Computing Tree Decompositions with Small Independence Number

Tuukka Korhonen

22 September 2022

Tree Decompositions

Graph G

A tree decomposition of G

Dynamic programming for maximum independent set

For every node t and subset $S \subseteq B_{t}$ $\mathrm{dp}[t][S]=$ maximum independent set I below t with $I \cap B_{t}=S$

Dynamic programming for maximum independent set

For every node t and subset $S \subseteq B_{t}$ $\mathrm{dp}[t][S]=$ maximum independent set I below t with $I \cap B_{t}=S$
$2^{\left|B_{t}\right|}$ states per node

Dynamic programming for maximum independent set

For every node t and independent subset $S \subseteq B_{t}$ $\mathrm{dp}[t][S]=$ maximum independent set $/$ below t with $I \cap B_{t}=S$ $\# I S\left(B_{t}\right)$ states per node

When can we bound $\# I S\left(B_{t}\right)$?

What kind of tree decompositions have bounded \#IS $\left(B_{t}\right)$?

When can we bound $\# I S\left(B_{t}\right)$?

What kind of tree decompositions have bounded \#IS $\left(B_{t}\right)$?

- Clique-trees of chordal graphs: $\# I S\left(B_{t}\right) \leq n$

When can we bound $\# I S\left(B_{t}\right)$?
What kind of tree decompositions have bounded \#IS($\left.B_{t}\right)$?

- Clique-trees of chordal graphs: $\# I S\left(B_{t}\right) \leq n$
- B_{t} is clique $+k$ vertices: $\# I S\left(B_{t}\right) \leq 2^{k} n$ [Jacob, Panolan, Raman, Sahlot '20]

When can we bound $\# I S\left(B_{t}\right)$?
What kind of tree decompositions have bounded \#IS($\left.B_{t}\right)$?

- Clique-trees of chordal graphs: $\# I S\left(B_{t}\right) \leq n$
- B_{t} is clique $+k$ vertices: $\# I S\left(B_{t}\right) \leq 2^{k} n$ [Jacob, Panolan, Raman, Sahlot '20]
- B_{t} is clique $-k$ edges: $\# I S\left(B_{t}\right) \leq 2^{\sqrt{k}} n$ [Fomin and Golovach '20]

When can we bound $\# I S\left(B_{t}\right)$?
What kind of tree decompositions have bounded $\# I S\left(B_{t}\right)$?

- Clique-trees of chordal graphs: $\# I S\left(B_{t}\right) \leq n$
- B_{t} is clique $+k$ vertices: $\# I S\left(B_{t}\right) \leq 2^{k} n$ [Jacob, Panolan, Raman, Sahlot '20]
- B_{t} is clique- k edges: $\# I S\left(B_{t}\right) \leq 2^{\sqrt{k}} n$ [Fomin and Golovach '20]
- B_{t} is covered by k cliques: $\# I S\left(B_{t}\right) \leq n^{k}$ - used for geometric intersection graphs [De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden '18]

When can we bound $\# I S\left(B_{t}\right)$?
What kind of tree decompositions have bounded \#IS($\left.B_{t}\right)$?

- Clique-trees of chordal graphs: $\# I S\left(B_{t}\right) \leq n$
- B_{t} is clique $+k$ vertices: $\# I S\left(B_{t}\right) \leq 2^{k} n$ [Jacob, Panolan, Raman, Sahlot '20]
- B_{t} is clique- k edges: $\# I S\left(B_{t}\right) \leq 2^{\sqrt{k}} n$ [Fomin and Golovach '20]
- B_{t} is covered by k cliques: $\# I S\left(B_{t}\right) \leq n^{k}$ - used for geometric intersection graphs [De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden '18]

Maximum independent set in B_{t} has size $k: \# I S\left(B_{t}\right) \leq n^{k}$

When can we bound $\# I S\left(B_{t}\right)$?
What kind of tree decompositions have bounded $\# I S\left(B_{t}\right)$?

- Clique-trees of chordal graphs: $\# I S\left(B_{t}\right) \leq n$
- B_{t} is clique $+k$ vertices: $\# I S\left(B_{t}\right) \leq 2^{k} n$ [Jacob, Panolan, Raman, Sahlot '20]
- B_{t} is clique- k edges: $\# I S\left(B_{t}\right) \leq 2^{\sqrt{k}} n$ [Fomin and Golovach '20]
- B_{t} is covered by k cliques: $\# I S\left(B_{t}\right) \leq n^{k}$ - used for geometric intersection graphs [De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden '18]

Maximum independent set in B_{t} has size k : $\# I S\left(B_{t}\right) \leq n^{k}$
The independence number of a tree decomposition: $\alpha(T D)=\max _{B_{t}} \alpha\left(B_{t}\right)$

When can we bound $\# I S\left(B_{t}\right)$?
What kind of tree decompositions have bounded $\# I S\left(B_{t}\right)$?

- Clique-trees of chordal graphs: $\# I S\left(B_{t}\right) \leq n$
- B_{t} is clique $+k$ vertices: $\# I S\left(B_{t}\right) \leq 2^{k} n$ [Jacob, Panolan, Raman, Sahlot '20]
- B_{t} is clique- k edges: $\# I S\left(B_{t}\right) \leq 2^{\sqrt{k}} n$ [Fomin and Golovach '20]
- B_{t} is covered by k cliques: $\# I S\left(B_{t}\right) \leq n^{k}$ - used for geometric intersection graphs [De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden '18]

Maximum independent set in B_{t} has size k : $\# I S\left(B_{t}\right) \leq n^{k}$
The independence number of a tree decomposition: $\alpha(T D)=\max _{B_{t}} \alpha\left(B_{t}\right)$
Tree-independence number: tree- $\alpha(G)=\min _{T D} \alpha(T D)$

When can we bound $\# I S\left(B_{t}\right)$?
What kind of tree decompositions have bounded \#IS($\left.B_{t}\right)$?

- Clique-trees of chordal graphs: $\# I S\left(B_{t}\right) \leq n$
- B_{t} is clique $+k$ vertices: $\# I S\left(B_{t}\right) \leq 2^{k} n$ [Jacob, Panolan, Raman, Sahlot '20]
- B_{t} is clique $-k$ edges: $\# I S\left(B_{t}\right) \leq 2^{\sqrt{k}} n$ [Fomin and Golovach '20]
- B_{t} is covered by k cliques: $\# I S\left(B_{t}\right) \leq n^{k}$ - used for geometric intersection graphs [De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden '18]

Maximum independent set in B_{t} has size k : $\# I S\left(B_{t}\right) \leq n^{k}$
The independence number of a tree decomposition: $\alpha(T D)=\max _{B_{t}} \alpha\left(B_{t}\right)$
Tree-independence number: tree- $\alpha(G)=\min _{T D} \alpha(T D)$

- Introduced by [Dallard, Milanič, and Storgel '21]

When can we bound $\# I S\left(B_{t}\right)$?
What kind of tree decompositions have bounded \#IS($\left.B_{t}\right)$?

- Clique-trees of chordal graphs: $\# I S\left(B_{t}\right) \leq n$
- B_{t} is clique $+k$ vertices: $\# I S\left(B_{t}\right) \leq 2^{k} n$ [Jacob, Panolan, Raman, Sahlot '20]
- B_{t} is clique $-k$ edges: $\# I S\left(B_{t}\right) \leq 2^{\sqrt{k}} n$ [Fomin and Golovach '20]
- B_{t} is covered by k cliques: $\# I S\left(B_{t}\right) \leq n^{k}$ - used for geometric intersection graphs [De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden '18]

Maximum independent set in B_{t} has size k : $\# I S\left(B_{t}\right) \leq n^{k}$
The independence number of a tree decomposition: $\alpha(T D)=\max _{B_{t}} \alpha\left(B_{t}\right)$
Tree-independence number: tree- $\alpha(G)=\min _{T D} \alpha(T D)$

- Introduced by [Dallard, Milanič, and Storgel '21]
- Most general parameter over tree decompositions that gives XP algorithms for maximum independent set

When can we bound $\# I S\left(B_{t}\right)$?
What kind of tree decompositions have bounded \#IS($\left.B_{t}\right)$?

- Clique-trees of chordal graphs: $\# I S\left(B_{t}\right) \leq n$
- B_{t} is clique $+k$ vertices: $\# I S\left(B_{t}\right) \leq 2^{k} n$ [Jacob, Panolan, Raman, Sahlot '20]
- B_{t} is clique $-k$ edges: $\# I S\left(B_{t}\right) \leq 2^{\sqrt{k}} n$ [Fomin and Golovach '20]
- B_{t} is covered by k cliques: $\# I S\left(B_{t}\right) \leq n^{k}$ - used for geometric intersection graphs [De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden '18]

Maximum independent set in B_{t} has size k : $\# I S\left(B_{t}\right) \leq n^{k}$
The independence number of a tree decomposition: $\alpha(T D)=\max _{B_{t}} \alpha\left(B_{t}\right)$
Tree-independence number: tree- $\alpha(G)=\min _{T D} \alpha(T D)$

- Introduced by [Dallard, Milanič, and Storgel '21]
- Most general parameter over tree decompositions that gives XP algorithms for maximum independent set (with some assumptions)

Algorithmic Applications of Tree-independence number

Let $k=\operatorname{tree}-\alpha(G)$

Algorithmic Applications of Tree-independence number

Let $k=\operatorname{tree}-\alpha(G)$

- $\mathcal{O}\left(n^{k+2}\right)$ time algorithm for maximum weight independent set

Algorithmic Applications of Tree-independence number

Let $k=\operatorname{tree}-\alpha(G)$

- $\mathcal{O}\left(n^{k+2}\right)$ time algorithm for maximum weight independent set
- $\mathcal{O}\left(n^{|H| \cdot(k+2)}\right)$ time algorithm for maximum weight H-packing [Dallard, Milanič, and Storgel'21]

Algorithmic Applications of Tree-independence number

Let $k=\operatorname{tree}-\alpha(G)$

- $\mathcal{O}\left(n^{k+2}\right)$ time algorithm for maximum weight independent set
- $\mathcal{O}\left(n^{|H| \cdot(k+2)}\right)$ time algorithm for maximum weight H-packing [Dallard, Milanič, and Storgel'21]
- $n^{\mathcal{O}(k)}$ time algorithms for feedback vertex set, longest induced path, and generalizations [Milanič and Rzazewski'22]

Algorithmic Applications of Tree-independence number

Let $k=\operatorname{tree}-\alpha(G)$

- $\mathcal{O}\left(n^{k+2}\right)$ time algorithm for maximum weight independent set
- $\mathcal{O}\left(n^{|H| \cdot(k+2)}\right)$ time algorithm for maximum weight H-packing [Dallard, Milanič, and Storgel'21]
- $n^{\mathcal{O}(k)}$ time algorithms for feedback vertex set, longest induced path, and generalizations [Milanič and Rzazewski'22]

All applications need the decomposition as an input!

Our Results

Theorem

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8 -approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

Our Results

Theorem

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8 -approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.
$\Rightarrow 2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time algorithms for several problems parameterized by tree-independence number k

Our Results

Theorem

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8 -approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.
$\Rightarrow 2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time algorithms for several problems parameterized by tree-independence number k

Hardness results:

Our Results

Theorem

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8 -approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.
$\Rightarrow 2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time algorithms for several problems parameterized by tree-independence number k

Hardness results:

- Assuming Gap-ETH, no $f(k) n^{o(k)}$ time $g(k)$-approximation algorithm

Our Results

Theorem

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8 -approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.
$\Rightarrow 2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time algorithms for several problems parameterized by tree-independence number k

Hardness results:

- Assuming Gap-ETH, no $f(k) n^{o(k)}$ time $g(k)$-approximation algorithm
- For every constant $k \geq 4$, NP-hard to decide if tree- $\alpha(G) \leq k$

Our Results

Theorem

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.
$\Rightarrow 2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time algorithms for several problems parameterized by tree-independence number k

Hardness results:

- Assuming Gap-ETH, no $f(k) n^{o(k)}$ time $g(k)$-approximation algorithm
- For every constant $k \geq 4$, NP-hard to decide if $\operatorname{tree}-\alpha(G) \leq k$
- (For $k=1$ linear time, $k=2,3$ remain open)

The Algorithm

Outline

- Bounded tree- $\alpha \Rightarrow$ balanced separators with bounded α

Outline

- Bounded tree- $\alpha \Rightarrow$ balanced separators with bounded α
- Recursive construction in Robertson-Seymour fashion

Outline

- Bounded tree- $\alpha \Rightarrow$ balanced separators with bounded α
- Recursive construction in Robertson-Seymour fashion
- Reduction from finding balanced separators to finding separators

Outline

- Bounded tree- $\alpha \Rightarrow$ balanced separators with bounded α
- Recursive construction in Robertson-Seymour fashion
- Reduction from finding balanced separators to finding separators
* 2-approximation algorithm for separators

Outline

- Bounded tree- $\alpha \Rightarrow$ balanced separators with bounded α
- Recursive construction in Robertson-Seymour fashion
- Reduction from finding balanced separators to finding separators
* 2-approximation algorithm for separators

1. Container with bounded α

Outline

- Bounded tree- $\alpha \Rightarrow$ balanced separators with bounded α
- Recursive construction in Robertson-Seymour fashion
- Reduction from finding balanced separators to finding separators
* 2-approximation algorithm for separators

1. Container with bounded α
2. Branching

Outline

- Bounded tree- $\alpha \Rightarrow$ balanced separators with bounded α
- Recursive construction in Robertson-Seymour fashion
- Reduction from finding balanced separators to finding separators
* 2-approximation algorithm for separators

1. Container with bounded α
2. Branching
3. Linear programming

Balanced separators

Input: Graph G, integer k, and a vertex set X with $\alpha(X)=9 k$
Task: Find a separation $\left(C_{1}, S, C_{2}\right)$ with $\alpha(S) \leq 2 k, \alpha\left(X \cap C_{1}\right) \leq 7 k$, and $\alpha\left(X \cap C_{2}\right) \leq 7 k$ or conclude tree- $\alpha(G)>k$

Balanced separators

Input: Graph G, integer k, and a vertex set X with $\alpha(X)=9 k$
Task: Find a separation $\left(C_{1}, S, C_{2}\right)$ with $\alpha(S) \leq 2 k, \alpha\left(X \cap C_{1}\right) \leq 7 k$, and $\alpha\left(X \cap C_{2}\right) \leq 7 k$ or conclude tree- $\alpha(G)>k$

Why balanced separators exists:

Balanced separators

Input: Graph G, integer k, and a vertex set X with $\alpha(X)=9 k$
Task: Find a separation $\left(C_{1}, S, C_{2}\right)$ with $\alpha(S) \leq 2 k, \alpha\left(X \cap C_{1}\right) \leq 7 k$, and $\alpha\left(X \cap C_{2}\right) \leq 7 k$ or conclude tree- $\alpha(G)>k$

Why balanced separators exists:

Balanced separators

Input: Graph G, integer k, and a vertex set X with $\alpha(X)=9 k$
Task: Find a separation $\left(C_{1}, S, C_{2}\right)$ with $\alpha(S) \leq 2 k, \alpha\left(X \cap C_{1}\right) \leq 7 k$, and $\alpha\left(X \cap C_{2}\right) \leq 7 k$ or conclude tree- $\alpha(G)>k$

Why balanced separators exists:

Balanced separators

Input: Graph G, integer k, and a vertex set X with $\alpha(X)=9 k$
Task: Find a separation $\left(C_{1}, S, C_{2}\right)$ with $\alpha(S) \leq 2 k, \alpha\left(X \cap C_{1}\right) \leq 7 k$, and $\alpha\left(X \cap C_{2}\right) \leq 7 k$ or conclude tree- $\alpha(G)>k$

Why balanced separators exists:

Balanced separators

Input: Graph G, integer k, and a vertex set X with $\alpha(X)=9 k$
Task: Find a separation $\left(C_{1}, S, C_{2}\right)$ with $\alpha(S) \leq 2 k, \alpha\left(X \cap C_{1}\right) \leq 7 k$, and $\alpha\left(X \cap C_{2}\right) \leq 7 k$ or conclude tree- $\alpha(G)>k$

Why balanced separators exists:

Balanced separators

Input: Graph \mathcal{G}, integer k, and a vertex set X with $\alpha(X)=9 k$
Task: Find a separation $\left(C_{1}, S, C_{2}\right)$ with $\alpha(S) \leq 2 k, \alpha\left(X \cap C_{1}\right) \leq 7 k$, and $\alpha\left(X \cap C_{2}\right) \leq 7 k$ or conclude tree- $\alpha(G)>k$

Why balanced separators exists:

Sufficient to ensure that $\alpha\left(X \cap C_{1}\right) \geq 2 k$ and $\alpha\left(X \cap C_{2}\right) \geq 2 k$

Balanced separators

Input: Graph G, integer k, and a vertex set X with $\alpha(X)=9 k$
Task: Find a separation $\left(C_{1}, S, C_{2}\right)$ with $\alpha(S) \leq 2 k, \alpha\left(X \cap C_{1}\right) \leq 7 k$, and $\alpha\left(X \cap C_{2}\right) \leq 7 k$ or conclude tree- $\alpha(G)>k$

Why balanced separators exists:

Sufficient to ensure that $\alpha\left(X \cap C_{1}\right) \geq 2 k$ and $\alpha\left(X \cap C_{2}\right) \geq 2 k$
Algorithm: Guess independent set $t_{1} \subseteq X \cap C_{1}$ with $\left|I_{1}\right|=2 k$ and $I_{2} \subseteq X \cap C_{2}$ with $\left|I_{2}\right|=2 k$, and then find an $I_{1}-I_{2}$ separator S with $\alpha(S) \leq 2 k$

2-Approximation Algorithm for separators

Input: Graph G, integer k, and two sets of vertices V_{1}, V_{2}
Task: Find an $\left(V_{1}, V_{2}\right)$-separator S with $\alpha(S) \leq 2 k$, or conclude that no (V_{1}, V_{2})-separators with $\alpha(S) \leq k$ exist

Container with bounded α

Goal: Find a vertex set R with $\alpha(R) \leq \mathcal{O}\left(k^{2}\right)$ so that $S \subseteq R$

Container with bounded α

Goal: Find a vertex set R with $\alpha(R) \leq \mathcal{O}\left(k^{2}\right)$ so that $S \subseteq R$

- By iterative compression, we can assume to have a tree decomposition TD with $\alpha(T D)=\mathcal{O}(k)$

Container with bounded α
Goal: Find a vertex set R with $\alpha(R) \leq \mathcal{O}\left(k^{2}\right)$ so that $S \subseteq R$

- By iterative compression, we can assume to have a tree decomposition TD with $\alpha(T D)=\mathcal{O}(k)$

Lemma

Any vertex set S can be covered by $2 \alpha(S)-1$ bags of TD

Container with bounded α

Goal: Find a vertex set R with $\alpha(R) \leq \mathcal{O}\left(k^{2}\right)$ so that $S \subseteq R$

- By iterative compression, we can assume to have a tree decomposition TD with $\alpha(T D)=\mathcal{O}(k)$

Lemma

Any vertex set S can be covered by $2 \alpha(S)-1$ bags of TD
Proof: By induction on $\alpha(\boldsymbol{S})$

Container with bounded α

Goal: Find a vertex set R with $\alpha(R) \leq \mathcal{O}\left(k^{2}\right)$ so that $S \subseteq R$

- By iterative compression, we can assume to have a tree decomposition TD with $\alpha(T D)=\mathcal{O}(k)$

Lemma

Any vertex set S can be covered by $2 \alpha(S)-1$ bags of TD
Proof: By induction on α (\boldsymbol{S})

$\Rightarrow R$ can be guessed by guessing $\mathcal{O}(k)$ bags of TD

Branching

Have: A vertex set R with $\alpha(R) \leq \mathcal{O}\left(k^{2}\right)$ so that $S \subseteq R$
Goal: A vertex set $R \subseteq N\left(V_{1} \cup V_{2}\right)$ so that $S \subseteq R$

Branching

Have: A vertex set R with $\alpha(R) \leq \mathcal{O}\left(k^{2}\right)$ so that $S \subseteq R$ Goal: A vertex set $R \subseteq N\left(V_{1} \cup V_{2}\right)$ so that $S \subseteq R$

Idea: Take a vertex $v \in R \backslash N\left(V_{1} \cup V_{2}\right)$ branch on whether

Branching

Have: A vertex set R with $\alpha(R) \leq \mathcal{O}\left(k^{2}\right)$ so that $S \subseteq R$ Goal: A vertex set $R \subseteq N\left(V_{1} \cup V_{2}\right)$ so that $S \subseteq R$

Idea: Take a vertex $v \in R \backslash N\left(V_{1} \cup V_{2}\right)$ branch on whether 1. v goes to partial solution S_{0}

Branching

Have: A vertex set R with $\alpha(R) \leq \mathcal{O}\left(k^{2}\right)$ so that $S \subseteq R$ Goal: A vertex set $R \subseteq N\left(V_{1} \cup V_{2}\right)$ so that $S \subseteq R$

Idea: Take a vertex $v \in R \backslash N\left(V_{1} \cup V_{2}\right)$ branch on whether

1. v goes to partial solution S_{0}
2. v goes to V_{1}

Branching

Have: A vertex set R with $\alpha(R) \leq \mathcal{O}\left(k^{2}\right)$ so that $S \subseteq R$ Goal: A vertex set $R \subseteq N\left(V_{1} \cup V_{2}\right)$ so that $S \subseteq R$

Idea: Take a vertex $v \in R \backslash N\left(V_{1} \cup V_{2}\right)$ branch on whether

1. v goes to partial solution S_{0}
2. v goes to V_{1}
3. v goes to V_{2}

Branching

Have: A vertex set R with $\alpha(R) \leq \mathcal{O}\left(k^{2}\right)$ so that $S \subseteq R$ Goal: A vertex set $R \subseteq N\left(V_{1} \cup V_{2}\right)$ so that $S \subseteq R$

Idea: Take a vertex $v \in R \backslash N\left(V_{1} \cup V_{2}\right)$ branch on whether

1. v goes to partial solution S_{0}
2. v goes to V_{1}
3. v goes to V_{2}

Observation

Branches (2) and (3) decrease $\alpha\left(R \backslash N\left(V_{1} \cup V_{2}\right)\right)$.

Branching

Have: A vertex set R with $\alpha(R) \leq \mathcal{O}\left(k^{2}\right)$ so that $S \subseteq R$ Goal: A vertex set $R \subseteq N\left(V_{1} \cup V_{2}\right)$ so that $S \subseteq R$

Idea: Take a vertex $v \in R \backslash N\left(V_{1} \cup V_{2}\right)$ branch on whether

1. v goes to partial solution S_{0}
2. v goes to V_{1}
3. v goes to V_{2}

Observation

Branches (2) and (3) decrease $\alpha\left(R \backslash N\left(V_{1} \cup V_{2}\right)\right)$.
\Rightarrow Branching tree of size $n^{2 \alpha(R)}$

Linear Programming

Input: Graph G, integer k, three disjoint sets of vertices V_{1}, V_{2}, R with $R=N\left(V_{1} \cup V_{2}\right)$
Task: Find an $\left(V_{1}, V_{2}\right)$-separator $S \subseteq R$ with $\alpha(S) \leq 2 k$, or conclude that no such separators with $\alpha(S) \leq k$ exist

Linear Programming

Input: Graph G, integer k, three disjoint sets of vertices V_{1}, V_{2}, R with $R=N\left(V_{1} \cup V_{2}\right)$
Task: Find an $\left(V_{1}, V_{2}\right)$-separator $S \subseteq R$ with $\alpha(S) \leq 2 k$, or conclude that no such separators with $\alpha(S) \leq k$ exist

Variables: x_{v} for all vertices $v \in R$

Linear Programming

Input: Graph G, integer k, three disjoint sets of vertices V_{1}, V_{2}, R with $R=N\left(V_{1} \cup V_{2}\right)$
Task: Find an $\left(V_{1}, V_{2}\right)$-separator $S \subseteq R$ with $\alpha(S) \leq 2 k$, or conclude that no such separators with $\alpha(S) \leq k$ exist

Variables: x_{v} for all vertices $v \in R$
Separator inequalities:
$x_{v}+x_{u} \geq 1$ for all $v \in N\left(V_{1}\right), u \in N\left(V_{2}\right)$ with $v-u$ path with internal vertices in $G \backslash R$

Linear Programming

Input: Graph G, integer k, three disjoint sets of vertices V_{1}, V_{2}, R with $R=N\left(V_{1} \cup V_{2}\right)$
Task: Find an $\left(V_{1}, V_{2}\right)$-separator $S \subseteq R$ with $\alpha(S) \leq 2 k$, or conclude that no such separators with $\alpha(S) \leq k$ exist

Variables: x_{v} for all vertices $v \in R$
Separator inequalities:
$x_{v}+x_{u} \geq 1$ for all $v \in N\left(V_{1}\right), u \in N\left(V_{2}\right)$ with $v-u$ path with internal vertices in $G \backslash R$
Independence number inequalities:
$\sum_{v \in I} x_{v} \leq k$ for all independent sets $I \subseteq R$ with $|I|=2 k+1$

Linear Programming

Input: Graph G, integer k, three disjoint sets of vertices V_{1}, V_{2}, R with $R=N\left(V_{1} \cup V_{2}\right)$
Task: Find an $\left(V_{1}, V_{2}\right)$-separator $S \subseteq R$ with $\alpha(S) \leq 2 k$, or conclude that no such separators with $\alpha(S) \leq k$ exist

Variables: x_{v} for all vertices $v \in R$
Separator inequalities:
$x_{v}+x_{u} \geq 1$ for all $v \in N\left(V_{1}\right), u \in N\left(V_{2}\right)$ with $v-u$ path with internal vertices in $G \backslash R$
Independence number inequalities:
$\sum_{v \in I} x_{v} \leq k$ for all independent sets $I \subseteq R$ with $|I|=2 k+1$

Lemma

Rounding a fractional solution gives a solution with independence number at most $2 k$

Conclusion

- First XP approximation algorithm for tree-independence number

Conclusion

- First XP approximation algorithm for tree-independence number
- Testing tree- $\alpha(G) \leq k$ is NP-hard for every $k \geq 4$

Conclusion

- First XP approximation algorithm for tree-independence number
- Testing tree- $\alpha(G) \leq k$ is NP-hard for every $k \geq 4$
- Open problem: Complexity of testing tree $-\alpha(G) \leq k$ for $k=2,3$?

Thank you!

Thank you!

