}\right)$, the program $\left(\mathbf{s}_{G},\left(e_{1}, \mathbf{f}_{G}\right)\right)$ is monotone.
\rightsquigarrow The monotone mixed search number is:
$\operatorname{mavms}(G)=\min \left\{\boldsymbol{\operatorname { c o s t }}\left(\mathbf{s}_{G}\right) \mid \mathbf{s}_{G}\right.$ is a monotone winning search strategy $\}$.

Our result

Theorem:

Let G be a graph and $k \in \mathbb{N}$. Then the following conditions are equivalent:

1. G has a loose tree-decomposition of width k;
2. $\operatorname{ctp}(G) \leq k \rightsquigarrow G$ is a minor of $T^{(k)}=T \square K_{k}$;
3. every tight bramble of G has order at most k;
4. $\operatorname{avms}(G) \leq k \rightsquigarrow$ the mixed search number against an agile and visible fugitive is at most k;
5. $\operatorname{mavms}(G) \leq k \rightsquigarrow$ the monotone mixed search number against an agile and visible fugitive is at most k.

Loose tree-decomposition

A loose tree-decomposition is a pair $\mathcal{D}=(T, \chi)$ such that T is a tree and $\chi: V(T) \rightarrow 2^{V(G)}$ satisfying the following properties:
(L1) $\forall x \in V(G), T_{x}=\{t \in V(T) \mid x \in \chi(t)\}$ is non-empty and connected in T.

Loose tree-decomposition

A loose tree-decomposition is a pair $\mathcal{D}=(T, \chi)$ such that T is a tree and $\chi: V(T) \rightarrow 2^{V(G)}$ satisfying the following properties:
(L1) $\forall x \in V(G), T_{x}=\{t \in V(T) \mid x \in \chi(t)\}$ is non-empty and connected in T.
(L2) $\forall e=x y \in E(G), \exists\left\{t_{1}, t_{2}\right\} \in E(T)$ st. $e \in E\left(G\left[\chi\left(t_{1}\right) \cup \chi\left(t_{2}\right)\right]\right)$;

Loose tree-decomposition

A loose tree-decomposition is a pair $\mathcal{D}=(T, \chi)$ such that T is a tree and $\chi: V(T) \rightarrow 2^{V(G)}$ satisfying the following properties:
(L1) $\forall x \in V(G), T_{x}=\{t \in V(T) \mid x \in \chi(t)\}$ is non-empty and connected in T.
(L2) $\forall e=x y \in E(G), \exists\left\{t_{1}, t_{2}\right\} \in E(T)$ st. $e \in E\left(G\left[\chi\left(t_{1}\right) \cup \chi\left(t_{2}\right)\right]\right)$;
(L3) $\forall\left\{t_{1}, t_{2}\right\} \in E(T)$,

$$
\left|E\left(G\left[\chi\left(t_{1}\right) \cup \chi\left(t_{2}\right)\right]\right) \backslash\left(E\left(G\left[\chi\left(t_{1}\right)\right]\right) \cup E\left(G\left[\chi\left(t_{2}\right)\right]\right)\right)\right| \leq 1 .
$$

Cartesian tree product number

T

Definition [Harvey'14, Colin De Verdière'98]
The cartesian tree product number of a graph G is

$$
\operatorname{ctp}(G)=\min \left\{k \in \mathbb{N} \mid G \text { is a minor of } T^{(k)}\right\} .
$$

Cartesian tree product number

Theorem

$$
\operatorname{ctp}(G)=\min \{\operatorname{width}(\mathcal{D}, G) \mid \mathcal{D} \text { is a loose tree-decomposition of } G\} .
$$

Tight bramble

Two subsets S_{1} and S_{2} of $V(G)$ are tightly touching if
\rightsquigarrow either $S_{1} \cap S_{2} \neq \emptyset$
\rightsquigarrow or $E(G)$ contains two distinct edges $x_{1} x_{2}$ and $y_{1} y_{2}$ such that $x_{1}, y_{1} \in S_{1}$ and $x_{2}, y_{2} \in S_{2}$.

$\{X, Y, Z\}$ is a tight bramble

Definition

A set $\mathcal{B} \subseteq 2^{V(G)}$ of pairwise tightly touching connected subsets of $V(G)$ is a tight bramble of G.

Tight bramble

Two subsets S_{1} and S_{2} of $V(G)$ are tightly touching if
\rightsquigarrow either $S_{1} \cap S_{2} \neq \emptyset$
\rightsquigarrow or $E(G)$ contains two distinct edges $x_{1} x_{2}$ and $y_{1} y_{2}$ such that $x_{1}, y_{1} \in S_{1}$ and $x_{2}, y_{2} \in S_{2}$.

$\{X, Y, Z\}$ is a tight bramble
$\{a, b\}$ is a cover of $\{X, Y, Z\}$

Definition

A set $\mathcal{B} \subseteq 2^{V(G)}$ of pairwise tightly touching connected subsets of $V(G)$ is a tight bramble of G.

A set $S \subseteq V(G)$ is a cover of \mathcal{B} if for every set $B \in \mathcal{B}, S \cap B \neq \emptyset$. The order of the bramble \mathcal{B} is the smallest size of a cover of \mathcal{B}.

Tight bramble

Two subsets S_{1} and S_{2} of $V(G)$ are tightly touching if
\rightsquigarrow either $S_{1} \cap S_{2} \neq \emptyset$
\rightsquigarrow or $E(G)$ contains two distinct edges $x_{1} x_{2}$ and $y_{1} y_{2}$ such that $x_{1}, y_{1} \in S_{1}$ and $x_{2}, y_{2} \in S_{2}$.

$\{X, Y, Z\}$ is a tight bramble
$\{a, b\}$ is a cover of $\{X, Y, Z\}$

Theorem
$\operatorname{ctp}(G) \leq k$ if and only if every tight bramble of G has order at most k.

Escape strategy derived from a tight bramble

Theorem: If G has a tight bramble \mathcal{B} of order k, then $\operatorname{avms}(G) \geq k$.
Suppose that a searcher slides on the edge $u v$ and that

$$
\mathcal{P}\left(\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G}\right)=\left\langle\emptyset, e_{1}, \ldots S_{i-1}, e_{i}, S_{i}, e_{i+1} \ldots\right\rangle
$$

\rightsquigarrow there exists a pathway from e_{i} to e_{i+1} going through the edge $x y$ that avoids the edge $u v$.

Monotone search strategy derived from a loose tree-decomposition

Theorem: If $\boldsymbol{\operatorname { c t p }}(G) \leq k$, then $\operatorname{mavms}(G) \leq k$.

$$
\mathcal{P}\left(\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G}\right)=\left\langle\emptyset, e_{1}, \ldots S_{i-1}, e_{i}, S_{i}, \ldots\right\rangle
$$

Theorem:

Let G be a graph and $k \in \mathbb{N}$. Then the following conditions are equivalent:

1. G has a loose tree-decomposition of width k;
2. $\operatorname{ctp}(G) \leq k \rightsquigarrow G$ is a minor of $T^{(k)}=T \square K_{k}$;
3. every tight bramble of G has order at most k;
4. $\operatorname{avms}(G) \leq k \rightsquigarrow$ the mixed search number against an agile and visible fugitive is at most k;
5. $\operatorname{mavms}(G) \leq k \rightsquigarrow$ the monotone mixed search number against an agile and visible fugitive is at most k.

Thank you !

