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First Order Model Checking

ϕ = ∃x1 . . . ∃xk∀y
k∨

i=1

(
y = xi ∨ adj(y , xi )

)

Question: G |= ϕ? (Is there a dominating set of size k?)
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First Order Model Checking

FO-Model Checking

Input: A graph G and an FO-formula ϕ
Parameter: |ϕ|
Problem: G |= ϕ

Query Evaluation

Input: A database D and a query ϕ(x̄)
Parameter: |ϕ|
Problem: Enumerate all x̄ with D |= ϕ(x̄)

Query Counting

Input: A database D and a query ϕ(x̄)
Parameter: |ϕ|
Problem: Compute |{ x̄ | D |= ϕ(x̄) }|



Some older results

▶ FO-model checking is PSPACE-complete as a classical problem.
[Stockmeyer 1994]

▶ FO-model checking is AW[∗]-complete (if parameterized by |ϕ|).
[Downey, Fellows, Taylor 1996]

▶ If G has is H-minor free, then we can decide G |= φ in linear time if G ∈ G and φ
is an FO-formula.
[Flum, Grohe 2001]

▶ If G has bounded expansion, then we can decide G |= φ in linear time if G ∈ G
and φ is an FO-formula.
[Dvǒrák, Král’, Thomas 2010] and [Kazana, Segoufin 2011]

▶ If G is nowhere dense, then we can decide G |= φ in time n1+ϵ if G ∈ G and φ is
an FO-formula.
[Kreutzer, Grohe, 2011]

Moreover: If G is monotone: FO-model checking in FPT iff G is nowhere-dense.
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Approximate and exact counting on bounded expansion

Assume that the counting subformulas have the form

#y ϕ(x̄ , y) > m,

where m is an arbitrary fixed number.

Theorem (Dreier and R. 2021)

▶ Approximate model checking of such formulas is in linear FPT on graph classes of
bounded expansion.

▶ For formulas of the form ∃x1 . . . ∃xk#y ϕ(x1, . . . , xk , y) > m, the result is exact if
ϕ is an FO-formula.

▶ For modulo-counting (≡ m mod q instead of > m) the result is exact for
constant q.



Counting is hard
a b c

↓

a b c

adj(a, b) → ϕE (a, b) = ∃x∃y
(
adj(a, x) ∧ adj(b, y) ∧#z adj(x , z) = #z adj(y , z)

)
k-clique iff G ′ |= ∃x1 . . . ∃xk

∧
1≤i ,j≤k

ϕE (xi , xj)



Partial Dominating Set

Input: A graph G , k ∈ N, m ∈ N.
Parameter: k
Problem: Are there k vertices dominating m vertices?

∃x1 . . . ∃xk #y
∨

1≤i≤k

adj(xi , y) ≥ m

Is W [1]-hard for 2-degenerate graphs.
[Golovach, Villanger 2008]

Can be solved on H-minor free graphs in time (g(H)k)knO(1).
[Amini, Fomin, Saurabh, 2008]

Can be solved on apex-minor-free graphs in time 2
√
knO(1).

[Fomin, Lokshtanov, Raman, Saurabh, 2011]

Can be solved in f (k)n time on graphs of bounded expansion.
[Dreier, R. 2021]



New result on nowhere dense classes

Theorem
Model checking of formulas of the form

∃x1 . . . ∃xk#y ϕ(x1, . . . , xk , y) > N,

can be done in time f (k)n1+ϵ on nowhere-dense graph classes. Here ϕ has to be
quantifier-free.

Corollary

Partial domination set can be solved in f (k)n1+ϵ time on nowhere-dense graph classes.



Proof sketch (1. Preprocessing of the formula)

Consider a quantifier-free FO-formula ϕ(y x̄) with signature σ. In time f (|ϕ|) one can
construct a set Ω with the following properties:

1. The set Ω contains pairs of the form (µ, ω(y x̄)) where µ ∈ Z and ω(y x̄) is a
conjunctive clause containing only positive literals,

2. |Ω| ≤ 4|ϕ|,

3. |ω| ≤ |ϕ| for each (µ, ω) ∈ Ω,

4. |µ| ≤ 4|ϕ| for every (µ, ω) ∈ Ω,

5. for every graph G and every ū ∈ V (G )|x̄ |,

[[#y ϕ(y ū)]]G =
∑

(µ,ω)∈Ω

µ[[#y ω(y ū)]]G .



Proof sketch (2. Solving an optimization problem)

For ε > 0 and G ∈ C and every quantifier-free first-order formula ϕ(y x̄) we can
compute a vertex tuple ū∗ that maximizes [[#y ϕ(y ū∗)]]G in time O(n1+ε).

▶ Use last slide for [[#y ϕ(y ū)]]G =
∑

(µ,ω)∈Ω

µ[[#y ω(y ū)]]G .

▶ Guess the structure of G [ū∗], i.e., a quantifier-free complete ψ such that
G |= ψ(ū∗).

▶ Let Ω′ be the formulas in Ω that fulfill ψ.

▶ Now find ū∗ with G |= ψ(ū∗) that maximizes
∑

(µ,ω)∈Ω′

µ[[#y ω(y ū)]]G .

Last step most complicated one: DP using the game-tree of a splitter game on G .
Use sparse neighborhood covers to keep the complexity low.



Lower bound

Theorem
Model checking of formulas of the form

∃x1 . . . ∃xk#y ϕ(x1, . . . , xk , y) > N,

can be done in time f (k)n1+ϵ on nowhere-dense graph classes. Here ϕ has to be
quantifier-free.

Can this theorem be improved beyond nowhere-dense?

No: Dominating set becomes W[1]-hard on bipartite graphs if one side has
polylogarithmic size.

Such graphs have subpolynomial weak coloring numbers.
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An approximate solution beyond nowhere dense

Theorem
For every graph G and every quantifier-free first-order formula ϕ(y x̄) we can compute
a vertex tuple ū∗ that maximizes [[#y ϕ(y ū)]]G with an additive error of
±4|ϕ|wcol2(G )O(|ϕ|) in time wcolf (|ϕ|)(G )f (|ϕ|)n.

This result is useful if the weak coloring numbers are subpolynomial.

Graph class: Almost nowhere dense.



Conclusion and some open questions

▶ Evaluating restricted counting properties is fpt in nowhere dense graph classes.

▶ Question: Generalization to first-order ϕ?

▶ Evaluating restricted counting properties approximately is fpt in almost nowhere
dense graph classes.

▶ Evaluation of FO with modulo counting is fpt in bounded expansion.

▶ Question: Can we generalize this result to nowhere dense?
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