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Back to the roots - Let us revisit mixed search games

PURSUIT-EVASION IN A GRAPH 
T.D. Parsons 

The Pennsylvania State University 

1. INTRODUCTION 

Suppose a man is lost and wandering unpredictably in a dark cave. A party of 

searchers who know the structure of the cave is to be sent to find him. What is 

the minimum number of searchers needed to find the lost man regardless of how he 

behaves? 

This question was raised by my spelunker friend Richard Breisch, who developed 

informal arguments for many plausible conjectures about the problem. There are 

many inequivalent mathematical formulations of this problem, depending on the nature 

of the cave and the possible behavior allowed the searchers and the lost man. 

Breisch did not make precise which formulation he intended, although he gave numer-

ous examples. One example was that of a circular cave, which requires two searchers; 

the lost man could move so as to be always antipodal to a single searcher; however, 

two searchers could start from the same point and travel at constant speed in dif-

ferent directions around the circle, and by the time they met again they would have 

found the lost man with absolute certainty. 

We shall assume that the cave can be regarded as a finite connected graph in 

which the searchers and the lost man must move continuously. The searchers must 

proceed according to a predetermined plan which will capture the lost man even if 

he were an arbitrarily fast, invisible evader who, clairvoyant, knows the searcher's 

every move. 

2. THE SEARCH NUMBER OF A CONNECTED GRAPH 

Let G be a finite connected graph without loops or multiple edges. We may 

assume that G is embedded in R3 
so that its vertices v1 ,v2 ,···,vn are 

represented by distinct points, and its edges {v.,v.} are represented by closed 
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We give a new proof of the result, due to A. LaPaugh, that a graph may be 

optimally “searched” without clearing any edge twice. o 19~~ Academic PWS, IIIC. 

1. INTRODUCITON 

Let us regard a graph as a system of tunnels containing 
a (lucky, 

invisible, fast) fugitive. We desire to capture this fugitive by “searching” all 

edges of the graph, in a sequence of discrete steps, while using the fewest 

possible “guards.” 
This problem was introduced 

by Breisch [2] and 

Parsons [6]. In the version of graph searching considered in [51 (which we 

call edge-searching, using terminology 
from [3]) a search step consists of 

placing a guard at a vertex, or removing a guard from a vertex, or sliding a 

guard along an edge. Further, an edge (u, v} is cleared by sliding a guard 

from u to u, while shielding u from contaminated 
(that is, uncleared) 

edges with appropriately 
placed guards (for example, by keeping another 

guard at u). If, at any point in time, there is a path from a contaminated 

edge e to a cleared edge e’ that is not blocked by guards, e’ becomes 

instantaneously recontaminated 
and must be cleared again. Our objective 

is to reach a state in which all edges are simultaneously 
cleared, so that 

the maximum 
number of guards used at any step is minimized. 

Any 

strategy that achieves this result is called optimal, and the optimal number 

of guards is the edge-search number of the graph. 

LaPaugh [5] proved that there always exists an optimal strategy that is 

monotone (without recontamination). 
One implication 

of this important 

result 
is that there is an optimal strategy that terminates after a linear 

number of steps. 
*Current address: Dept. of Industrial Engineering and Operations Research, Columbia 

University, New York, NY 10027. 
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The fugitive is located on an edge

Searchers’ move :

 placement of a searcher on a vertex

A play of a mixed search game is a sequence

P = 〈∅, a4b4, . . . 〉
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 The fugitive is captured if it cannot escape its location: the two
vertices incident to its location are occupied by searchers.



Known results on (node/mixed) search games (1/3)
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ctp - Cartesian Tree Product number [Harvey’14]; also known as
la - Largeur arborescente [Colin de Verdière’98]



Known results on (node/mixed) search games (1/3)

 width parameters

tw

tw

pw

[Dendris, Kirousis, Thilikos’97]

[Seymour, Thomas’94]

[Kinnersley’92]

[Ellis, Subdbourough, Turner’94]

Agile fugitive

Lazy fugitive

V
isi

bl
e

fu
gi

tiv
e

In
vi

sib
le

fu
gi

tiv
e

N
o
d
e
se
ar
ch

ctp

ctp

ppwcp
p

V
isi

bl
e

fu
gi

tiv
e

In
vi

sib
le

fu
gi

tiv
e

M
ixed

search

[Takahashi, Ueno, Kajitani’95]

ctp - Cartesian Tree Product number [Harvey’14]; also known as
la - Largeur arborescente [Colin de Verdière’98]



Known results on (node/mixed) search games (2/3)
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Known results on (node/mixed) search games (3/3)
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Our result

Theorem:
Let G be a graph and k ∈ N. Then the following conditions are
equivalent:

1. G has a loose tree-decomposition of width k ;

2. ctp(G ) ≤ k  G is a minor of T (k) = T�Kk ;

3. every tight bramble of G has order at most k ;

4. avms(G ) ≤ k  the mixed search number against an agile and
visible fugitive is at most k ;

5. mavms(G ) ≤ k  the monotone mixed search number against an
agile and visible fugitive is at most k .



Mixed search strategy (against a visible fugitive)

A mixed search strategy is a function

sG : 2V (G) × E (G )→ 2V (G)

st. ∀(S , e) ∈ 2V (G) × E (G ),
(
S , sG (S , e)

)
is a legitimate searchers’ move:

 [Placement of a searcher]: sG (S , e) = S ∪ {x};

 [Removal of a searcher]: sG (S , e) = S \ {x};

 [Sliding on an edge]: sG (S , e)	 S = {x , y} and xy ∈ E (G ).
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A legitimate searchers’ move (S ,S ′) clears the following set of edges:

ClearG (S ,S ′) =

{{
xy | y ∈ S

}
∩ E (G ), if S ′ \ S = {x}

∅, if S ′ \ S = ∅.



The (agile) fugitive strategy (1/2)
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The set of accessible edges of G from e is:

AccG (S , e,S ′) =
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| ∃ an (S ,S ′)-avoiding (e, e′)-pathway
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The (agile) fugitive strategy (1/2)
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The fugitive space is:

freeSpG (S , e,S ′) = ({e} \ ClearG (S ,S ′)) ∪ AccG (S , e,S ′).



Search program and mixed search number

A fugitive strategy on G is a pair (e1, fG ) with e1 ∈ E (G ) and

fG : 2V (G) × E (G )× 2V (G) → E ∪ {?}.
and such that

I if freeSpG (S , e,S ′) 6= ∅, then fG (S , e,S ′) ∈ freeSpG (S , e, S ′)

I otherwise fG (S , e, S ′) = ? (the fugitive is captured).
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A fugitive strategy on G is a pair (e1, fG ) with e1 ∈ E (G ) and

fG : 2V (G) × E (G )× 2V (G) → E ∪ {?}.

A search program on G is a pair
(
sG , (e1, fG )

)
generating a play:

P(sG , e1, fG ) = 〈S0, e1,S1, . . . ,Si−1, ei ,Si , ei+1, . . . 〉

where for each i ≥ 1,

• Si = sG (Si−1, ei−1) and

• ei+1 = fG (Si−1, ei , Si ).

The cost of a search program is:

cost
(
P(sG , e1, fG )

)
= max

i≥1
|Si |
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 The mixed search number (against an agile and visible fugitive) is:

avms(G ) = min
sGwinning

max
{

cost
(
P(sG , e1, fG )

)
| (e1, fG ) is a fugitive strategy

}
.



Monotone search program

 The search program (sG , e1, fG ) is monotone if, in P(sG , e1, fG ), for
every i ≥ 1, the edge ei+1 has not been cleared at any step prior to i ,
that is:

∀j ≤ i , ei /∈ ClearG (Sj−1,Sj).



Monotone search program

 The search program (sG , e1, fG ) is monotone if, in P(sG , e1, fG ), for
every i ≥ 1, the edge ei+1 has not been cleared at any step prior to i ,
that is:

∀j ≤ i , ei /∈ ClearG (Sj−1,Sj).

 A search strategy sG is monotone if for every fugitive strategy (e1, fG ),
the program

(
sG , (e1, fG )

)
is monotone.



Monotone search program

 The search program (sG , e1, fG ) is monotone if, in P(sG , e1, fG ), for
every i ≥ 1, the edge ei+1 has not been cleared at any step prior to i ,
that is:

∀j ≤ i , ei /∈ ClearG (Sj−1,Sj).

 A search strategy sG is monotone if for every fugitive strategy (e1, fG ),
the program

(
sG , (e1, fG )

)
is monotone.

 The monotone mixed search number is:
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cost(sG ) | sG is a monotone winning search strategy
}
.
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equivalent:
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Loose tree-decomposition

A loose tree-decomposition is a pair D = (T , χ) such that T is a tree
and χ : V (T )→ 2V (G) satisfying the following properties:

(L1) ∀x ∈ V (G ), Tx = {t ∈ V (T ) | x ∈ χ(t)} is non-empty and
connected in T .

(L2) ∀e = xy ∈ E (G ), ∃{t1, t2} ∈ E (T ) st. e ∈ E (G [χ(t1) ∪ χ(t2)]);

(L3) ∀{t1, t2} ∈ E (T ),∣∣E (G [χ(t1) ∪ χ(t2)]) \
(
E (G [χ(t1)]) ∪ E (G [χ(t2)])

)∣∣ ≤ 1.
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Cartesian tree product number

T K2 T�K2

Definition [Harvey’14, Colin De Verdière’98]
The cartesian tree product number of a graph G is

ctp(G ) = min{k ∈ N | G is a minor of T (k)}.



Cartesian tree product number

Theorem

ctp(G ) = min
{

width(D,G ) | D is a loose tree-decomposition of G
}
.
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Tight bramble

Two subsets S1 and S2 of V (G ) are tightly touching if
 either S1 ∩ S2 6= ∅
 or E (G ) contains two distinct edges x1x2 and y1y2 such that
x1, y1 ∈ S1 and x2, y2 ∈ S2.

a b

cd
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Y Z

{X ,Y ,Z} is a tight bramble

Definition
A set B ⊆ 2V (G) of pairwise tightly touching connected subsets of V (G )
is a tight bramble of G .



Tight bramble

Two subsets S1 and S2 of V (G ) are tightly touching if
 either S1 ∩ S2 6= ∅
 or E (G ) contains two distinct edges x1x2 and y1y2 such that
x1, y1 ∈ S1 and x2, y2 ∈ S2.

a b

cd

X

Y Z

{X ,Y ,Z} is a tight bramble

{a, b} is a cover of {X ,Y ,Z}

Definition
A set B ⊆ 2V (G) of pairwise tightly touching connected subsets of V (G )
is a tight bramble of G .

A set S ⊆ V (G ) is a cover of B if for every set B ∈ B, S ∩ B 6= ∅.
The order of the bramble B is the smallest size of a cover of B.



Tight bramble

Two subsets S1 and S2 of V (G ) are tightly touching if
 either S1 ∩ S2 6= ∅
 or E (G ) contains two distinct edges x1x2 and y1y2 such that
x1, y1 ∈ S1 and x2, y2 ∈ S2.

a b

cd

X

Y Z

{X ,Y ,Z} is a tight bramble

{a, b} is a cover of {X ,Y ,Z}

Theorem

ctp(G ) ≤ k if and only if every tight bramble of G has order at most k.



Escape strategy derived from a tight bramble

Theorem: If G has a tight bramble B of order k , then avms(G ) ≥ k.

Suppose that a searcher slides on the edge uv and that

P(sG , e1, fG ) = 〈∅, e1, . . .Si−1, ei ,Si , ei+1 . . . 〉

u

v

x

y

ei+1

ei

Si−1
Bi ∈ B

Si
Bi−1 ∈ B

ei+1 = fG (Si−1, ei ,Si ).

 there exists a pathway from ei to ei+1 going through the edge xy that
avoids the edge uv .



Monotone search strategy derived from a loose
tree-decomposition

Theorem: If ctp(G ) ≤ k, then mavms(G ) ≤ k .

P(sG , e1, fG ) = 〈∅, e1, . . .Si−1, ei ,Si , . . . 〉

Si−1

Si = sG (Si−1, ei )

ei



Theorem:
Let G be a graph and k ∈ N. Then the following conditions are
equivalent:

1. G has a loose tree-decomposition of width k ;

2. ctp(G ) ≤ k  G is a minor of T (k) = T�Kk ;

3. every tight bramble of G has order at most k ;

4. avms(G ) ≤ k  the mixed search number against an agile and
visible fugitive is at most k ;

5. mavms(G ) ≤ k  the monotone mixed search number against an
agile and visible fugitive is at most k .

Thank you !


