Mixed graph searching games are all monotone

Christophe PAUL (CNRS – Univ. Montpellier, LIRMM, France)

Joint work with Dimitrios M. Thilikos and Guillaume Mescoff

September 22, 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Back to the roots - Let us revisit mixed search games

The fugitive is located on an edge

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A play of a mixed search game is a sequence

 $\mathcal{P} = \langle \emptyset, \mathbf{a_4}\mathbf{b_4}, \dots \rangle$

The fugitive is located on an edge

Searchers' move : \rightsquigarrow placement of a searcher on a vertex

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A play of a mixed search game is a sequence

 $\mathcal{P} = \langle \emptyset, \frac{\mathbf{a_4}\mathbf{b_4}}{\mathbf{a_2}}, \dots \rangle$

Searchers' move : \rightsquigarrow placement of a searcher on a vertex

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A play of a mixed search game is a sequence

 $\mathcal{P} = \langle \emptyset, a_4 b_4, \{a_2\}, a_7 b_7, \dots \rangle$

Searchers' move : ~ placement of a searcher on a vertex

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A play of a mixed search game is a sequence

 $\mathcal{P} = \langle \emptyset, a_4 b_4, \{a_2\}, a_7 b_7, \{a_2, b_2\}, \dots \rangle$

The fugitive is located on an edge → the fugitive slides along a pathway → the fugitive may stay at its location

Searchers' move : ~ placement of a searcher on a vertex

A play of a mixed search game is a sequence $\mathcal{P} = \langle \emptyset, a_4 b_4, \{a_2\}, a_7 b_7, \{a_2, b_2\}, a_7 b_7, \dots \rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

The fugitive is located on an edge → the fugitive slides along a pathway → the fugitive may stay at its location

Searchers' move : → placement of a searcher on a vertex → sliding a searcher along an edge

A play of a mixed search game is a sequence $\mathcal{P} = \langle \emptyset, a_4 b_4, \{a_2\}, a_7 b_7, \{a_2, b_2\}, a_7 b_7, \{a_2, b_3\}, \dots \rangle$

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣ん(で)

The fugitive is located on an edge → the fugitive slides along a pathway → the fugitive may stay at its location

Searchers' move : → placement of a searcher on a vertex → sliding a searcher along an edge

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A play of a mixed search game is a sequence $\mathcal{P} = \langle \emptyset, a_4 b_4, \{a_2\}, a_7 b_7, \{a_2, b_2\}, a_7 b_7, \{a_2, b_3\}, a_3 a_7, \dots \rangle$

The fugitive is located on an edge → the fugitive slides along a pathway → the fugitive may stay at its location

Searchers' move : → placement of a searcher on a vertex → sliding a searcher along an edge → removal of a searcher

A play of a mixed search game is a sequence $\mathcal{P} = \langle \emptyset, a_4 b_4, \{a_2\}, a_7 b_7, \{a_2, b_2\}, a_7 b_7, \{a_2, b_3\}, a_3 a_7, \{b_3\}, \dots \rangle$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The fugitive is located on an edge → the fugitive slides along a pathway → the fugitive may stay at its location

Searchers' move : → placement of a searcher on a vertex → sliding a searcher along an edge → removal of a searcher

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A play of a mixed search game is a sequence

 $\mathcal{P} = \langle \emptyset, a_4 b_4, \{a_2\}, a_7 b_7, \{a_2, b_2\}, a_7 b_7, \{a_2, b_3\}, a_3 a_7, \{b_3\}, a_1 a_2, \dots \rangle$

The fugitive is located on an edge → the fugitive slides along a pathway → the fugitive may stay at its location

Searchers' move : → placement of a searcher on a vertex → sliding a searcher along an edge → removal of a searcher

A play of a mixed search game is a sequence

 $\mathcal{P} = \langle \emptyset, a_4 b_4, \{a_2\}, a_7 b_7, \{a_2, b_2\}, a_7 b_7, \{a_2, b_3\}, a_3 a_7, \{b_3\}, a_1 a_2, \dots \rangle$

→ The fugitive is captured if it cannot escape its location: the two vertices incident to its location are occupied by searchers.

Known results on (node/mixed) search games (1/3) → width parameters

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Known results on (node/mixed) search games (1/3) \rightsquigarrow width parameters

ctp- Cartesian Tree Product number [Harvey'14]; also known asIa - Largeur arborescente [Colin de Verdière'98]

Known results on (node/mixed) search games (2/3) \rightarrow monotonicity (recontamination does not help the capture)

[Dendris, Kirousis, Thilikos'97]

Known results on (node/mixed) search games (2/3) \rightarrow monotonicity (recontamination does not help the capture)

[Dendris, Kirousis, Thilikos'97]

Known results on (node/mixed) search games (3/3) \rightarrow obstacle / certificate

Our result

Theorem:

Let G be a graph and $k \in \mathbb{N}$. Then the following conditions are equivalent:

- 1. G has a loose tree-decomposition of width k;
- 2. $\operatorname{ctp}(G) \leq k \rightsquigarrow G$ is a minor of $T^{(k)} = T \Box K_k$;
- 3. every tight bramble of G has order at most k;
- avms(G) ≤ k → the mixed search number against an agile and visible fugitive is at most k;
- 5. $mavms(G) \le k \rightsquigarrow$ the monotone mixed search number against an agile and visible fugitive is at most k.

Mixed search strategy (against a visible fugitive)

A mixed search strategy is a function

 $\mathbf{s}_G: 2^{V(G)} \times E(G) \rightarrow 2^{V(G)}$

st. $\forall (S, e) \in 2^{V(G)} \times E(G), (S, \mathbf{s}_G(S, e))$ is a legitimate searchers' move:

- \rightsquigarrow [Placement of a searcher]: $\mathbf{s}_{\mathcal{G}}(S, e) = S \cup \{x\};$
- \rightsquigarrow [Removal of a searcher]: $\mathbf{s}_G(S, e) = S \setminus \{x\};$
- \rightsquigarrow [Sliding on an edge]: $\mathbf{s}_G(S, e) \ominus S = \{x, y\}$ and $xy \in E(G)$.

Mixed search strategy (against a visible fugitive)

A mixed search strategy is a function

 $\mathbf{s}_G: 2^{V(G)} \times E(G) \rightarrow 2^{V(G)}$

st. $\forall (S, e) \in 2^{V(G)} \times E(G), (S, \mathbf{s}_G(S, e))$ is a legitimate searchers' move:

- \rightsquigarrow [Placement of a searcher]: $\mathbf{s}_G(S, e) = S \cup \{x\};$
- \rightsquigarrow [Removal of a searcher]: $\mathbf{s}_G(S, e) = S \setminus \{x\};$
- \rightsquigarrow [Sliding on an edge]: $\mathbf{s}_G(S, e) \ominus S = \{x, y\}$ and $xy \in E(G)$.

A legitimate searchers' move (S, S') clears the following set of edges:

$$\mathsf{Clear}_G(S,S') = \begin{cases} \{xy \mid y \in S\} \cap E(G), & \text{if } S' \setminus S = \{x\} \\ \emptyset, & \text{if } S' \setminus S = \emptyset. \end{cases}$$

The (agile) fugitive strategy (1/2)

The set of *accessible* edges of G from e is:

 $\mathsf{Acc}_{G}(S, e, S') = \left\{ e' \in E(G) \setminus \binom{S'}{2} \mid \exists \mathsf{an} (S, S') \mathsf{-avoiding} (e, e') \mathsf{-pathway} \right\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The (agile) fugitive strategy (1/2)

The set of *accessible* edges of G from e is:

$$\mathsf{Acc}_{\mathsf{G}}(\mathsf{S}, e, \mathsf{S}') = \left\{ e' \in \mathsf{E}(\mathsf{G}) \setminus \binom{\mathsf{S}'}{2} \mid \exists \mathsf{an} \ (\mathsf{S}, \mathsf{S}') \mathsf{-avoiding} \ (e, e') \mathsf{-pathway} \right\}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The fugitive space is:

 $\mathsf{freeSp}_{G}(S, e, S') = (\{e\} \setminus \mathsf{Clear}_{G}(S, S')) \cup \mathsf{Acc}_{G}(S, e, S').$

A fugitive strategy on G is a pair (e_1, f_G) with $e_1 \in E(G)$ and $f_G : 2^{V(G)} \times E(G) \times 2^{V(G)} \to E \cup \{\star\}.$

and such that

- ▶ if freeSp_G(S, e, S') $\neq \emptyset$, then $f_G(S, e, S') \in freeSp_G(S, e, S')$
- otherwise $f_G(S, e, S') = \star$ (the fugitive is captured).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A fugitive strategy on G is a pair (e_1, f_G) with $e_1 \in E(G)$ and $f_G : 2^{V(G)} \times E(G) \times 2^{V(G)} \to E \cup \{\star\}.$

A search program on G is a pair $(\mathbf{s}_G, (e_1, \mathbf{f}_G))$ generating a play:

$$\mathcal{P}(\mathbf{s}_G, e_1, \mathbf{f}_G) = \langle S_0, e_1, S_1, \dots, S_{i-1}, e_i, S_i, e_{i+1}, \dots \rangle$$

where for each $i \ge 1$,

- $S_i = s_G(S_{i-1}, e_{i-1})$ and
- $e_{i+1} = f_G(S_{i-1}, e_i, S_i).$

A fugitive strategy on G is a pair (e_1, f_G) with $e_1 \in E(G)$ and $f_G : 2^{V(G)} \times E(G) \times 2^{V(G)} \to E \cup \{\star\}.$

A search program on G is a pair $(\mathbf{s}_G, (e_1, \mathbf{f}_G))$ generating a play:

$$\mathcal{P}(\mathbf{s}_G, e_1, \mathbf{f}_G) = \langle S_0, e_1, S_1, \dots, S_{i-1}, e_i, S_i, e_{i+1}, \dots \rangle$$

The cost of a search program is:

$$\operatorname{cost}(\mathcal{P}(\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G})) = \max_{i \geq 1} |S_{i}|$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A fugitive strategy on G is a pair (e_1, f_G) with $e_1 \in E(G)$ and $f_G : 2^{V(G)} \times E(G) \times 2^{V(G)} \to E \cup \{\star\}.$

A search program on G is a pair $(\mathbf{s}_G, (e_1, \mathbf{f}_G))$ generating a play:

$$\mathcal{P}(\mathbf{s}_G, e_1, \mathbf{f}_G) = \langle S_0, e_1, S_1, \dots, S_{i-1}, e_i, S_i, e_{i+1}, \dots \rangle$$

The cost of a search program is:

$$\operatorname{cost}(\mathcal{P}(\mathbf{s}_{G}, e_{1}, \mathbf{f}_{G})) = \max_{i \geq 1} |S_{i}|$$

→ The mixed search number (against an agile and visible fugitive) is:

 $\mathbf{avms}(G) = \min_{\mathbf{s}_G \text{ winning}} \max \left\{ \mathbf{cost} \left(\mathcal{P}(\mathbf{s}_G, e_1, \mathbf{f}_G) \right) \mid (e_1, \mathbf{f}_G) \text{ is a fugitive strategy} \right\}.$

Monotone search program

 \rightsquigarrow The search program $(\mathbf{s}_G, e_1, \mathbf{f}_G)$ is monotone if, in $\mathcal{P}(\mathbf{s}_G, e_1, \mathbf{f}_G)$, for every $i \ge 1$, the edge e_{i+1} has not been cleared at any step prior to i, that is:

 $\forall j \leq i, e_i \notin \operatorname{Clear}_G(S_{j-1}, S_j).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Monotone search program

 \rightsquigarrow The search program $(\mathbf{s}_G, e_1, \mathbf{f}_G)$ is monotone if, in $\mathcal{P}(\mathbf{s}_G, e_1, \mathbf{f}_G)$, for every $i \ge 1$, the edge e_{i+1} has not been cleared at any step prior to i, that is:

 $\forall j \leq i, e_i \notin \operatorname{Clear}_G(S_{j-1}, S_j).$

 \rightsquigarrow A search strategy \mathbf{s}_G is monotone if for every fugitive strategy (e_1, \mathbf{f}_G) , the program $(\mathbf{s}_G, (e_1, \mathbf{f}_G))$ is monotone.

Monotone search program

 \rightsquigarrow The search program $(\mathbf{s}_G, e_1, \mathbf{f}_G)$ is monotone if, in $\mathcal{P}(\mathbf{s}_G, e_1, \mathbf{f}_G)$, for every $i \ge 1$, the edge e_{i+1} has not been cleared at any step prior to i, that is:

 $\forall j \leq i, e_i \notin \operatorname{Clear}_G(S_{j-1}, S_j).$

 \rightsquigarrow A search strategy \mathbf{s}_G is monotone if for every fugitive strategy (e_1, \mathbf{f}_G) , the program $(\mathbf{s}_G, (e_1, \mathbf{f}_G))$ is monotone.

 \rightsquigarrow The monotone mixed search number is:

 $mavms(G) = \min \{ cost(s_G) \mid s_G \text{ is a monotone winning search strategy} \}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Our result

Theorem:

Let G be a graph and $k \in \mathbb{N}$. Then the following conditions are equivalent:

- 1. G has a loose tree-decomposition of width k;
- 2. $\operatorname{ctp}(G) \leq k \rightsquigarrow G$ is a minor of $T^{(k)} = T \Box K_k$;
- 3. every tight bramble of G has order at most k;
- avms(G) ≤ k → the mixed search number against an agile and visible fugitive is at most k;
- 5. $mavms(G) \le k \rightsquigarrow$ the monotone mixed search number against an agile and visible fugitive is at most k.

Loose tree-decomposition

A loose tree-decomposition is a pair $\mathcal{D} = (T, \chi)$ such that T is a tree and $\chi : V(T) \to 2^{V(G)}$ satisfying the following properties:

(L1) $\forall x \in V(G), T_x = \{t \in V(T) \mid x \in \chi(t)\}$ is non-empty and connected in T.

・ロト・日本・日本・日本・日本・日本

Loose tree-decomposition

A loose tree-decomposition is a pair $\mathcal{D} = (T, \chi)$ such that T is a tree and $\chi : V(T) \to 2^{V(G)}$ satisfying the following properties:

(L1) $\forall x \in V(G), T_x = \{t \in V(T) \mid x \in \chi(t)\}$ is non-empty and connected in T.

(L2) $\forall e = xy \in E(G), \exists \{t_1, t_2\} \in E(T) \text{ st. } e \in E(G[\chi(t_1) \cup \chi(t_2)]);$

Loose tree-decomposition

A loose tree-decomposition is a pair $\mathcal{D} = (T, \chi)$ such that T is a tree and $\chi : V(T) \to 2^{V(G)}$ satisfying the following properties:

(L1) $\forall x \in V(G), T_x = \{t \in V(T) \mid x \in \chi(t)\}$ is non-empty and connected in T.

(L2) $\forall e = xy \in E(G), \exists \{t_1, t_2\} \in E(T) \text{ st. } e \in E(G[\chi(t_1) \cup \chi(t_2)]);$

(L3)
$$\forall \{t_1, t_2\} \in E(T),$$

 $\left| \mathsf{E}(\mathsf{G}[\chi(t_1)\cup\chi(t_2)])\setminus \left(\mathsf{E}(\mathsf{G}[\chi(t_1)])\cup\mathsf{E}(\mathsf{G}[\chi(t_2)])\right) \right| \leq 1.$

Cartesian tree product number

Definition [Harvey'14, Colin De Verdière'98] The *cartesian tree product number* of a graph *G* is

 $\mathbf{ctp}(G) = \min\{k \in \mathbb{N} \mid G \text{ is a minor of } T^{(k)}\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cartesian tree product number

Theorem

 $\textbf{ctp}({\it G}) = \min \big\{ {\rm width}({\it D},{\it G}) \mid {\it D} \text{ is a loose tree-decomposition of } {\it G} \big\}.$

୬ବ୍ଦ

Tight bramble

Two subsets S_1 and S_2 of V(G) are tightly touching if \rightsquigarrow either $S_1 \cap S_2 \neq \emptyset$ \rightsquigarrow or E(G) contains two distinct edges x_1x_2 and y_1y_2 such that $x_1, y_1 \in S_1$ and $x_2, y_2 \in S_2$.

Definition

A set $\mathcal{B} \subseteq 2^{V(G)}$ of pairwise tightly touching connected subsets of V(G) is a tight bramble of G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Tight bramble

Two subsets S_1 and S_2 of V(G) are tightly touching if \rightsquigarrow either $S_1 \cap S_2 \neq \emptyset$ \rightsquigarrow or E(G) contains two distinct edges x_1x_2 and y_1y_2 such that $x_1, y_1 \in S_1$ and $x_2, y_2 \in S_2$.

 $\{X, Y, Z\}$ is a tight bramble

$$\{a, b\}$$
 is a cover of $\{X, Y, Z\}$

Definition

A set $\mathcal{B} \subseteq 2^{V(G)}$ of pairwise tightly touching connected subsets of V(G) is a tight bramble of G.

A set $S \subseteq V(G)$ is a cover of \mathcal{B} if for every set $B \in \mathcal{B}$, $S \cap B \neq \emptyset$. The order of the bramble \mathcal{B} is the smallest size of a cover of \mathcal{B} .

Tight bramble

Two subsets S_1 and S_2 of V(G) are tightly touching if \rightsquigarrow either $S_1 \cap S_2 \neq \emptyset$ \rightsquigarrow or E(G) contains two distinct edges x_1x_2 and y_1y_2 such that $x_1, y_1 \in S_1$ and $x_2, y_2 \in S_2$.

Theorem

 $ctp(G) \le k$ if and only if every tight bramble of G has order at most k.

Escape strategy derived from a tight bramble

Theorem: If G has a tight bramble \mathcal{B} of order k, then **avms**(G) $\geq k$.

Suppose that a searcher slides on the edge *uv* and that

$$\mathcal{P}(\mathbf{s}_G, \mathbf{e}_1, \mathbf{f}_G) = \langle \emptyset, \mathbf{e}_1, \dots, \mathbf{S}_{i-1}, \mathbf{e}_i, \mathbf{S}_i, \mathbf{e}_{i+1} \dots \rangle$$

 \rightsquigarrow there exists a pathway from e_i to e_{i+1} going through the edge xy that avoids the edge uv.

Monotone search strategy derived from a loose tree-decomposition

Theorem: If $\operatorname{ctp}(G) \leq k$, then $\operatorname{mavms}(G) \leq k$.

$$\mathcal{P}(\mathbf{s}_G, e_1, \mathbf{f}_G) = \langle \emptyset, e_1, \dots, S_{i-1}, e_i, S_i, \dots \rangle$$

Theorem:

Let G be a graph and $k \in \mathbb{N}$. Then the following conditions are equivalent:

- 1. G has a loose tree-decomposition of width k;
- 2. $\operatorname{ctp}(G) \leq k \rightsquigarrow G$ is a minor of $T^{(k)} = T \Box K_k$;
- 3. every tight bramble of G has order at most k;
- avms(G) ≤ k → the mixed search number against an agile and visible fugitive is at most k;
- 5. $mavms(G) \le k \rightsquigarrow$ the monotone mixed search number against an agile and visible fugitive is at most k.

Thank you !

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00