Computing Tree Decompositions with Small Independence Number

Tuukka Korhonen



UNIVERSITY OF BERGEN

joint work with Clément Dallard<sup>1</sup>, Fedor V. Fomin, Petr A. Golovach, and Martin Milanič<sup>1</sup>

<sup>1</sup>FAMNIT and IAM, University of Primorska

# GROW 2022

22 September 2022

Tuukka Korhonen

Computing TDs with Small Independence Number

#### **Tree Decompositions**



Graph G

#### A tree decomposition of G

### Dynamic programming for maximum independent set



For every node *t* and subset  $S \subseteq B_t$ 

 $dp[t][S] = maximum independent set I below t with <math>I \cap B_t = S$ 

# Dynamic programming for maximum independent set



For every node *t* and subset  $S \subseteq B_t$ 

dp[t][S] = maximum independent set *I* below *t* with  $I \cap B_t = S$  $2^{|B_t|}$  states per node

# Dynamic programming for maximum independent set



For every node *t* and **independent** subset  $S \subseteq B_t$ 

dp[t][S] = maximum independent set *I* below *t* with  $I \cap B_t = S$ #*IS*(*B*<sub>t</sub>) states per node

What kind of tree decompositions have bounded  $\#IS(B_t)$ ?

• Clique-trees of chordal graphs:  $\#IS(B_t) \le n$ 

- Clique-trees of chordal graphs:  $\#IS(B_t) \le n$
- $B_t$  is clique+k vertices:  $\#IS(B_t) \le 2^k n$  [Jacob, Panolan, Raman, Sahlot '20]

- Clique-trees of chordal graphs:  $\#IS(B_t) \le n$
- $B_t$  is clique+k vertices:  $\#IS(B_t) \le 2^k n$  [Jacob, Panolan, Raman, Sahlot '20]
- $B_t$  is clique -k edges:  $\#IS(B_t) \le 2^{\sqrt{k}}n$  [Fomin and Golovach '20]

- Clique-trees of chordal graphs:  $\#IS(B_t) \le n$
- $B_t$  is clique+k vertices:  $\#IS(B_t) \le 2^k n$  [Jacob, Panolan, Raman, Sahlot '20]
- $B_t$  is clique-k edges:  $\#IS(B_t) \le 2^{\sqrt{k}}n$  [Fomin and Golovach '20]
- $B_t$  is covered by k cliques:  $\#IS(B_t) \le n^k$  used for geometric intersection graphs [De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden '18]

What kind of tree decompositions have bounded  $\#IS(B_t)$ ?

- Clique-trees of chordal graphs:  $\#IS(B_t) \le n$
- $B_t$  is clique+k vertices:  $\#IS(B_t) \le 2^k n$  [Jacob, Panolan, Raman, Sahlot '20]
- $B_t$  is clique-k edges:  $\#IS(B_t) \le 2^{\sqrt{k}}n$  [Fomin and Golovach '20]
- $B_t$  is covered by k cliques:  $\#IS(B_t) \le n^k$  used for geometric intersection graphs [De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden '18]

Maximum independent set in  $B_t$  has size k:  $\#IS(B_t) \le n^k$ 

What kind of tree decompositions have bounded  $\#IS(B_t)$ ?

- Clique-trees of chordal graphs:  $\#IS(B_t) \le n$
- $B_t$  is clique+k vertices:  $\#IS(B_t) \le 2^k n$  [Jacob, Panolan, Raman, Sahlot '20]
- $B_t$  is clique-k edges:  $\#IS(B_t) \le 2^{\sqrt{k}}n$  [Fomin and Golovach '20]
- $B_t$  is covered by k cliques:  $\#IS(B_t) \le n^k$  used for geometric intersection graphs [De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden '18]

Maximum independent set in  $B_t$  has size k:  $\#IS(B_t) \le n^k$ 

The independence number of a tree decomposition:  $\alpha(TD) = \max_{B_t} \alpha(B_t)$ 

What kind of tree decompositions have bounded  $\#IS(B_t)$ ?

- Clique-trees of chordal graphs:  $\#IS(B_t) \le n$
- $B_t$  is clique+k vertices:  $\#IS(B_t) \le 2^k n$  [Jacob, Panolan, Raman, Sahlot '20]
- $B_t$  is clique-k edges:  $\#IS(B_t) \le 2^{\sqrt{k}}n$  [Fomin and Golovach '20]
- $B_t$  is covered by k cliques:  $\#IS(B_t) \le n^k$  used for geometric intersection graphs [De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden '18]

Maximum independent set in  $B_t$  has size k:  $\#IS(B_t) \le n^k$ 

The independence number of a tree decomposition:  $\alpha(TD) = \max_{B_t} \alpha(B_t)$ 

Tree-independence number: tree- $\alpha(G) = \min_{TD} \alpha(TD)$ 

What kind of tree decompositions have bounded  $\#IS(B_t)$ ?

- Clique-trees of chordal graphs:  $\#IS(B_t) \le n$
- $B_t$  is clique+k vertices:  $\#IS(B_t) \le 2^k n$  [Jacob, Panolan, Raman, Sahlot '20]
- $B_t$  is clique-k edges:  $\#IS(B_t) \le 2^{\sqrt{k}}n$  [Fomin and Golovach '20]
- $B_t$  is covered by k cliques:  $\#IS(B_t) \le n^k$  used for geometric intersection graphs [De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden '18]

Maximum independent set in  $B_t$  has size k:  $\#IS(B_t) \le n^k$ 

The independence number of a tree decomposition:  $\alpha(TD) = \max_{B_t} \alpha(B_t)$ 

Tree-independence number: tree- $\alpha(G) = \min_{TD} \alpha(TD)$ 

Introduced by [Dallard, Milanič, and Storgel '21]

What kind of tree decompositions have bounded  $\#IS(B_t)$ ?

- Clique-trees of chordal graphs:  $\#IS(B_t) \le n$
- $B_t$  is clique+k vertices:  $\#IS(B_t) \le 2^k n$  [Jacob, Panolan, Raman, Sahlot '20]
- $B_t$  is clique-k edges:  $\#IS(B_t) \le 2^{\sqrt{k}}n$  [Fomin and Golovach '20]
- $B_t$  is covered by k cliques:  $\#IS(B_t) \le n^k$  used for geometric intersection graphs [De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden '18]

Maximum independent set in  $B_t$  has size k:  $\#IS(B_t) \le n^k$ 

The independence number of a tree decomposition:  $\alpha(TD) = \max_{B_t} \alpha(B_t)$ 

Tree-independence number: tree- $\alpha(G) = \min_{TD} \alpha(TD)$ 

- Introduced by [Dallard, Milanič, and Storgel '21]
- Most general parameter over tree decompositions that gives XP algorithms for maximum independent set

Tuukka Korhonen

What kind of tree decompositions have bounded  $\#IS(B_t)$ ?

- Clique-trees of chordal graphs:  $\#IS(B_t) \le n$
- $B_t$  is clique+k vertices:  $\#IS(B_t) \le 2^k n$  [Jacob, Panolan, Raman, Sahlot '20]
- $B_t$  is clique-k edges:  $\#IS(B_t) \le 2^{\sqrt{k}}n$  [Fomin and Golovach '20]
- $B_t$  is covered by k cliques:  $\#IS(B_t) \le n^k$  used for geometric intersection graphs [De Berg, Bodlaender, Kisfaludi-Bak, Marx, and Van Der Zanden '18]

Maximum independent set in  $B_t$  has size k:  $\#IS(B_t) \le n^k$ 

The independence number of a tree decomposition:  $\alpha(TD) = \max_{B_t} \alpha(B_t)$ 

Tree-independence number: tree- $\alpha(G) = \min_{TD} \alpha(TD)$ 

- Introduced by [Dallard, Milanič, and Storgel '21]
- Most general parameter over tree decompositions that gives XP algorithms for maximum independent set (with some assumptions)

Let  $k = \text{tree-}\alpha(G)$ 

Let  $k = \text{tree-}\alpha(G)$ 

•  $\mathcal{O}(n^{k+2})$  time algorithm for maximum weight independent set

Let  $k = \text{tree-}\alpha(G)$ 

- $\mathcal{O}(n^{k+2})$  time algorithm for maximum weight independent set
- \$\mathcal{O}(n^{|H| \cdot (k+2)})\$ time algorithm for maximum weight *H*-packing [Dallard, Milanič, and Storgel'21]

Let  $k = \text{tree-}\alpha(G)$ 

- $\mathcal{O}(n^{k+2})$  time algorithm for maximum weight independent set
- \$\mathcal{O}(n^{|H| \cdot (k+2)})\$ time algorithm for maximum weight *H*-packing [Dallard, Milanič, and Storgel'21]
- n<sup>O(k)</sup> time algorithms for feedback vertex set, longest induced path, and generalizations [Milanič and Rzazewski'22]

Let  $k = \text{tree-}\alpha(G)$ 

- $\mathcal{O}(n^{k+2})$  time algorithm for maximum weight independent set
- \$\mathcal{O}(n^{|H| \cdot (k+2)})\$ time algorithm for maximum weight *H*-packing [Dallard, Milanič, and Storgel'21]
- n<sup>O(k)</sup> time algorithms for feedback vertex set, longest induced path, and generalizations [Milanič and Rzazewski'22]

# All applications need the decomposition as an input!

#### Theorem

There is a  $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$  time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

#### Theorem

There is a  $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$  time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

 $\Rightarrow 2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$  time algorithms for several problems parameterized by tree-independence number k

#### Theorem

There is a  $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$  time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

 $\Rightarrow 2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$  time algorithms for several problems parameterized by tree-independence number k

Hardness results:

#### Theorem

There is a  $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$  time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

 $\Rightarrow 2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$  time algorithms for several problems parameterized by tree-independence number *k* 

Hardness results:

• Assuming Gap-ETH, no  $f(k)n^{o(k)}$  time g(k)-approximation algorithm

#### Theorem

There is a  $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$  time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

 $\Rightarrow 2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$  time algorithms for several problems parameterized by tree-independence number *k* 

Hardness results:

- Assuming Gap-ETH, no  $f(k)n^{o(k)}$  time g(k)-approximation algorithm
- For every constant  $k \ge 4$ , NP-hard to decide if tree- $\alpha(G) \le k$

#### Theorem

There is a  $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$  time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

 $\Rightarrow 2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$  time algorithms for several problems parameterized by tree-independence number k

Hardness results:

- Assuming Gap-ETH, no  $f(k)n^{o(k)}$  time g(k)-approximation algorithm
- For every constant  $k \ge 4$ , NP-hard to decide if tree- $\alpha(G) \le k$ 
  - (For k = 1 linear time, k = 2, 3 remain open)

The Algorithm

# The Algorithm

 $\bullet\,$  Bounded tree- $\alpha \Rightarrow$  balanced separators with bounded  $\alpha$ 

- Bounded tree- $\alpha \Rightarrow$  balanced separators with bounded  $\alpha$
- Recursive construction in Robertson-Seymour fashion

- Bounded tree- $\alpha \Rightarrow$  balanced separators with bounded  $\alpha$
- Recursive construction in Robertson-Seymour fashion
  - Reduction from finding balanced separators to finding separators

- Bounded tree- $\alpha \Rightarrow$  balanced separators with bounded  $\alpha$
- Recursive construction in Robertson-Seymour fashion
  - Reduction from finding balanced separators to finding separators
    - \* 2-approximation algorithm for separators

- Bounded tree- $\alpha \Rightarrow$  balanced separators with bounded  $\alpha$
- Recursive construction in Robertson-Seymour fashion
  - Reduction from finding balanced separators to finding separators
    - \* 2-approximation algorithm for separators
      - 1. Container with bounded  $\alpha$

- Bounded tree- $\alpha \Rightarrow$  balanced separators with bounded  $\alpha$
- Recursive construction in Robertson-Seymour fashion
  - Reduction from finding balanced separators to finding separators
    - \* 2-approximation algorithm for separators
      - 1. Container with bounded  $\alpha$
      - 2. Branching

- Bounded tree- $\alpha \Rightarrow$  balanced separators with bounded  $\alpha$
- Recursive construction in Robertson-Seymour fashion
  - Reduction from finding balanced separators to finding separators
    - \* 2-approximation algorithm for separators
      - 1. Container with bounded  $\alpha$
      - 2. Branching
      - 3. Linear programming

Input: Graph *G*, integer *k*, and a vertex set *X* with  $\alpha(X) = 9k$ 

Task: Find a separation  $(C_1, S, C_2)$  with  $\alpha(S) \leq 2k$ ,  $\alpha(X \cap C_1) \leq 7k$ , and  $\alpha(X \cap C_2) \leq 7k$  or conclude tree- $\alpha(G) > k$ 

Input: Graph G, integer k, and a vertex set X with  $\alpha(X) = 9k$ 

Task: Find a separation  $(C_1, S, C_2)$  with  $\alpha(S) \leq 2k$ ,  $\alpha(X \cap C_1) \leq 7k$ , and  $\alpha(X \cap C_2) \leq 7k$  or conclude tree- $\alpha(G) > k$ 



Input: Graph G, integer k, and a vertex set X with  $\alpha(X) = 9k$ 

Task: Find a separation  $(C_1, S, C_2)$  with  $\alpha(S) \leq 2k$ ,  $\alpha(X \cap C_1) \leq 7k$ , and  $\alpha(X \cap C_2) \leq 7k$  or conclude tree- $\alpha(G) > k$ 



Input: Graph G, integer k, and a vertex set X with  $\alpha(X) = 9k$ 

Task: Find a separation  $(C_1, S, C_2)$  with  $\alpha(S) \leq 2k$ ,  $\alpha(X \cap C_1) \leq 7k$ , and  $\alpha(X \cap C_2) \leq 7k$  or conclude tree- $\alpha(G) > k$ 



Input: Graph G, integer k, and a vertex set X with  $\alpha(X) = 9k$ 

Task: Find a separation  $(C_1, S, C_2)$  with  $\alpha(S) \leq 2k$ ,  $\alpha(X \cap C_1) \leq 7k$ , and  $\alpha(X \cap C_2) \leq 7k$  or conclude tree- $\alpha(G) > k$ 



Input: Graph G, integer k, and a vertex set X with  $\alpha(X) = 9k$ 

Task: Find a separation  $(C_1, S, C_2)$  with  $\alpha(S) \leq 2k$ ,  $\alpha(X \cap C_1) \leq 7k$ , and  $\alpha(X \cap C_2) \leq 7k$  or conclude tree- $\alpha(G) > k$ 



Input: Graph G, integer k, and a vertex set X with  $\alpha(X) = 9k$ 

Task: Find a separation  $(C_1, S, C_2)$  with  $\alpha(S) \leq 2k$ ,  $\alpha(X \cap C_1) \leq 7k$ , and  $\alpha(X \cap C_2) \leq 7k$  or conclude tree- $\alpha(G) > k$ 

Why balanced separators exists:



Sufficient to ensure that  $\alpha(X \cap C_1) \ge 2k$  and  $\alpha(X \cap C_2) \ge 2k$ 

Input: Graph G, integer k, and a vertex set X with  $\alpha(X) = 9k$ 

Task: Find a separation  $(C_1, S, C_2)$  with  $\alpha(S) \leq 2k$ ,  $\alpha(X \cap C_1) \leq 7k$ , and  $\alpha(X \cap C_2) \leq 7k$  or conclude tree- $\alpha(G) > k$ 

Why balanced separators exists:



Sufficient to ensure that  $\alpha(X \cap C_1) \ge 2k$  and  $\alpha(X \cap C_2) \ge 2k$ 

Algorithm: Guess independent set  $l_1 \subseteq X \cap C_1$  with  $|l_1| = 2k$  and  $l_2 \subseteq X \cap C_2$  with  $|l_2| = 2k$ , and then find an  $l_1 - l_2$  separator *S* with  $\alpha(S) \leq 2k$ 

# 2-Approximation Algorithm for separators

Input: Graph G, integer k, and two sets of vertices  $V_1$ ,  $V_2$ 

Task: Find an  $(V_1, V_2)$ -separator S with  $\alpha(S) \leq 2k$ , or conclude that no  $(V_1, V_2)$ -separators with  $\alpha(S) \leq k$  exist

Goal: Find a vertex set *R* with  $\alpha(R) \leq \mathcal{O}(k^2)$  so that  $S \subseteq R$ 

Goal: Find a vertex set *R* with  $\alpha(R) \leq \mathcal{O}(k^2)$  so that  $S \subseteq R$ 

 By *iterative compression*, we can assume to have a tree decomposition TD with α(TD) = O(k)

Goal: Find a vertex set *R* with  $\alpha(R) \leq \mathcal{O}(k^2)$  so that  $S \subseteq R$ 

 By *iterative compression*, we can assume to have a tree decomposition TD with α(TD) = O(k)

#### Lemma

Any vertex set S can be covered by  $2\alpha(S) - 1$  bags of TD

Goal: Find a vertex set *R* with  $\alpha(R) \leq \mathcal{O}(k^2)$  so that  $S \subseteq R$ 

 By *iterative compression*, we can assume to have a tree decomposition TD with α(TD) = O(k)

#### Lemma

Any vertex set S can be covered by  $2\alpha(S) - 1$  bags of TD

Proof: By induction on  $\alpha(S)$ 



Goal: Find a vertex set *R* with  $\alpha(R) \leq \mathcal{O}(k^2)$  so that  $S \subseteq R$ 

 By *iterative compression*, we can assume to have a tree decomposition TD with α(TD) = O(k)

#### Lemma

Any vertex set S can be covered by  $2\alpha(S) - 1$  bags of TD

Proof: By induction on  $\alpha(S)$ 



 $\Rightarrow$  *R* can be guessed by guessing  $\mathcal{O}(k)$  bags of TD

Have: A vertex set *R* with  $\alpha(R) \leq \mathcal{O}(k^2)$  so that  $S \subseteq R$ Goal: A vertex set  $R \subseteq N(V_1 \cup V_2)$  so that  $S \subseteq R$ 

Have: A vertex set *R* with  $\alpha(R) \leq \mathcal{O}(k^2)$  so that  $S \subseteq R$ Goal: A vertex set  $R \subseteq N(V_1 \cup V_2)$  so that  $S \subseteq R$ 

Idea: Take a vertex  $v \in R \setminus N(V_1 \cup V_2)$  branch on whether

Have: A vertex set *R* with  $\alpha(R) \leq \mathcal{O}(k^2)$  so that  $S \subseteq R$ Goal: A vertex set  $R \subseteq N(V_1 \cup V_2)$  so that  $S \subseteq R$ 

Idea: Take a vertex  $v \in R \setminus N(V_1 \cup V_2)$  branch on whether

1. v goes to partial solution  $S_0$ 

Have: A vertex set *R* with  $\alpha(R) \leq \mathcal{O}(k^2)$  so that  $S \subseteq R$ Goal: A vertex set  $R \subseteq N(V_1 \cup V_2)$  so that  $S \subseteq R$ 

Idea: Take a vertex  $v \in R \setminus N(V_1 \cup V_2)$  branch on whether

- 1. v goes to partial solution  $S_0$
- 2. v goes to  $V_1$

Have: A vertex set *R* with  $\alpha(R) \leq \mathcal{O}(k^2)$  so that  $S \subseteq R$ Goal: A vertex set  $R \subseteq N(V_1 \cup V_2)$  so that  $S \subseteq R$ 

Idea: Take a vertex  $v \in R \setminus N(V_1 \cup V_2)$  branch on whether

- 1. v goes to partial solution  $S_0$
- 2. v goes to  $V_1$
- 3. v goes to V<sub>2</sub>

Have: A vertex set *R* with  $\alpha(R) \leq \mathcal{O}(k^2)$  so that  $S \subseteq R$ Goal: A vertex set  $R \subseteq N(V_1 \cup V_2)$  so that  $S \subseteq R$ 

Idea: Take a vertex  $v \in R \setminus N(V_1 \cup V_2)$  branch on whether

- 1. v goes to partial solution  $S_0$
- 2. v goes to  $V_1$
- 3. v goes to  $V_2$

Observation

Branches (2) and (3) decrease  $\alpha(R \setminus N(V_1 \cup V_2))$ .

Have: A vertex set *R* with  $\alpha(R) \leq \mathcal{O}(k^2)$  so that  $S \subseteq R$ Goal: A vertex set  $R \subseteq N(V_1 \cup V_2)$  so that  $S \subseteq R$ 

Idea: Take a vertex  $v \in R \setminus N(V_1 \cup V_2)$  branch on whether

- 1. v goes to partial solution  $S_0$
- 2. v goes to  $V_1$
- 3. v goes to  $V_2$

#### Observation

Branches (2) and (3) decrease  $\alpha(R \setminus N(V_1 \cup V_2))$ .

 $\Rightarrow$  Branching tree of size  $n^{2\alpha(R)}$ 

Input: Graph G, integer k, three disjoint sets of vertices  $V_1$ ,  $V_2$ , R with  $R = N(V_1 \cup V_2)$ 

Task: Find an  $(V_1, V_2)$ -separator  $S \subseteq R$  with  $\alpha(S) \leq 2k$ , or conclude that no such separators with  $\alpha(S) \leq k$  exist

Input: Graph G, integer k, three disjoint sets of vertices  $V_1$ ,  $V_2$ , R with  $R = N(V_1 \cup V_2)$ 

Task: Find an  $(V_1, V_2)$ -separator  $S \subseteq R$  with  $\alpha(S) \leq 2k$ , or conclude that no such separators with  $\alpha(S) \leq k$  exist

Variables:  $x_v$  for all vertices  $v \in R$ 

Input: Graph G, integer k, three disjoint sets of vertices  $V_1$ ,  $V_2$ , R with  $R = N(V_1 \cup V_2)$ 

Task: Find an  $(V_1, V_2)$ -separator  $S \subseteq R$  with  $\alpha(S) \leq 2k$ , or conclude that no such separators with  $\alpha(S) \leq k$  exist

Variables:  $x_v$  for all vertices  $v \in R$ 

Separator inequalities:

 $x_v + x_u \ge 1$  for all  $v \in N(V_1)$ ,  $u \in N(V_2)$  with v - u path with internal vertices in  $G \setminus R$ 

Input: Graph G, integer k, three disjoint sets of vertices  $V_1$ ,  $V_2$ , R with  $R = N(V_1 \cup V_2)$ 

Task: Find an  $(V_1, V_2)$ -separator  $S \subseteq R$  with  $\alpha(S) \leq 2k$ , or conclude that no such separators with  $\alpha(S) \leq k$  exist

Variables:  $x_v$  for all vertices  $v \in R$ 

Separator inequalities:

 $x_v + x_u \ge 1$  for all  $v \in N(V_1)$ ,  $u \in N(V_2)$  with v - u path with internal vertices in  $G \setminus R$ 

Independence number inequalities:

 $\sum_{v \in I} x_v \leq k$  for all independent sets  $I \subseteq R$  with |I| = 2k + 1

Input: Graph G, integer k, three disjoint sets of vertices  $V_1$ ,  $V_2$ , R with  $R = N(V_1 \cup V_2)$ 

Task: Find an  $(V_1, V_2)$ -separator  $S \subseteq R$  with  $\alpha(S) \leq 2k$ , or conclude that no such separators with  $\alpha(S) \leq k$  exist

Variables:  $x_v$  for all vertices  $v \in R$ 

Separator inequalities:

 $x_v + x_u \ge 1$  for all  $v \in N(V_1)$ ,  $u \in N(V_2)$  with v - u path with internal vertices in  $G \setminus R$ 

Independence number inequalities:  $\sum_{v \in I} x_v \le k$  for all independent sets  $I \subseteq R$  with |I| = 2k + 1

#### Lemma

Rounding a fractional solution gives a solution with independence number at most 2k

# Conclusion

• First XP approximation algorithm for tree-independence number

- First XP approximation algorithm for tree-independence number
- Testing tree- $\alpha(G) \leq k$  is NP-hard for every  $k \geq 4$

- First XP approximation algorithm for tree-independence number
- Testing tree- $\alpha(G) \leq k$  is NP-hard for every  $k \geq 4$
- Open problem: Complexity of testing tree- $\alpha(G) \leq k$  for k = 2, 3?

Thank you!

# Thank you!

Tuukka Korhonen

Computing TDs with Small Independence Number