
Computing Tree Decompositions with Small Independence Number

Tuukka Korhonen

joint work with
Clément Dallard1, Fedor V. Fomin, Petr A. Golovach, and Martin Milanič1

1FAMNIT and IAM, University of Primorska

GROW 2022

22 September 2022

Tuukka Korhonen Computing TDs with Small Independence Number

Tree Decompositions

a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i, k

e, g, i

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G

Tuukka Korhonen Computing TDs with Small Independence Number

Dynamic programming for maximum independent set

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i, k

e, g, i

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

For every node t and subset S ⊆ Bt

dp[t][S] = maximum independent set I below t with I ∩ Bt = S

Tuukka Korhonen Computing TDs with Small Independence Number

Dynamic programming for maximum independent set

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i, k

e, g, i

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

For every node t and subset S ⊆ Bt

dp[t][S] = maximum independent set I below t with I ∩ Bt = S

2|Bt | states per node

Tuukka Korhonen Computing TDs with Small Independence Number

Dynamic programming for maximum independent set

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i, k

e, g, i

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

For every node t and independent subset S ⊆ Bt

dp[t][S] = maximum independent set I below t with I ∩ Bt = S

#IS(Bt) states per node

Tuukka Korhonen Computing TDs with Small Independence Number

When can we bound #IS(Bt)?
What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman, Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin and Golovach ’20]

Bt is covered by k cliques: #IS(Bt) ≤ nk – used for geometric intersection graphs
[De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden ’18]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Dallard, Milanič, and Storgel ’21]

Most general parameter over tree decompositions that gives XP algorithms
for maximum independent set (with some assumptions)

Tuukka Korhonen Computing TDs with Small Independence Number

When can we bound #IS(Bt)?
What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman, Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin and Golovach ’20]

Bt is covered by k cliques: #IS(Bt) ≤ nk – used for geometric intersection graphs
[De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden ’18]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Dallard, Milanič, and Storgel ’21]

Most general parameter over tree decompositions that gives XP algorithms
for maximum independent set (with some assumptions)

Tuukka Korhonen Computing TDs with Small Independence Number

When can we bound #IS(Bt)?
What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman, Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin and Golovach ’20]

Bt is covered by k cliques: #IS(Bt) ≤ nk – used for geometric intersection graphs
[De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden ’18]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Dallard, Milanič, and Storgel ’21]

Most general parameter over tree decompositions that gives XP algorithms
for maximum independent set (with some assumptions)

Tuukka Korhonen Computing TDs with Small Independence Number

When can we bound #IS(Bt)?
What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman, Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin and Golovach ’20]

Bt is covered by k cliques: #IS(Bt) ≤ nk – used for geometric intersection graphs
[De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden ’18]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Dallard, Milanič, and Storgel ’21]

Most general parameter over tree decompositions that gives XP algorithms
for maximum independent set (with some assumptions)

Tuukka Korhonen Computing TDs with Small Independence Number

When can we bound #IS(Bt)?
What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman, Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin and Golovach ’20]

Bt is covered by k cliques: #IS(Bt) ≤ nk – used for geometric intersection graphs
[De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden ’18]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Dallard, Milanič, and Storgel ’21]

Most general parameter over tree decompositions that gives XP algorithms
for maximum independent set (with some assumptions)

Tuukka Korhonen Computing TDs with Small Independence Number

When can we bound #IS(Bt)?
What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman, Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin and Golovach ’20]

Bt is covered by k cliques: #IS(Bt) ≤ nk – used for geometric intersection graphs
[De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden ’18]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Dallard, Milanič, and Storgel ’21]

Most general parameter over tree decompositions that gives XP algorithms
for maximum independent set (with some assumptions)

Tuukka Korhonen Computing TDs with Small Independence Number

When can we bound #IS(Bt)?
What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman, Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin and Golovach ’20]

Bt is covered by k cliques: #IS(Bt) ≤ nk – used for geometric intersection graphs
[De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden ’18]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Dallard, Milanič, and Storgel ’21]

Most general parameter over tree decompositions that gives XP algorithms
for maximum independent set (with some assumptions)

Tuukka Korhonen Computing TDs with Small Independence Number

When can we bound #IS(Bt)?
What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman, Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin and Golovach ’20]

Bt is covered by k cliques: #IS(Bt) ≤ nk – used for geometric intersection graphs
[De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden ’18]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Dallard, Milanič, and Storgel ’21]

Most general parameter over tree decompositions that gives XP algorithms
for maximum independent set (with some assumptions)

Tuukka Korhonen Computing TDs with Small Independence Number

When can we bound #IS(Bt)?
What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman, Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin and Golovach ’20]

Bt is covered by k cliques: #IS(Bt) ≤ nk – used for geometric intersection graphs
[De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden ’18]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Dallard, Milanič, and Storgel ’21]

Most general parameter over tree decompositions that gives XP algorithms
for maximum independent set (with some assumptions)

Tuukka Korhonen Computing TDs with Small Independence Number

When can we bound #IS(Bt)?
What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman, Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin and Golovach ’20]

Bt is covered by k cliques: #IS(Bt) ≤ nk – used for geometric intersection graphs
[De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden ’18]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Dallard, Milanič, and Storgel ’21]

Most general parameter over tree decompositions that gives XP algorithms
for maximum independent set

(with some assumptions)

Tuukka Korhonen Computing TDs with Small Independence Number

When can we bound #IS(Bt)?
What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman, Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin and Golovach ’20]

Bt is covered by k cliques: #IS(Bt) ≤ nk – used for geometric intersection graphs
[De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden ’18]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Dallard, Milanič, and Storgel ’21]

Most general parameter over tree decompositions that gives XP algorithms
for maximum independent set (with some assumptions)

Tuukka Korhonen Computing TDs with Small Independence Number

Algorithmic Applications of Tree-independence number

Let k = tree-α(G)

O(nk+2) time algorithm for maximum weight independent set

O(n|H|·(k+2)) time algorithm for maximum weight H-packing [Dallard, Milanič, and
Storgel’21]

nO(k) time algorithms for feedback vertex set, longest induced path, and
generalizations [Milanič and Rzazewski’22]

All applications need the decomposition as an input!

Tuukka Korhonen Computing TDs with Small Independence Number

Algorithmic Applications of Tree-independence number

Let k = tree-α(G)

O(nk+2) time algorithm for maximum weight independent set

O(n|H|·(k+2)) time algorithm for maximum weight H-packing [Dallard, Milanič, and
Storgel’21]

nO(k) time algorithms for feedback vertex set, longest induced path, and
generalizations [Milanič and Rzazewski’22]

All applications need the decomposition as an input!

Tuukka Korhonen Computing TDs with Small Independence Number

Algorithmic Applications of Tree-independence number

Let k = tree-α(G)

O(nk+2) time algorithm for maximum weight independent set

O(n|H|·(k+2)) time algorithm for maximum weight H-packing [Dallard, Milanič, and
Storgel’21]

nO(k) time algorithms for feedback vertex set, longest induced path, and
generalizations [Milanič and Rzazewski’22]

All applications need the decomposition as an input!

Tuukka Korhonen Computing TDs with Small Independence Number

Algorithmic Applications of Tree-independence number

Let k = tree-α(G)

O(nk+2) time algorithm for maximum weight independent set

O(n|H|·(k+2)) time algorithm for maximum weight H-packing [Dallard, Milanič, and
Storgel’21]

nO(k) time algorithms for feedback vertex set, longest induced path, and
generalizations [Milanič and Rzazewski’22]

All applications need the decomposition as an input!

Tuukka Korhonen Computing TDs with Small Independence Number

Algorithmic Applications of Tree-independence number

Let k = tree-α(G)

O(nk+2) time algorithm for maximum weight independent set

O(n|H|·(k+2)) time algorithm for maximum weight H-packing [Dallard, Milanič, and
Storgel’21]

nO(k) time algorithms for feedback vertex set, longest induced path, and
generalizations [Milanič and Rzazewski’22]

All applications need the decomposition as an input!

Tuukka Korhonen Computing TDs with Small Independence Number

Our Results

Theorem

There is a 2O(k2)nO(k) time 8-approximation algorithm for tree-independence number,
which also outputs the corresponding tree decomposition.

⇒ 2O(k2)nO(k) time algorithms for several problems parameterized by
tree-independence number k

Hardness results:

Assuming Gap-ETH, no f (k)no(k) time g(k)-approximation algorithm

For every constant k ≥ 4, NP-hard to decide if tree-α(G) ≤ k
I (For k = 1 linear time, k = 2, 3 remain open)

Tuukka Korhonen Computing TDs with Small Independence Number

Our Results

Theorem

There is a 2O(k2)nO(k) time 8-approximation algorithm for tree-independence number,
which also outputs the corresponding tree decomposition.

⇒ 2O(k2)nO(k) time algorithms for several problems parameterized by
tree-independence number k

Hardness results:

Assuming Gap-ETH, no f (k)no(k) time g(k)-approximation algorithm

For every constant k ≥ 4, NP-hard to decide if tree-α(G) ≤ k
I (For k = 1 linear time, k = 2, 3 remain open)

Tuukka Korhonen Computing TDs with Small Independence Number

Our Results

Theorem

There is a 2O(k2)nO(k) time 8-approximation algorithm for tree-independence number,
which also outputs the corresponding tree decomposition.

⇒ 2O(k2)nO(k) time algorithms for several problems parameterized by
tree-independence number k

Hardness results:

Assuming Gap-ETH, no f (k)no(k) time g(k)-approximation algorithm

For every constant k ≥ 4, NP-hard to decide if tree-α(G) ≤ k
I (For k = 1 linear time, k = 2, 3 remain open)

Tuukka Korhonen Computing TDs with Small Independence Number

Our Results

Theorem

There is a 2O(k2)nO(k) time 8-approximation algorithm for tree-independence number,
which also outputs the corresponding tree decomposition.

⇒ 2O(k2)nO(k) time algorithms for several problems parameterized by
tree-independence number k

Hardness results:

Assuming Gap-ETH, no f (k)no(k) time g(k)-approximation algorithm

For every constant k ≥ 4, NP-hard to decide if tree-α(G) ≤ k
I (For k = 1 linear time, k = 2, 3 remain open)

Tuukka Korhonen Computing TDs with Small Independence Number

Our Results

Theorem

There is a 2O(k2)nO(k) time 8-approximation algorithm for tree-independence number,
which also outputs the corresponding tree decomposition.

⇒ 2O(k2)nO(k) time algorithms for several problems parameterized by
tree-independence number k

Hardness results:

Assuming Gap-ETH, no f (k)no(k) time g(k)-approximation algorithm

For every constant k ≥ 4, NP-hard to decide if tree-α(G) ≤ k

I (For k = 1 linear time, k = 2, 3 remain open)

Tuukka Korhonen Computing TDs with Small Independence Number

Our Results

Theorem

There is a 2O(k2)nO(k) time 8-approximation algorithm for tree-independence number,
which also outputs the corresponding tree decomposition.

⇒ 2O(k2)nO(k) time algorithms for several problems parameterized by
tree-independence number k

Hardness results:

Assuming Gap-ETH, no f (k)no(k) time g(k)-approximation algorithm

For every constant k ≥ 4, NP-hard to decide if tree-α(G) ≤ k
I (For k = 1 linear time, k = 2, 3 remain open)

Tuukka Korhonen Computing TDs with Small Independence Number

The Algorithm

The Algorithm

Tuukka Korhonen Computing TDs with Small Independence Number

Outline

Bounded tree-α⇒ balanced separators with bounded α

Recursive construction in Robertson-Seymour fashion

I Reduction from finding balanced separators to finding separators

F 2-approximation algorithm for separators

1. Container with bounded α

2. Branching

3. Linear programming

Tuukka Korhonen Computing TDs with Small Independence Number

Outline

Bounded tree-α⇒ balanced separators with bounded α

Recursive construction in Robertson-Seymour fashion

I Reduction from finding balanced separators to finding separators

F 2-approximation algorithm for separators

1. Container with bounded α

2. Branching

3. Linear programming

Tuukka Korhonen Computing TDs with Small Independence Number

Outline

Bounded tree-α⇒ balanced separators with bounded α

Recursive construction in Robertson-Seymour fashion

I Reduction from finding balanced separators to finding separators

F 2-approximation algorithm for separators

1. Container with bounded α

2. Branching

3. Linear programming

Tuukka Korhonen Computing TDs with Small Independence Number

Outline

Bounded tree-α⇒ balanced separators with bounded α

Recursive construction in Robertson-Seymour fashion

I Reduction from finding balanced separators to finding separators

F 2-approximation algorithm for separators

1. Container with bounded α

2. Branching

3. Linear programming

Tuukka Korhonen Computing TDs with Small Independence Number

Outline

Bounded tree-α⇒ balanced separators with bounded α

Recursive construction in Robertson-Seymour fashion

I Reduction from finding balanced separators to finding separators

F 2-approximation algorithm for separators

1. Container with bounded α

2. Branching

3. Linear programming

Tuukka Korhonen Computing TDs with Small Independence Number

Outline

Bounded tree-α⇒ balanced separators with bounded α

Recursive construction in Robertson-Seymour fashion

I Reduction from finding balanced separators to finding separators

F 2-approximation algorithm for separators

1. Container with bounded α

2. Branching

3. Linear programming

Tuukka Korhonen Computing TDs with Small Independence Number

Outline

Bounded tree-α⇒ balanced separators with bounded α

Recursive construction in Robertson-Seymour fashion

I Reduction from finding balanced separators to finding separators

F 2-approximation algorithm for separators

1. Container with bounded α

2. Branching

3. Linear programming

Tuukka Korhonen Computing TDs with Small Independence Number

Balanced separators

Input: Graph G, integer k , and a vertex set X with α(X) = 9k

Task: Find a separation (C1,S,C2) with α(S) ≤ 2k , α(X ∩ C1) ≤ 7k , and
α(X ∩ C2) ≤ 7k or conclude tree-α(G) > k

Why balanced separators exists:

Sufficient to ensure that α(X ∩ C1) ≥ 2k and α(X ∩ C2) ≥ 2k

Algorithm: Guess independent set I1 ⊆ X ∩ C1 with |I1| = 2k and I2 ⊆ X ∩ C2 with
|I2| = 2k , and then find an I1 − I2 separator S with α(S) ≤ 2k

Tuukka Korhonen Computing TDs with Small Independence Number

Balanced separators

Input: Graph G, integer k , and a vertex set X with α(X) = 9k

Task: Find a separation (C1,S,C2) with α(S) ≤ 2k , α(X ∩ C1) ≤ 7k , and
α(X ∩ C2) ≤ 7k or conclude tree-α(G) > k

Why balanced separators exists:

Sufficient to ensure that α(X ∩ C1) ≥ 2k and α(X ∩ C2) ≥ 2k

Algorithm: Guess independent set I1 ⊆ X ∩ C1 with |I1| = 2k and I2 ⊆ X ∩ C2 with
|I2| = 2k , and then find an I1 − I2 separator S with α(S) ≤ 2k

Tuukka Korhonen Computing TDs with Small Independence Number

Balanced separators

Input: Graph G, integer k , and a vertex set X with α(X) = 9k

Task: Find a separation (C1,S,C2) with α(S) ≤ 2k , α(X ∩ C1) ≤ 7k , and
α(X ∩ C2) ≤ 7k or conclude tree-α(G) > k

Why balanced separators exists:

Sufficient to ensure that α(X ∩ C1) ≥ 2k and α(X ∩ C2) ≥ 2k

Algorithm: Guess independent set I1 ⊆ X ∩ C1 with |I1| = 2k and I2 ⊆ X ∩ C2 with
|I2| = 2k , and then find an I1 − I2 separator S with α(S) ≤ 2k

Tuukka Korhonen Computing TDs with Small Independence Number

Balanced separators

Input: Graph G, integer k , and a vertex set X with α(X) = 9k

Task: Find a separation (C1,S,C2) with α(S) ≤ 2k , α(X ∩ C1) ≤ 7k , and
α(X ∩ C2) ≤ 7k or conclude tree-α(G) > k

Why balanced separators exists:

Sufficient to ensure that α(X ∩ C1) ≥ 2k and α(X ∩ C2) ≥ 2k

Algorithm: Guess independent set I1 ⊆ X ∩ C1 with |I1| = 2k and I2 ⊆ X ∩ C2 with
|I2| = 2k , and then find an I1 − I2 separator S with α(S) ≤ 2k

Tuukka Korhonen Computing TDs with Small Independence Number

Balanced separators

Input: Graph G, integer k , and a vertex set X with α(X) = 9k

Task: Find a separation (C1,S,C2) with α(S) ≤ 2k , α(X ∩ C1) ≤ 7k , and
α(X ∩ C2) ≤ 7k or conclude tree-α(G) > k

Why balanced separators exists:

Sufficient to ensure that α(X ∩ C1) ≥ 2k and α(X ∩ C2) ≥ 2k

Algorithm: Guess independent set I1 ⊆ X ∩ C1 with |I1| = 2k and I2 ⊆ X ∩ C2 with
|I2| = 2k , and then find an I1 − I2 separator S with α(S) ≤ 2k

Tuukka Korhonen Computing TDs with Small Independence Number

Balanced separators

Input: Graph G, integer k , and a vertex set X with α(X) = 9k

Task: Find a separation (C1,S,C2) with α(S) ≤ 2k , α(X ∩ C1) ≤ 7k , and
α(X ∩ C2) ≤ 7k or conclude tree-α(G) > k

Why balanced separators exists:

Sufficient to ensure that α(X ∩ C1) ≥ 2k and α(X ∩ C2) ≥ 2k

Algorithm: Guess independent set I1 ⊆ X ∩ C1 with |I1| = 2k and I2 ⊆ X ∩ C2 with
|I2| = 2k , and then find an I1 − I2 separator S with α(S) ≤ 2k

Tuukka Korhonen Computing TDs with Small Independence Number

Balanced separators

Input: Graph G, integer k , and a vertex set X with α(X) = 9k

Task: Find a separation (C1,S,C2) with α(S) ≤ 2k , α(X ∩ C1) ≤ 7k , and
α(X ∩ C2) ≤ 7k or conclude tree-α(G) > k

Why balanced separators exists:

Sufficient to ensure that α(X ∩ C1) ≥ 2k and α(X ∩ C2) ≥ 2k

Algorithm: Guess independent set I1 ⊆ X ∩ C1 with |I1| = 2k and I2 ⊆ X ∩ C2 with
|I2| = 2k , and then find an I1 − I2 separator S with α(S) ≤ 2k

Tuukka Korhonen Computing TDs with Small Independence Number

Balanced separators

Input: Graph G, integer k , and a vertex set X with α(X) = 9k

Task: Find a separation (C1,S,C2) with α(S) ≤ 2k , α(X ∩ C1) ≤ 7k , and
α(X ∩ C2) ≤ 7k or conclude tree-α(G) > k

Why balanced separators exists:

Sufficient to ensure that α(X ∩ C1) ≥ 2k and α(X ∩ C2) ≥ 2k

Algorithm: Guess independent set I1 ⊆ X ∩ C1 with |I1| = 2k and I2 ⊆ X ∩ C2 with
|I2| = 2k , and then find an I1 − I2 separator S with α(S) ≤ 2k

Tuukka Korhonen Computing TDs with Small Independence Number

2-Approximation Algorithm for separators

Input: Graph G, integer k , and two sets of vertices V1,V2

Task: Find an (V1,V2)-separator S with α(S) ≤ 2k , or conclude that no
(V1,V2)-separators with α(S) ≤ k exist

Tuukka Korhonen Computing TDs with Small Independence Number

Container with bounded α

Goal: Find a vertex set R with α(R) ≤ O(k2) so that S ⊆ R

By iterative compression, we can assume to have a tree decomposition
TD with α(TD) = O(k)

Lemma

Any vertex set S can be covered by 2α(S)− 1 bags of TD

Proof: By induction on α(S)

⇒ R can be guessed by guessing O(k) bags of TD

Tuukka Korhonen Computing TDs with Small Independence Number

Container with bounded α

Goal: Find a vertex set R with α(R) ≤ O(k2) so that S ⊆ R

By iterative compression, we can assume to have a tree decomposition
TD with α(TD) = O(k)

Lemma

Any vertex set S can be covered by 2α(S)− 1 bags of TD

Proof: By induction on α(S)

⇒ R can be guessed by guessing O(k) bags of TD

Tuukka Korhonen Computing TDs with Small Independence Number

Container with bounded α

Goal: Find a vertex set R with α(R) ≤ O(k2) so that S ⊆ R

By iterative compression, we can assume to have a tree decomposition
TD with α(TD) = O(k)

Lemma

Any vertex set S can be covered by 2α(S)− 1 bags of TD

Proof: By induction on α(S)

⇒ R can be guessed by guessing O(k) bags of TD

Tuukka Korhonen Computing TDs with Small Independence Number

Container with bounded α
Goal: Find a vertex set R with α(R) ≤ O(k2) so that S ⊆ R

By iterative compression, we can assume to have a tree decomposition
TD with α(TD) = O(k)

Lemma

Any vertex set S can be covered by 2α(S)− 1 bags of TD

Proof: By induction on α(S)

⇒ R can be guessed by guessing O(k) bags of TD

Tuukka Korhonen Computing TDs with Small Independence Number

Container with bounded α
Goal: Find a vertex set R with α(R) ≤ O(k2) so that S ⊆ R

By iterative compression, we can assume to have a tree decomposition
TD with α(TD) = O(k)

Lemma

Any vertex set S can be covered by 2α(S)− 1 bags of TD

Proof: By induction on α(S)

⇒ R can be guessed by guessing O(k) bags of TD

Tuukka Korhonen Computing TDs with Small Independence Number

Branching

Have: A vertex set R with α(R) ≤ O(k2) so that S ⊆ R

Goal: A vertex set R ⊆ N(V1 ∪ V2) so that S ⊆ R

Idea: Take a vertex v ∈ R \ N(V1 ∪ V2) branch on whether
1. v goes to partial solution S0

2. v goes to V1

3. v goes to V2

Observation

Branches (2) and (3) decrease α(R \ N(V1 ∪ V2)).

⇒ Branching tree of size n2α(R)

Tuukka Korhonen Computing TDs with Small Independence Number

Branching

Have: A vertex set R with α(R) ≤ O(k2) so that S ⊆ R

Goal: A vertex set R ⊆ N(V1 ∪ V2) so that S ⊆ R

Idea: Take a vertex v ∈ R \ N(V1 ∪ V2) branch on whether

1. v goes to partial solution S0

2. v goes to V1

3. v goes to V2

Observation

Branches (2) and (3) decrease α(R \ N(V1 ∪ V2)).

⇒ Branching tree of size n2α(R)

Tuukka Korhonen Computing TDs with Small Independence Number

Branching

Have: A vertex set R with α(R) ≤ O(k2) so that S ⊆ R

Goal: A vertex set R ⊆ N(V1 ∪ V2) so that S ⊆ R

Idea: Take a vertex v ∈ R \ N(V1 ∪ V2) branch on whether
1. v goes to partial solution S0

2. v goes to V1

3. v goes to V2

Observation

Branches (2) and (3) decrease α(R \ N(V1 ∪ V2)).

⇒ Branching tree of size n2α(R)

Tuukka Korhonen Computing TDs with Small Independence Number

Branching

Have: A vertex set R with α(R) ≤ O(k2) so that S ⊆ R

Goal: A vertex set R ⊆ N(V1 ∪ V2) so that S ⊆ R

Idea: Take a vertex v ∈ R \ N(V1 ∪ V2) branch on whether
1. v goes to partial solution S0

2. v goes to V1

3. v goes to V2

Observation

Branches (2) and (3) decrease α(R \ N(V1 ∪ V2)).

⇒ Branching tree of size n2α(R)

Tuukka Korhonen Computing TDs with Small Independence Number

Branching

Have: A vertex set R with α(R) ≤ O(k2) so that S ⊆ R

Goal: A vertex set R ⊆ N(V1 ∪ V2) so that S ⊆ R

Idea: Take a vertex v ∈ R \ N(V1 ∪ V2) branch on whether
1. v goes to partial solution S0

2. v goes to V1

3. v goes to V2

Observation

Branches (2) and (3) decrease α(R \ N(V1 ∪ V2)).

⇒ Branching tree of size n2α(R)

Tuukka Korhonen Computing TDs with Small Independence Number

Branching

Have: A vertex set R with α(R) ≤ O(k2) so that S ⊆ R

Goal: A vertex set R ⊆ N(V1 ∪ V2) so that S ⊆ R

Idea: Take a vertex v ∈ R \ N(V1 ∪ V2) branch on whether
1. v goes to partial solution S0

2. v goes to V1

3. v goes to V2

Observation

Branches (2) and (3) decrease α(R \ N(V1 ∪ V2)).

⇒ Branching tree of size n2α(R)

Tuukka Korhonen Computing TDs with Small Independence Number

Branching

Have: A vertex set R with α(R) ≤ O(k2) so that S ⊆ R

Goal: A vertex set R ⊆ N(V1 ∪ V2) so that S ⊆ R

Idea: Take a vertex v ∈ R \ N(V1 ∪ V2) branch on whether
1. v goes to partial solution S0

2. v goes to V1

3. v goes to V2

Observation

Branches (2) and (3) decrease α(R \ N(V1 ∪ V2)).

⇒ Branching tree of size n2α(R)

Tuukka Korhonen Computing TDs with Small Independence Number

Linear Programming

Input: Graph G, integer k , three disjoint sets of vertices V1,V2,R with R = N(V1 ∪ V2)

Task: Find an (V1,V2)-separator S ⊆ R with α(S) ≤ 2k , or conclude that no such
separators with α(S) ≤ k exist

Variables: xv for all vertices v ∈ R

Separator inequalities:
xv + xu ≥ 1 for all v ∈ N(V1), u ∈ N(V2) with v − u path with internal vertices in G \ R

Independence number inequalities:∑
v∈I xv ≤ k for all independent sets I ⊆ R with |I| = 2k + 1

Lemma
Rounding a fractional solution gives a solution with independence number at most 2k

Tuukka Korhonen Computing TDs with Small Independence Number

Linear Programming

Input: Graph G, integer k , three disjoint sets of vertices V1,V2,R with R = N(V1 ∪ V2)

Task: Find an (V1,V2)-separator S ⊆ R with α(S) ≤ 2k , or conclude that no such
separators with α(S) ≤ k exist

Variables: xv for all vertices v ∈ R

Separator inequalities:
xv + xu ≥ 1 for all v ∈ N(V1), u ∈ N(V2) with v − u path with internal vertices in G \ R

Independence number inequalities:∑
v∈I xv ≤ k for all independent sets I ⊆ R with |I| = 2k + 1

Lemma
Rounding a fractional solution gives a solution with independence number at most 2k

Tuukka Korhonen Computing TDs with Small Independence Number

Linear Programming

Input: Graph G, integer k , three disjoint sets of vertices V1,V2,R with R = N(V1 ∪ V2)

Task: Find an (V1,V2)-separator S ⊆ R with α(S) ≤ 2k , or conclude that no such
separators with α(S) ≤ k exist

Variables: xv for all vertices v ∈ R

Separator inequalities:
xv + xu ≥ 1 for all v ∈ N(V1), u ∈ N(V2) with v − u path with internal vertices in G \ R

Independence number inequalities:∑
v∈I xv ≤ k for all independent sets I ⊆ R with |I| = 2k + 1

Lemma
Rounding a fractional solution gives a solution with independence number at most 2k

Tuukka Korhonen Computing TDs with Small Independence Number

Linear Programming

Input: Graph G, integer k , three disjoint sets of vertices V1,V2,R with R = N(V1 ∪ V2)

Task: Find an (V1,V2)-separator S ⊆ R with α(S) ≤ 2k , or conclude that no such
separators with α(S) ≤ k exist

Variables: xv for all vertices v ∈ R

Separator inequalities:
xv + xu ≥ 1 for all v ∈ N(V1), u ∈ N(V2) with v − u path with internal vertices in G \ R

Independence number inequalities:∑
v∈I xv ≤ k for all independent sets I ⊆ R with |I| = 2k + 1

Lemma
Rounding a fractional solution gives a solution with independence number at most 2k

Tuukka Korhonen Computing TDs with Small Independence Number

Linear Programming

Input: Graph G, integer k , three disjoint sets of vertices V1,V2,R with R = N(V1 ∪ V2)

Task: Find an (V1,V2)-separator S ⊆ R with α(S) ≤ 2k , or conclude that no such
separators with α(S) ≤ k exist

Variables: xv for all vertices v ∈ R

Separator inequalities:
xv + xu ≥ 1 for all v ∈ N(V1), u ∈ N(V2) with v − u path with internal vertices in G \ R

Independence number inequalities:∑
v∈I xv ≤ k for all independent sets I ⊆ R with |I| = 2k + 1

Lemma
Rounding a fractional solution gives a solution with independence number at most 2k

Tuukka Korhonen Computing TDs with Small Independence Number

Conclusion

First XP approximation algorithm for tree-independence number

Testing tree-α(G) ≤ k is NP-hard for every k ≥ 4

Open problem: Complexity of testing tree-α(G) ≤ k for k = 2,3?

Tuukka Korhonen Computing TDs with Small Independence Number

Conclusion

First XP approximation algorithm for tree-independence number

Testing tree-α(G) ≤ k is NP-hard for every k ≥ 4

Open problem: Complexity of testing tree-α(G) ≤ k for k = 2,3?

Tuukka Korhonen Computing TDs with Small Independence Number

Conclusion

First XP approximation algorithm for tree-independence number

Testing tree-α(G) ≤ k is NP-hard for every k ≥ 4

Open problem: Complexity of testing tree-α(G) ≤ k for k = 2,3?

Tuukka Korhonen Computing TDs with Small Independence Number

Thank you!

Thank you!

Tuukka Korhonen Computing TDs with Small Independence Number

