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Dynamic programming for maximum independent set
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For every node t and subset S ⊆ Bt

dp[t ][S] = maximum independent set I below t with I ∩ Bt = S
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For every node t and subset S ⊆ Bt

dp[t ][S] = maximum independent set I below t with I ∩ Bt = S
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For every node t and independent subset S ⊆ Bt

dp[t ][S] = maximum independent set I below t with I ∩ Bt = S

#IS(Bt) states per node
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When can we bound #IS(Bt)?
What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman, Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin and Golovach ’20]

Bt is covered by k cliques: #IS(Bt) ≤ nk – used for geometric intersection graphs
[De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden ’18]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Dallard, Milanič, and Storgel ’21]

Most general parameter over tree decompositions that gives XP algorithms
for maximum independent set (with some assumptions)
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Most general parameter over tree decompositions that gives XP algorithms
for maximum independent set (with some assumptions)

Tuukka Korhonen Computing TDs with Small Independence Number



When can we bound #IS(Bt)?
What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman, Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin and Golovach ’20]

Bt is covered by k cliques: #IS(Bt) ≤ nk – used for geometric intersection graphs
[De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden ’18]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Dallard, Milanič, and Storgel ’21]
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Algorithmic Applications of Tree-independence number

Let k = tree-α(G)

O(nk+2) time algorithm for maximum weight independent set

O(n|H|·(k+2)) time algorithm for maximum weight H-packing [Dallard, Milanič, and
Storgel’21]

nO(k) time algorithms for feedback vertex set, longest induced path, and
generalizations [Milanič and Rzazewski’22]

All applications need the decomposition as an input!
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Our Results

Theorem

There is a 2O(k2)nO(k) time 8-approximation algorithm for tree-independence number,
which also outputs the corresponding tree decomposition.

⇒ 2O(k2)nO(k) time algorithms for several problems parameterized by
tree-independence number k

Hardness results:

Assuming Gap-ETH, no f (k)no(k) time g(k)-approximation algorithm

For every constant k ≥ 4, NP-hard to decide if tree-α(G) ≤ k
I (For k = 1 linear time, k = 2, 3 remain open)
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The Algorithm

The Algorithm
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Outline

Bounded tree-α⇒ balanced separators with bounded α

Recursive construction in Robertson-Seymour fashion

I Reduction from finding balanced separators to finding separators

F 2-approximation algorithm for separators

1. Container with bounded α

2. Branching

3. Linear programming
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Balanced separators

Input: Graph G, integer k , and a vertex set X with α(X ) = 9k

Task: Find a separation (C1,S,C2) with α(S) ≤ 2k , α(X ∩ C1) ≤ 7k , and
α(X ∩ C2) ≤ 7k or conclude tree-α(G) > k

Why balanced separators exists:

Sufficient to ensure that α(X ∩ C1) ≥ 2k and α(X ∩ C2) ≥ 2k

Algorithm: Guess independent set I1 ⊆ X ∩ C1 with |I1| = 2k and I2 ⊆ X ∩ C2 with
|I2| = 2k , and then find an I1 − I2 separator S with α(S) ≤ 2k
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2-Approximation Algorithm for separators

Input: Graph G, integer k , and two sets of vertices V1,V2

Task: Find an (V1,V2)-separator S with α(S) ≤ 2k , or conclude that no
(V1,V2)-separators with α(S) ≤ k exist
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Container with bounded α

Goal: Find a vertex set R with α(R) ≤ O(k2) so that S ⊆ R

By iterative compression, we can assume to have a tree decomposition
TD with α(TD) = O(k)

Lemma

Any vertex set S can be covered by 2α(S)− 1 bags of TD

Proof: By induction on α(S)

⇒ R can be guessed by guessing O(k) bags of TD
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Branching

Have: A vertex set R with α(R) ≤ O(k2) so that S ⊆ R

Goal: A vertex set R ⊆ N(V1 ∪ V2) so that S ⊆ R

Idea: Take a vertex v ∈ R \ N(V1 ∪ V2) branch on whether
1. v goes to partial solution S0

2. v goes to V1

3. v goes to V2

Observation

Branches (2) and (3) decrease α(R \ N(V1 ∪ V2)).

⇒ Branching tree of size n2α(R)
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Linear Programming

Input: Graph G, integer k , three disjoint sets of vertices V1,V2,R with R = N(V1 ∪ V2)

Task: Find an (V1,V2)-separator S ⊆ R with α(S) ≤ 2k , or conclude that no such
separators with α(S) ≤ k exist

Variables: xv for all vertices v ∈ R

Separator inequalities:
xv + xu ≥ 1 for all v ∈ N(V1), u ∈ N(V2) with v − u path with internal vertices in G \ R

Independence number inequalities:∑
v∈I xv ≤ k for all independent sets I ⊆ R with |I| = 2k + 1

Lemma
Rounding a fractional solution gives a solution with independence number at most 2k
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Conclusion

First XP approximation algorithm for tree-independence number

Testing tree-α(G) ≤ k is NP-hard for every k ≥ 4

Open problem: Complexity of testing tree-α(G) ≤ k for k = 2,3?
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Thank you!

Thank you!
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