
Mixed graph searching games are all
monotone

Christophe PAUL
(CNRS – Univ. Montpellier, LIRMM, France)

Joint work with
Dimitrios M. Thilikos and Guillaume Mescoff

September 22, 2022

Back to the roots - Let us revisit mixed search games

PURSUIT-EVASION IN A GRAPH
T.D. Parsons

The Pennsylvania State University

1. INTRODUCTION

Suppose a man is lost and wandering unpredictably in a dark cave. A party of

searchers who know the structure of the cave is to be sent to find him. What is

the minimum number of searchers needed to find the lost man regardless of how he

behaves?

This question was raised by my spelunker friend Richard Breisch, who developed

informal arguments for many plausible conjectures about the problem. There are

many inequivalent mathematical formulations of this problem, depending on the nature

of the cave and the possible behavior allowed the searchers and the lost man.

Breisch did not make precise which formulation he intended, although he gave numer-

ous examples. One example was that of a circular cave, which requires two searchers;

the lost man could move so as to be always antipodal to a single searcher; however,

two searchers could start from the same point and travel at constant speed in dif-

ferent directions around the circle, and by the time they met again they would have

found the lost man with absolute certainty.

We shall assume that the cave can be regarded as a finite connected graph in

which the searchers and the lost man must move continuously. The searchers must

proceed according to a predetermined plan which will capture the lost man even if

he were an arbitrarily fast, invisible evader who, clairvoyant, knows the searcher's

every move.

2. THE SEARCH NUMBER OF A CONNECTED GRAPH

Let G be a finite connected graph without loops or multiple edges. We may

assume that G is embedded in R3
so that its vertices v1 ,v2 ,···,vn are

represented by distinct points, and its edges {v.,v.} are represented by closed

l J

JOURNAL
OF ALGORITHMS

12, 239-245 (1991) Monotonicity in Graph Searching

D. BIENSTOCK* ANDPAULSEYMOUR

Bellcore, 445 South Street, Morristown, New Jersey 07960

Received May 1988; accepted November 1990

We give a new proof of the result, due to A. LaPaugh, that a graph may be

optimally “searched” without clearing any edge twice. o 19~~ Academic PWS, IIIC.

1. INTRODUCITON

Let us regard a graph as a system of tunnels containing
a (lucky,

invisible, fast) fugitive. We desire to capture this fugitive by “searching” all

edges of the graph, in a sequence of discrete steps, while using the fewest

possible “guards.”
This problem was introduced

by Breisch [2] and

Parsons [6]. In the version of graph searching considered in [51 (which we

call edge-searching, using terminology
from [3]) a search step consists of

placing a guard at a vertex, or removing a guard from a vertex, or sliding a

guard along an edge. Further, an edge (u, v} is cleared by sliding a guard

from u to u, while shielding u from contaminated
(that is, uncleared)

edges with appropriately
placed guards (for example, by keeping another

guard at u). If, at any point in time, there is a path from a contaminated

edge e to a cleared edge e’ that is not blocked by guards, e’ becomes

instantaneously recontaminated
and must be cleared again. Our objective

is to reach a state in which all edges are simultaneously
cleared, so that

the maximum
number of guards used at any step is minimized.

Any

strategy that achieves this result is called optimal, and the optimal number

of guards is the edge-search number of the graph.

LaPaugh [5] proved that there always exists an optimal strategy that is

monotone (without recontamination).
One implication

of this important

result
is that there is an optimal strategy that terminates after a linear

number of steps.
*Current address: Dept. of Industrial Engineering and Operations Research, Columbia

University, New York, NY 10027.

239

0196-6774/91 $3.00

(apyri&t
0 1991 by Academic

Press, Inc.

All rights of reproduction
in any form reserved.

Mixed search game

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5
a6

b6a7

b7

a8

b8

The fugitive is located on an edge

Searchers’ move :

 placement of a searcher on a vertex

A play of a mixed search game is a sequence

P = 〈∅, a4b4, . . . 〉

Mixed search game

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5
a6

b6a7

b7

a8

b8

The fugitive is located on an edge

Searchers’ move :

 placement of a searcher on a vertex

A play of a mixed search game is a sequence

P = 〈∅, a4b4, {a2}, . . . 〉

Mixed search game

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5
a6

b6a7

b7

a8

b8

The fugitive is located on an edge

 the fugitive slides along a pathway

Searchers’ move :

 placement of a searcher on a vertex

A play of a mixed search game is a sequence

P = 〈∅, a4b4, {a2}, a7b7, . . . 〉

Mixed search game

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5
a6

b6a7

b7

a8

b8

The fugitive is located on an edge

 the fugitive slides along a pathway

Searchers’ move :

 placement of a searcher on a vertex

A play of a mixed search game is a sequence

P = 〈∅, a4b4, {a2}, a7b7, {a2, b2}, . . . 〉

Mixed search game

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5
a6

b6a7

b7

a8

b8

The fugitive is located on an edge

 the fugitive slides along a pathway

 the fugitive may stay at its location

Searchers’ move :

 placement of a searcher on a vertex

A play of a mixed search game is a sequence

P = 〈∅, a4b4, {a2}, a7b7, {a2, b2}, a7b7, . . . 〉

Mixed search game

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5
a6

b6a7

b7

a8

b8

The fugitive is located on an edge

 the fugitive slides along a pathway

 the fugitive may stay at its location

Searchers’ move :

 placement of a searcher on a vertex

 sliding a searcher along an edge

A play of a mixed search game is a sequence

P = 〈∅, a4b4, {a2}, a7b7, {a2, b2}, a7b7, {a2, b3}, . . . 〉

Mixed search game

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5
a6

b6a7

b7

a8

b8

The fugitive is located on an edge

 the fugitive slides along a pathway

 the fugitive may stay at its location

Searchers’ move :

 placement of a searcher on a vertex

 sliding a searcher along an edge

A play of a mixed search game is a sequence

P = 〈∅, a4b4, {a2}, a7b7, {a2, b2}, a7b7, {a2, b3}, a3a7, . . . 〉

Mixed search game

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5
a6

b6a7

b7

a8

b8

The fugitive is located on an edge

 the fugitive slides along a pathway

 the fugitive may stay at its location

Searchers’ move :

 placement of a searcher on a vertex

 sliding a searcher along an edge

 removal of a searcher

A play of a mixed search game is a sequence

P = 〈∅, a4b4, {a2}, a7b7, {a2, b2}, a7b7, {a2, b3}, a3a7, {b3}, . . . 〉

Mixed search game

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5
a6

b6a7

b7

a8

b8

The fugitive is located on an edge

 the fugitive slides along a pathway

 the fugitive may stay at its location

Searchers’ move :

 placement of a searcher on a vertex

 sliding a searcher along an edge

 removal of a searcher

A play of a mixed search game is a sequence

P = 〈∅, a4b4, {a2}, a7b7, {a2, b2}, a7b7, {a2, b3}, a3a7, {b3}, a1a2, . . . 〉

Mixed search game

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5
a6

b6a7

b7

a8

b8

The fugitive is located on an edge

 the fugitive slides along a pathway

 the fugitive may stay at its location

Searchers’ move :

 placement of a searcher on a vertex

 sliding a searcher along an edge

 removal of a searcher

A play of a mixed search game is a sequence

P = 〈∅, a4b4, {a2}, a7b7, {a2, b2}, a7b7, {a2, b3}, a3a7, {b3}, a1a2, . . . 〉

 The fugitive is captured if it cannot escape its location: the two
vertices incident to its location are occupied by searchers.

Known results on (node/mixed) search games (1/3)

 width parameters

tw

tw

pw

[Dendris, Kirousis, Thilikos’97]

[Seymour, Thomas’94]

[Kinnersley’92]

[Ellis, Subdbourough, Turner’94]

Agile fugitive

Lazy fugitive

V
isi

bl
e

fu
gi

tiv
e

In
vi

sib
le

fu
gi

tiv
e

N
o
d
e
se
ar
ch

?

?

ppw

V
isi

bl
e

fu
gi

tiv
e

In
vi

sib
le

fu
gi

tiv
e

M
ixed

search

[Takahashi, Ueno, Kajitani’95]

ctp - Cartesian Tree Product number [Harvey’14]; also known as
la - Largeur arborescente [Colin de Verdière’98]

Known results on (node/mixed) search games (1/3)

 width parameters

tw

tw

pw

[Dendris, Kirousis, Thilikos’97]

[Seymour, Thomas’94]

[Kinnersley’92]

[Ellis, Subdbourough, Turner’94]

Agile fugitive

Lazy fugitive

V
isi

bl
e

fu
gi

tiv
e

In
vi

sib
le

fu
gi

tiv
e

N
o
d
e
se
ar
ch

ctp

ctp

ppwcp
p

V
isi

bl
e

fu
gi

tiv
e

In
vi

sib
le

fu
gi

tiv
e

M
ixed

search

[Takahashi, Ueno, Kajitani’95]

ctp - Cartesian Tree Product number [Harvey’14]; also known as
la - Largeur arborescente [Colin de Verdière’98]

Known results on (node/mixed) search games (2/3)

 monotonicity (recontamination does not help the capture)

tw

tw

pw

monoto
ne

monoto
ne

monoto
ne

[Dendris, Kirousis, Thilikos’97]

[Seymour, Thomas’94]

[Kirousis, Papadimitrou’86]

Agile fugitive

Lazy fugitive

V
isi

bl
e

fu
gi

tiv
e

In
vi

sib
le

fu
gi

tiv
e

N
o
d
e
se
ar
ch

ctp

ctp

cpp

V
isi

bl
e

fu
gi

tiv
e

In
vi

sib
le

fu
gi

tiv
e

M
ixed

search

[Bienstock, Seymour’91]

[Lapaugh’93]

monoto
ne

?

?

Known results on (node/mixed) search games (2/3)

 monotonicity (recontamination does not help the capture)

tw

tw

pw

monoto
ne

monoto
ne

monoto
ne

[Dendris, Kirousis, Thilikos’97]

[Seymour, Thomas’94]

[Kirousis, Papadimitrou’86]

Agile fugitive

Lazy fugitive

V
isi

bl
e

fu
gi

tiv
e

In
vi

sib
le

fu
gi

tiv
e

N
o
d
e
se
ar
ch

ctp

ctp

cpp

V
isi

bl
e

fu
gi

tiv
e

In
vi

sib
le

fu
gi

tiv
e

M
ixed

search

[Bienstock, Seymour’91]

[Lapaugh’93]

monoto
ne

monoto
ne

monoto
ne

Known results on (node/mixed) search games (3/3)

 obstacle / certificate

tw

tw

pw

monoto
ne

monoto
ne

monoto
ne

bramble

bramble

blockage

[Dendris, Kirousis, Thilikos’97]

[Seymour, Thomas’94]

[Bienstock, Robertson, Seymour, Thomas’91]

[Lapaugh’93]

[Kirousis, Papadimitrou’86]

Agile fugitive

Lazy fugitive

V
isi

bl
e

fu
gi

tiv
e

In
vi

sib
le

fu
gi

tiv
e

N
o
d
e
se
ar
ch

ctp

ctp

cpp

V
isi

bl
e

fu
gi

tiv
e

In
vi

sib
le

fu
gi

tiv
e

M
ixed

search

[Bienstock, Seymour’91]

monoto
ne

monoto
ne

monoto
ne

cru
sa

de

tig
ht bramble

tig
ht bramble

Our result

Theorem:
Let G be a graph and k ∈ N. Then the following conditions are
equivalent:

1. G has a loose tree-decomposition of width k ;

2. ctp(G) ≤ k G is a minor of T (k) = T�Kk ;

3. every tight bramble of G has order at most k ;

4. avms(G) ≤ k the mixed search number against an agile and
visible fugitive is at most k ;

5. mavms(G) ≤ k the monotone mixed search number against an
agile and visible fugitive is at most k .

Mixed search strategy (against a visible fugitive)

A mixed search strategy is a function

sG : 2V (G) × E (G)→ 2V (G)

st. ∀(S , e) ∈ 2V (G) × E (G),
(
S , sG (S , e)

)
is a legitimate searchers’ move:

 [Placement of a searcher]: sG (S , e) = S ∪ {x};

 [Removal of a searcher]: sG (S , e) = S \ {x};

 [Sliding on an edge]: sG (S , e)	 S = {x , y} and xy ∈ E (G).

Mixed search strategy (against a visible fugitive)

A mixed search strategy is a function

sG : 2V (G) × E (G)→ 2V (G)

st. ∀(S , e) ∈ 2V (G) × E (G),
(
S , sG (S , e)

)
is a legitimate searchers’ move:

 [Placement of a searcher]: sG (S , e) = S ∪ {x};

 [Removal of a searcher]: sG (S , e) = S \ {x};

 [Sliding on an edge]: sG (S , e)	 S = {x , y} and xy ∈ E (G).

A legitimate searchers’ move (S ,S ′) clears the following set of edges:

ClearG (S ,S ′) =

{{
xy | y ∈ S

}
∩ E (G), if S ′ \ S = {x}

∅, if S ′ \ S = ∅.

The (agile) fugitive strategy (1/2)

S S ′

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5
a6

b6a7

b7

a8

b8

e

The set of accessible edges of G from e is:

AccG (S , e,S ′) =
{
e′ ∈ E (G) \

(
S′

2

)
| ∃ an (S ,S ′)-avoiding (e, e′)-pathway

}
.

The (agile) fugitive strategy (1/2)

S S ′

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5
a6

b6a7

b7

a8

b8

e

The set of accessible edges of G from e is:

AccG (S , e,S ′) =
{
e′ ∈ E (G) \

(
S′

2

)
| ∃ an (S ,S ′)-avoiding (e, e′)-pathway

}
.

The fugitive space is:

freeSpG (S , e,S ′) = ({e} \ ClearG (S ,S ′)) ∪ AccG (S , e,S ′).

Search program and mixed search number

A fugitive strategy on G is a pair (e1, fG) with e1 ∈ E (G) and

fG : 2V (G) × E (G)× 2V (G) → E ∪ {?}.
and such that

I if freeSpG (S , e,S ′) 6= ∅, then fG (S , e,S ′) ∈ freeSpG (S , e, S ′)

I otherwise fG (S , e, S ′) = ? (the fugitive is captured).

Search program and mixed search number

A fugitive strategy on G is a pair (e1, fG) with e1 ∈ E (G) and

fG : 2V (G) × E (G)× 2V (G) → E ∪ {?}.

A search program on G is a pair
(
sG , (e1, fG)

)
generating a play:

P(sG , e1, fG) = 〈S0, e1,S1, . . . ,Si−1, ei ,Si , ei+1, . . . 〉

where for each i ≥ 1,

• Si = sG (Si−1, ei−1) and

• ei+1 = fG (Si−1, ei , Si).

The cost of a search program is:

cost
(
P(sG , e1, fG)

)
= max

i≥1
|Si |

Search program and mixed search number

A fugitive strategy on G is a pair (e1, fG) with e1 ∈ E (G) and

fG : 2V (G) × E (G)× 2V (G) → E ∪ {?}.

A search program on G is a pair
(
sG , (e1, fG)

)
generating a play:

P(sG , e1, fG) = 〈S0, e1,S1, . . . ,Si−1, ei ,Si , ei+1, . . . 〉

The cost of a search program is:

cost
(
P(sG , e1, fG)

)
= max

i≥1
|Si |

Search program and mixed search number

A fugitive strategy on G is a pair (e1, fG) with e1 ∈ E (G) and

fG : 2V (G) × E (G)× 2V (G) → E ∪ {?}.

A search program on G is a pair
(
sG , (e1, fG)

)
generating a play:

P(sG , e1, fG) = 〈S0, e1,S1, . . . ,Si−1, ei ,Si , ei+1, . . . 〉

The cost of a search program is:

cost
(
P(sG , e1, fG)

)
= max

i≥1
|Si |

 The mixed search number (against an agile and visible fugitive) is:

avms(G) = min
sGwinning

max
{

cost
(
P(sG , e1, fG)

)
| (e1, fG) is a fugitive strategy

}
.

Monotone search program

 The search program (sG , e1, fG) is monotone if, in P(sG , e1, fG), for
every i ≥ 1, the edge ei+1 has not been cleared at any step prior to i ,
that is:

∀j ≤ i , ei /∈ ClearG (Sj−1,Sj).

Monotone search program

 The search program (sG , e1, fG) is monotone if, in P(sG , e1, fG), for
every i ≥ 1, the edge ei+1 has not been cleared at any step prior to i ,
that is:

∀j ≤ i , ei /∈ ClearG (Sj−1,Sj).

 A search strategy sG is monotone if for every fugitive strategy (e1, fG),
the program

(
sG , (e1, fG)

)
is monotone.

Monotone search program

 The search program (sG , e1, fG) is monotone if, in P(sG , e1, fG), for
every i ≥ 1, the edge ei+1 has not been cleared at any step prior to i ,
that is:

∀j ≤ i , ei /∈ ClearG (Sj−1,Sj).

 A search strategy sG is monotone if for every fugitive strategy (e1, fG),
the program

(
sG , (e1, fG)

)
is monotone.

 The monotone mixed search number is:

mavms(G) = min
{

cost(sG) | sG is a monotone winning search strategy
}
.

Our result

Theorem:
Let G be a graph and k ∈ N. Then the following conditions are
equivalent:

1. G has a loose tree-decomposition of width k ;

2. ctp(G) ≤ k G is a minor of T (k) = T�Kk ;

3. every tight bramble of G has order at most k ;

4. avms(G) ≤ k the mixed search number against an agile and
visible fugitive is at most k ;

5. mavms(G) ≤ k the monotone mixed search number against an
agile and visible fugitive is at most k .

Loose tree-decomposition

A loose tree-decomposition is a pair D = (T , χ) such that T is a tree
and χ : V (T)→ 2V (G) satisfying the following properties:

(L1) ∀x ∈ V (G), Tx = {t ∈ V (T) | x ∈ χ(t)} is non-empty and
connected in T .

(L2) ∀e = xy ∈ E (G), ∃{t1, t2} ∈ E (T) st. e ∈ E (G [χ(t1) ∪ χ(t2)]);

(L3) ∀{t1, t2} ∈ E (T),∣∣E (G [χ(t1) ∪ χ(t2)]) \
(
E (G [χ(t1)]) ∪ E (G [χ(t2)])

)∣∣ ≤ 1.

a

b c

d e f

a, b b, c , e

b, e

c , e

e, d

e, f

Loose tree-decomposition

A loose tree-decomposition is a pair D = (T , χ) such that T is a tree
and χ : V (T)→ 2V (G) satisfying the following properties:

(L1) ∀x ∈ V (G), Tx = {t ∈ V (T) | x ∈ χ(t)} is non-empty and
connected in T .

(L2) ∀e = xy ∈ E (G), ∃{t1, t2} ∈ E (T) st. e ∈ E (G [χ(t1) ∪ χ(t2)]);

(L3) ∀{t1, t2} ∈ E (T),∣∣E (G [χ(t1) ∪ χ(t2)]) \
(
E (G [χ(t1)]) ∪ E (G [χ(t2)])

)∣∣ ≤ 1.

a

b c

d e f

a, b b, c, e

b, e

c , e

e, d

e, f

Loose tree-decomposition

A loose tree-decomposition is a pair D = (T , χ) such that T is a tree
and χ : V (T)→ 2V (G) satisfying the following properties:

(L1) ∀x ∈ V (G), Tx = {t ∈ V (T) | x ∈ χ(t)} is non-empty and
connected in T .

(L2) ∀e = xy ∈ E (G), ∃{t1, t2} ∈ E (T) st. e ∈ E (G [χ(t1) ∪ χ(t2)]);

(L3) ∀{t1, t2} ∈ E (T),∣∣E (G [χ(t1) ∪ χ(t2)]) \
(
E (G [χ(t1)]) ∪ E (G [χ(t2)])

)∣∣ ≤ 1.

a

b c

d e f

a, b b, c, e

b, e

c , e

e, d

e, f

Cartesian tree product number

T K2 T�K2

Definition [Harvey’14, Colin De Verdière’98]
The cartesian tree product number of a graph G is

ctp(G) = min{k ∈ N | G is a minor of T (k)}.

Cartesian tree product number

Theorem

ctp(G) = min
{

width(D,G) | D is a loose tree-decomposition of G
}
.

c

d

b

e

a

h

f

g

a1

a2

b1

b2

c1

c2

d1

d2
e1

e2

f1

f2

g1

g2

h1

h2

a1
a2

b1
a2

b1
b2

c1
b2

c1
c2

d1
c2

d1
d2

e1
c2

e1
e2

f1
d2

f1
f2

g1
d2

g1
g2

h1
e2

h1
h2

Tight bramble

Two subsets S1 and S2 of V (G) are tightly touching if
 either S1 ∩ S2 6= ∅
 or E (G) contains two distinct edges x1x2 and y1y2 such that
x1, y1 ∈ S1 and x2, y2 ∈ S2.

a b

cd

X

Y Z

{X ,Y ,Z} is a tight bramble

Definition
A set B ⊆ 2V (G) of pairwise tightly touching connected subsets of V (G)
is a tight bramble of G .

Tight bramble

Two subsets S1 and S2 of V (G) are tightly touching if
 either S1 ∩ S2 6= ∅
 or E (G) contains two distinct edges x1x2 and y1y2 such that
x1, y1 ∈ S1 and x2, y2 ∈ S2.

a b

cd

X

Y Z

{X ,Y ,Z} is a tight bramble

{a, b} is a cover of {X ,Y ,Z}

Definition
A set B ⊆ 2V (G) of pairwise tightly touching connected subsets of V (G)
is a tight bramble of G .

A set S ⊆ V (G) is a cover of B if for every set B ∈ B, S ∩ B 6= ∅.
The order of the bramble B is the smallest size of a cover of B.

Tight bramble

Two subsets S1 and S2 of V (G) are tightly touching if
 either S1 ∩ S2 6= ∅
 or E (G) contains two distinct edges x1x2 and y1y2 such that
x1, y1 ∈ S1 and x2, y2 ∈ S2.

a b

cd

X

Y Z

{X ,Y ,Z} is a tight bramble

{a, b} is a cover of {X ,Y ,Z}

Theorem

ctp(G) ≤ k if and only if every tight bramble of G has order at most k.

Escape strategy derived from a tight bramble

Theorem: If G has a tight bramble B of order k , then avms(G) ≥ k.

Suppose that a searcher slides on the edge uv and that

P(sG , e1, fG) = 〈∅, e1, . . .Si−1, ei ,Si , ei+1 . . . 〉

u

v

x

y

ei+1

ei

Si−1
Bi ∈ B

Si
Bi−1 ∈ B

ei+1 = fG (Si−1, ei ,Si).

 there exists a pathway from ei to ei+1 going through the edge xy that
avoids the edge uv .

Monotone search strategy derived from a loose
tree-decomposition

Theorem: If ctp(G) ≤ k, then mavms(G) ≤ k .

P(sG , e1, fG) = 〈∅, e1, . . .Si−1, ei ,Si , . . . 〉

Si−1

Si = sG (Si−1, ei)

ei

Theorem:
Let G be a graph and k ∈ N. Then the following conditions are
equivalent:

1. G has a loose tree-decomposition of width k ;

2. ctp(G) ≤ k G is a minor of T (k) = T�Kk ;

3. every tight bramble of G has order at most k ;

4. avms(G) ≤ k the mixed search number against an agile and
visible fugitive is at most k ;

5. mavms(G) ≤ k the monotone mixed search number against an
agile and visible fugitive is at most k .

Thank you !

