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Property Testing

Property testing is about
Fast (sublinear, often constant time) algorithms for
approximate decision-making.
Runtime depends on parameters, such as (average or
maximum) degree of the input graph, maximum allowed error
of the result, probability of the result being correct.
Implemented constant time testers for connectivity, 2- and
3-edge connectivity, estimates of the nuber of connected
components, distance to connectivity, 2-edge connectivity and
eulerianity. All for sparse graphs. We also have a (not yet
implemented) estimate for the distance to 3-edge-connectivity.
For 2-edge-connectivity and 3-edge-connectivity, our
approaches have better runtime than previoulsy known
approaches. This advantage carries over to tolerant testers
based on them.



Models

Bounded degree: G = (V,E),∆ ≥ ∆(G) is ϵ-far from having a
property P, if it cannot be transformed into a graph
G′ ∈ P ,∆(G′) ≤ ∆ by at most ϵ∆|V| edge modifications.
Complexities are given as functions of the maximum degree ∆.
Sparse graph (aka. unbounded degree): G = (V,E) is ϵ-far
from having a property P, if it cannot be transformed into a
graph G′ ∈ P by at most ϵ|E| edge modifications (i.e. edge
insertions and edge deletions). Complexities are usually given
as functions of the average degree d. When estimating
distance to a property, often the distance is given in terms of
edge modifications relative to the number of nodes (δ):
δ|V| = ϵ|E|.
In both models: available queries are degree and i-th
neighbour.



Connectivity Tests

Property Model Complexity

Connectivity (Goldreich 2002) ∆ O
(

log2( 1
ϵ∆)

ϵ

)
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)
2-edge-connectivity (Goldreich 2002) ∆ O

(
log2( 1

ϵ∆)
ϵ

)
2-edge-connectivity d O
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)
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)
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Distance Estimates

Property Model Complexity

Connectivity (Chazelle 2005) d O
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)
Connectivity (Marko 2005) d O
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)
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Distance to 2-edge-connectivity

Lemma (Eswaran and Tarjan 1976):
Let G = (V,E) be a graph. Let c1 be the number of connected
components of G, that are 2-edge-connected. Let c2 be the
number of 2-edge-connected components of G, that are connected
to the rest of G by a single bridge. If |V| > 2 and c1 + c2 > 1, the
minimal number of edge modifications necessary to make G
2-edge-connected is

⌈ c2
2

⌉
+ c1.



Distance to 2-edge-connectivity

i n t × i n t zshg_component_2 (s , r)
{

1 Do f i r s t depth−f i r s t search from s f o r up to r + 1 nodes .
Let n1 be the number of nodes found .

2 Do second depth−f i r s t search from s f o r up to r + 1 nodes ,
never t r a v e r s i n g an edge of the search t r e e of 1 in the same d i r e c t i o n .
Let n2 be the number of nodes found .

i f (n1 == n2 == r + 1) // Not in a 2−edge−connected component of s i z e at most r
r e tu rn (0, 0) ;

3 Do t h i r d depth−f i r s t search from s f o r up to r nodes ,
on ly c ons i d e r i ng nodes found in 2 ,
never t r a v e r s i n g an edge of the search t r e e of 2 in the same d i r e c t i o n .
Let n3 be the number of nodes found .

i f (n2 == n3 == n1 ) // In 2−edge−connected component of s i z e n3 that i s 2−edge−connected
re tu rn (n3, 0) ;

e l s e i f (n2 == n3 ) // In 2−edge−conn . component of s i z e n3 conn . to r e s t by s i n g l e br idge
re tu rn (0, n3) ;

e l s e
r e tu rn (0, 0) ;

}



Distance to 2-edge-connectivity

f l o a t zshg2_component (δ , p , n)
{

r := 7
2(1−p)δ2 ;

a1 := a2 := 0 ;

ℓ := r(3 loge(
2
δ
) + 6) ;

f o r ( i := 0 ; i < r ; i := i + 1)
{

s := rand_index (n ) ;
x := rand_range ( 2

δ
) ;

(b1, b2) := zshg_component_2 (s , x , &ℓ ) ;
a1 := a1 + b1 ;
a2 := a2 + b2 ;

}

r e tu rn
( a1n

r ,
a2n

r

)
;

}



Distance to 2-edge-connectivity

From the returned values of zshg2_component we can
calculate the estimated distance.
Correctness can be proven using basic stochastics.
Number of queries made is bounded by ℓ.



Distance to 3-edge-connectivity

The edge-demand is

Φk(U) := max
{
0, k − d(U),

∑
W⊏U

Φk(W)

}
,Φk(V) :=

∑
W⊏V

Φk(W).

Lemma (Naor et alii 1997 for connected graphs, generalized by
Marko 2005):
Let G = (V,E) be a graph and k ∈ N. The distance of G to
k-edge-connectivity is 1

|E|

⌈
Φk(V)

2

⌉
.



Distance to 3-edge-connectivity

Let C0 be the number of of 3-class-leaves that are connected
components, let C1 be the number of of 3-class-leaves that are
connected to the rest of the graph by a single bridge, let C2 be the
number of 3-class-leaves that are connected to the rest of the
graph by exactly two edges, let C3 be the number of connected
components that are 2-edge-connected and contain exactly 2
3-edge-leaves.

Φ3(V) = 3C0 + 2C1 + 1C2 + 1C3 − 3.

s s

(0, 0, 0, 0) (m, 0, 0, 0)

s

(0, m, 0, 0)

m m

s

(0, 0, m, 0)

ms m

(0, 0, m, m+n)

n



Remarks

While the results on correctness also hold for multigraphs, the
results on query complexity don’t.
All algorithms can be parallelized easily so are the
implementations. The parallel versions offer an advantage
when multiple pending queries can be answered more
efficiently, e.g. in the case of large (too big to fit into RAM)
graphs stored on an SSD (current SSDs typically achieve
maximum throughput for random reads at about 16
simultaneous pending reads) or in the case of the queries
being processed by a remote server on a network.
Free source code at http://zshg.sourceforge.net/


