THE COMPLEXITY OF COMPUTING OPTIMUM LABELINGS FOR TEMPORAL CONNECTIVITY

Nina Klobas¹ George B. Mertzios¹ Hendrik Molter² Paul G. Spirakis³

¹Durham University, UK

²Ben-Gurion University of the Negev, Israel

³University of Liverpool, UK & University of Patras, Greece

The 10th Workshop on Graph Classes, Optimization, and Width Parameters (GROW)

September 2022

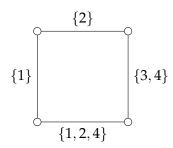
Temporal Graphs

Definition

A temporal graph G is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda : E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

Maximum label is called a *lifetime* (*age*) of G.

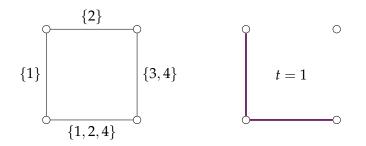

Definition

A temporal graph G is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda : E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

Maximum label is called a *lifetime* (*age*) of G.

Temporal graph:

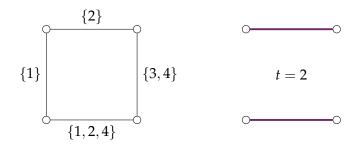

Definition

A temporal graph G is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda : E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

Maximum label is called a *lifetime* (*age*) of G.

Temporal graph:

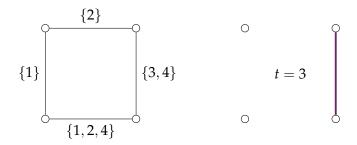

Definition

A temporal graph G is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda : E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

Maximum label is called a *lifetime* (*age*) of G.

Temporal graph:


Definition

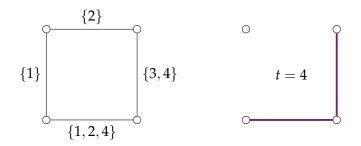
A temporal graph G is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda : E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

Maximum label is called a *lifetime* (*age*) of G.

Temporal graph:

Temporal Graphs


Definition

A temporal graph G is a pair (G, λ) where:

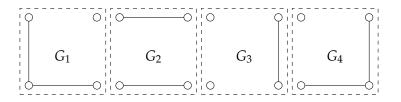
- G = (V, E) is an underlying (di)graph and
- $\lambda : E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

Maximum label is called a *lifetime* (*age*) of G.

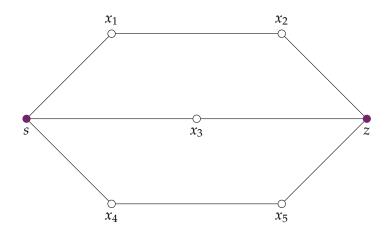
Temporal graph:

MAL is NP-c. 00000

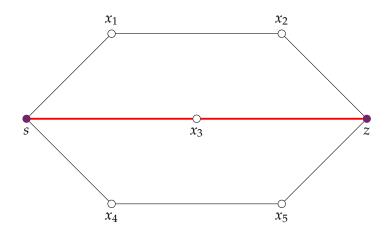
Temporal Graphs

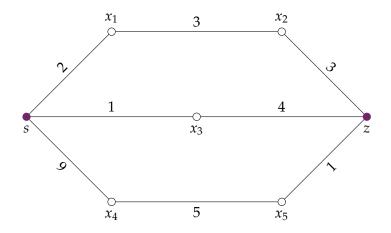

Definition

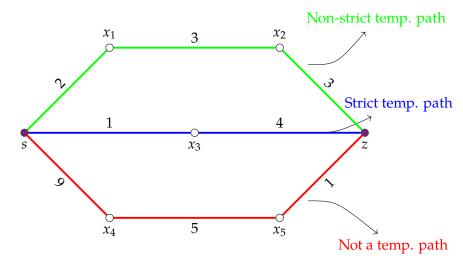
A temporal graph G is a pair (G, λ) where:


- G = (V, E) is an underlying (di)graph and
- $\lambda : E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

Maximum label is called a *lifetime* (*age*) of G.


Alternatively we can view it as a sequence of static graphs, called *snapshots*:


From Paths to Temporal Paths


From Paths to Temporal Paths

From Paths to Temporal Paths

FROM PATHS TO TEMPORAL PATHS

MAL is NP-c. 00000

Definitions and Notations

Definition

A temporal graph G is (temporally) connected iff for all $u, v \in V(G)$ there exists a temporal (u, v)-path¹.

¹All temporal paths are strict.

Definitions and Notations

Definition

A temporal graph \mathcal{G} is (temporally) connected iff for all $u, v \in V(G)$ there exists a temporal (u, v)-path¹. Let $R \subseteq V(G)$, \mathcal{G} is R-(temporally) connected iff for all $u, v \in R$ there exists a temporal (u, v)-path.

¹All temporal paths are strict.

Definitions and Notations

Definition

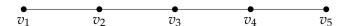
A temporal graph \mathcal{G} is (temporally) connected iff for all $u, v \in V(G)$ there exists a temporal (u, v)-path¹. Let $R \subseteq V(G)$, \mathcal{G} is R-(temporally) connected iff for all $u, v \in R$ there exists a temporal (u, v)-path.

• Maximum label $\alpha(\lambda)$ is called the age of \mathcal{G} .

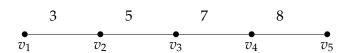
¹All temporal paths are strict.

Definitions and Notations

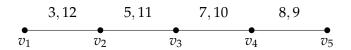
Definition

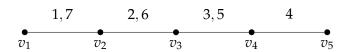

A temporal graph \mathcal{G} is (temporally) connected iff for all $u, v \in V(G)$ there exists a temporal (u, v)-path¹. Let $R \subseteq V(G)$, \mathcal{G} is R-(temporally) connected iff for all $u, v \in R$ there exists a temporal (u, v)-path.

- Maximum label $\alpha(\lambda)$ is called the age of \mathcal{G} .
- The total cost of (G, λ) is $|\lambda| = \sum_{e \in E} |\lambda_e|$.

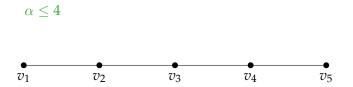

¹All temporal paths are strict.

Min. Labeling (ML)

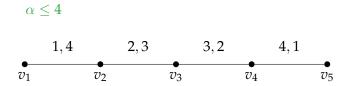

Min. Labeling (ML)


Min. Labeling (ML)

Min. Labeling (ML)



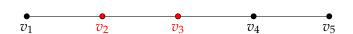
Min. Labeling (ML)



Min. Aged Labeling (MAL)

Min. Aged Labeling (MAL)

Min. Aged Labeling (MAL)



Min. Steiner Labeling (MSL)

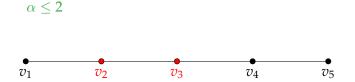
- **Input:** A static graph G = (V, E), a subset $R \subseteq V$ and an integer $k \in \mathbb{N}$.
- **Question:** Does there exist a temporally *R*-connected temporal graph (*G*, λ), where $|\lambda| \le k$?

Min. Steiner Labeling (MSL)

- **Input:** A static graph G = (V, E), a subset $R \subseteq V$ and an integer $k \in \mathbb{N}$.
- **Question:** Does there exist a temporally *R*-connected temporal graph (*G*, λ), where $|\lambda| \le k$?

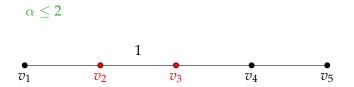
Min. Steiner Labeling (MSL)

- **Input:** A static graph G = (V, E), a subset $R \subseteq V$ and an integer $k \in \mathbb{N}$.
- **Question:** Does there exist a temporally *R*-connected temporal graph (*G*, λ), where $|\lambda| \le k$?



Min. Aged Steiner Labeling (MASL)

- **Input:** A static graph G = (V, E), a subset $R \subseteq V$ and two integers $k, a \in \mathbb{N}$.
- **Question:** Does there exist a temporally *R*-connected temporal graph (*G*, λ), where $|\lambda| \le k$ and $\alpha(\lambda) \le a$?


Min. Aged Steiner Labeling (MASL)

- **Input:** A static graph G = (V, E), a subset $R \subseteq V$ and two integers $k, a \in \mathbb{N}$.
- **Question:** Does there exist a temporally *R*-connected temporal graph (*G*, λ), where $|\lambda| \le k$ and $\alpha(\lambda) \le a$?

Min. Aged Steiner Labeling (MASL)

- **Input:** A static graph G = (V, E), a subset $R \subseteq V$ and two integers $k, a \in \mathbb{N}$.
- **Question:** Does there exist a temporally *R*-connected temporal graph (*G*, λ), where $|\lambda| \le k$ and $\alpha(\lambda) \le a$?

Temporal Graphs	Opt. Labelings	MAL 15 NP-c.	FPT of MSL
000	00●	00000	00

_

Age	Non-restricted	Restricted
Temp. connected		
R-connected		

Temporal Graphs 000	Opt. Labelings 00•	MAL 15 NP-c. 00000	FPT of MSL 00

Age	Non-restricted	Restricted
Temp. connected	Poly-time	
R-connected		

Temporal Graphs 000	Opt. Labelings 000	MAL 15 NP-c. 00000	FPT of MSL 00

Age	Non-restricted	Restricted
Temp. connected	Poly-time	NP-complete
R-connected		

Temporal Graphs 000	Opt. Labelings 00●	MAL 15 NP-c. 00000	FPT of MSL 00

Age	Non-restricted	Restricted
Temp. connected	Poly-time	NP-complete
R-connected	NP-complete	

Temporal Graphs 000	Opt. Labelings	MAL 15 NP-c. 00000	FPT of MSL 00

Age	Non-restricted	Restricted
Temp. connected	Poly-time	NP-complete
R-connected	NP-complete	
	FPT wrt. $ R $	

Temporal Graphs 000	Opt. Labelings 00●	MAL is NP-c. 00000	FPT of MSL 00

Age	Non-restricted	Restricted
Temp. connected	Poly-time	NP-complete
R-connected	NP-complete	W[1]-hard wrt $ R $
	FPT wrt. $ R $	

Temporal Graphs 000	Opt. Labelings 00●	MAL 15 NP-c. 00000	FPT of MSL 00

Results

Age	Non-restricted	Restricted
Temp. connected	Poly-time	NP-complete
R-connected	NP-complete	W[1]-hard wrt R
	FPT wrt. $ R $	

Temporal Graphs	Opt. Labelings	MAL 15 NP-c.	FPT of MSL
000	000	●0000	00

MAL IS NP-COMPLETE

Reduction from Monotone Max XOR(3):

Temporal Graphs	Opt. Labelings	MAL 15 NP-c.	FPT of MSL
000	000	●0000	00

MAL IS NP-COMPLETE

Reduction from Monotone Max XOR(3):

- conjunction of XOR clauses,

Temporal Graphs	Opt. Labelings	MAL 15 NP-c.	FPT of MSL
000	000	●0000	00

MAL IS NP-COMPLETE

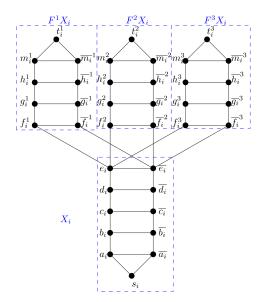
Reduction from Monotone Max XOR(3):

- conjunction of XOR clauses,
- non-negated variables,

Temporal Graphs	Opt. Labelings	MAL 15 NP-c.	FPT of MSL
000	000	●0000	00

MAL is NP-complete

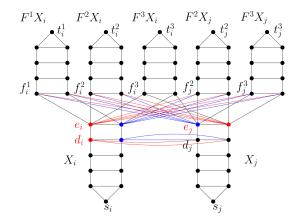
Reduction from Monotone Max XOR(3):


- conjunction of XOR clauses,
- non-negated variables,
- variables appear exactly 3 times.

Temporal Graphs 000

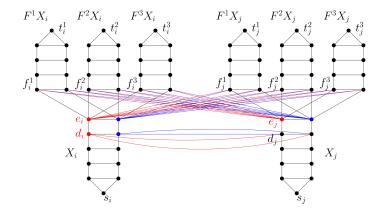
Opt. Labelings

MAL is NP-c. 0●000


VARIABLE GADGETS

Temporal Graphs	Opt. Labelings	MAL is NP-c.	FPT of MSL
000	000	00●00	00

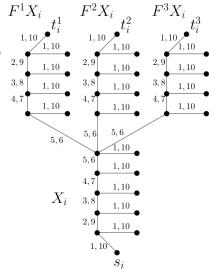
Connecting variable gadgets I


Clause $(x_i \oplus x_j)$ with 3rd and 1st appearance of x_i, x_j , respectively.

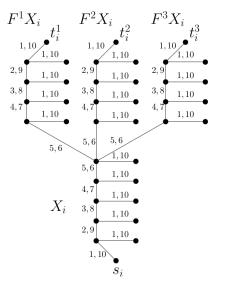
Temporal Graphs	Opt. Labelings	MAL 15 NP-C.	FPT of MSL
000	000	00000	00

Connecting variable gadgets II

No clause with x_i and x_j .

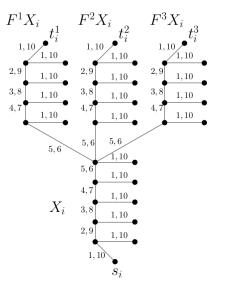


Temporal Graphs	Opt. Labelings	MAL 15 NP-c.	FPT of MSL
000	000	0000●	00


► α = d = 10,

Temporal Graphs 000	Opt. Labelings 000	MAL 15 NP-c. 0000●	FPT of MSL 00

- $\blacktriangleright \ \alpha = d = 10,$
- label one side from s_i to t_i ,



- $\blacktriangleright \ \alpha = d = 10,$
- label one side from s_i to t_i ,
- a clause is satisfied iff only one side of the shared fork is labeled.

- $\blacktriangleright \ \alpha = d = 10,$
- label one side from s_i to t_i ,
- a clause is satisfied iff only one side of the shared fork is labeled.

$$OPT(G_{\phi}, d_{\phi}) \leq \operatorname{poly}(n, k)$$
$$\Leftrightarrow$$
$$OPT(\phi) \geq k.$$

Temporal Graphs 000	Opt. Labelings 000	MAL 15 NP-c. 00000	FPT of MSL ©0
000	000	00000	•0

Temporal Graphs 000	Opt. Labelings 000	MAL 15 NP-c. 00000	FPT of MSL •0

Crucial property:

Temporal Graphs 000	Opt. Labelings 000	MAL 15 NP-c. 00000	FPT of MSL ●0

Crucial property:

 There exists a minimum labeling that is a tree or a tree with a C₄.

Temporal Graphs 000	Opt. Labelings 000	MAL 15 NP-c. 00000	FPT of MSL ●0

Crucial property:

There exists a minimum labeling that is a tree or a tree with a C₄.

Idea of the algorithm:

Temporal Graphs 000	Opt. Labelings 000	MAL 15 NP-c. 00000	FPT of MSL •0

Crucial property:

 There exists a minimum labeling that is a tree or a tree with a C₄.

Idea of the algorithm:

► Use an FPT algorithm for Steiner Tree.

Crucial property:

There exists a minimum labeling that is a tree or a tree with a C₄.

Idea of the algorithm:

- ► Use an FPT algorithm for Steiner Tree.
- ▶ Iterate over all *C*₄s in *G*, check if one can be labeled in an optimum solution.

Thank you!

Questions?

Temporal Graphs 000	Opt. Labelings 000	MAL 15 NP-c. 00000	FPT of MSL ○●

MAL is NP-hard for α = d and poly-time solvable for α = 2d, what happens for d < α < 2d?</p>

Temporal Graphs	Opt. Labelings	MAL 15 NP-c.	FPT of MSL
000	000	00000	0●

- ► MAL is NP-hard for α = d and poly-time solvable for α = 2d, what happens for d < α < 2d?</p>
- ► Is there an XP algorithm form MASL?

Temporal Graphs 000	Opt. Labelings 000	MAL 15 NP-c. 00000	FPT of MSL ○●

- ► MAL is NP-hard for \(\alpha\) = d and poly-time solvable for \(\alpha\) = 2d, what happens for \(d < \alpha < 2d?\)</p>
- ► Is there an XP algorithm form MASL?
- What if we require two temporally disjoint paths among vertices?