Bounds for the twin-width of graphs

Jungho Ahn

KAIST & IBS DIMAG

Joint work with

Kevin Hendrey (IBS) Donggyu Kim (KAIST & IBS DIMAG) Sang-il Oum (IBS DIMAG & KAIST)

GROW 2022

Definition

A trigraph is a triple G = (V(G), B(G), R(G)) where B(G) and R(G) are disjoint edge sets. The edges in B(G) are **black** edges and the edges in R(G) are **red** edges.

For a vertex v of a trigraph G,

- **(**) $N^B(v)$ is the set of vertices adjacent to v by a **black** edge,
- **2** $N^{R}(v)$ is the set of vertices adjacent to v by a red edge, and

Twin-width is defined by contraction sequences

Contracting two vertices u and v, not necessarily adjacent, of a (tri)graph G is defined as follows.

We remove u and v and make a new vertex w. For $x \in V(G) \setminus \{u, v\}$,

- **1** if $x \in N^B(u) \cap N^B(v)$, then add a **black** edge wx,
- ② if $x \notin N_G(u) \cup N_G(v)$, then add no edge between *w* and *x*, and ③ otherwise add a red edge *wx*.

Figure: Contracting u and v.

Twin-width is defined by contraction sequences

A contraction sequence of a graph G on n vertices is a sequence $G_1 := G, \ldots, G_n := K_1$ such that for each $i \in [n-1]$, G_{i+1} is obtained from G_i by contracting two distinct vertices.

A width of a contraction sequence is the maximum red-degree of G_i .

Twin-width is defined by contraction sequences

The twin-width of a graph G is the minimum possible width of a contraction sequence of G.

Figure: The twin-width of the graph is 1.

Figure: Bounded twin-width graph classes generalize several graph classes.

→ Ξ →

Theorem (Bonnet, Kim, Thomassé, and Watrigant, 2021)

For any FO ϕ and a graph G with a contraction sequence of width d, checking whether G satisfies ϕ can be done in $f(d, |\phi|) \cdot |V(G)|$ time.

Theorem (Bonnet, Geniet, Kim, Thomassé, and Watrigant, 2021)

For a graph with a contraction sequence of constant width, k-INDEPENDENT SET, k-CLIQUE, k-DOMINATING SET can be solved in $2^{O(k)}n$ time.

Weighted k-Independent Set, Subgraph Isomorphism, Induced Subgraph Isomorphism can be solved in $2^{O(k \log k)}n$ time.

Theorem (A., Hendrey, Kim, and Oum, 2022)

For a graph G with n vertices and m edges,

$$\operatorname{tww}(G) < \frac{1}{2}(n + \sqrt{n \ln n} + \sqrt{n} + 2 \ln n),$$

$$\operatorname{tww}(G) < \sqrt{3m} + \frac{m^{1/4} \sqrt{\ln m}}{4 \cdot 3^{1/4}} + \frac{3m^{1/4}}{2}.$$

Jungho Ahn (KAIST & IBS DIMAG)

Bounds for the twin-width of graphs

₹ ∃ ►

Lemma

Let M be a maximal set of disjoint pairs $\{u, v\}$ of vertices in G such that

$$|(N_G(u) \triangle N_G(v)) \setminus \{u, v\}| \leq \frac{n + \sqrt{n} - 1}{2}.$$

Then $|M| > (n - \sqrt{n})/2$.

Note that $(n + \sqrt{n} - 1)/2$ is slightly smaller than our bound.

As contracting a pair in *M* induces a small red-degree, one possible strategy is to contract the pairs in *M* sequentially.

Lemma

Let M be a maximal set of disjoint pairs $\{u, v\}$ of vertices in G such that

$$|(N_G(u) \triangle N_G(v)) \setminus \{u, v\}| \leq \frac{n + \sqrt{n} - 1}{2}.$$

Then $|M| > (n - \sqrt{n})/2$.

Note that $(n + \sqrt{n} - 1)/2$ is slightly smaller than our bound.

As contracting a pair in M induces a small red-degree, one possible strategy is to contract the pairs in M sequentially.

(4) (日本)

But there is a problem...

If we contract $\{u_1, v_1\}$, $\{u_2, v_2\}$ in sequel, contracting the second pair may affect the red-degree of the new vertex obtained by contracting $\{u_1, v_1\}$.

Figure: Contracting u_2 and v_2 increases the red-degree of w_1 by 1.

By probabilistic method, we can find an order of M so that contracting the elements in M in this order does not increase much the red-degree of new vertices.

After contracting $> (n + \sqrt{n})/2$ pairs in M, the remaining graph has small number of vertices, so we can take any contraction sequence of the remaining graph.

 \Rightarrow As the result, we obtain tww(G) $< \frac{1}{2}(n + \sqrt{n \ln n} + \sqrt{n} + 2 \ln n)$.

By probabilistic method, we can find an order of M so that contracting the elements in M in this order does not increase much the red-degree of new vertices.

After contracting $> (n + \sqrt{n})/2$ pairs in M, the remaining graph has small number of vertices, so we can take any contraction sequence of the remaining graph.

 \Rightarrow As the result, we obtain tww(G) < $\frac{1}{2}(n + \sqrt{n \ln n} + \sqrt{n} + 2 \ln n)$.

In the upper bound by n, the coefficient of n is tight.

Definition (Conference graph)

A conference graph is a graph G on n vertices with $n \equiv 1 \pmod{4}$ such that G is ((n-1)/2)-regular and for each distinct vertices v and w,

() if v and w are adjacent, then $|N_G(v) \cap N_G(w)| = (n-5)/4$, and

3 otherwise
$$|N_G(v) \cap N_G(w)| = (n-1)/4$$
.

 \Rightarrow After contracting any pair of vertices, the new vertex has red-degree (n-1)/2, so its twin-width is at least (n-1)/2.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Is there a graph on *n* vertices having twin-width more than (n-1)/2?

Theorem (Schidler and Szeider, 2022)

Suggest a SAT-encodings for computing twin-width, and compute the twin-width of several small graphs.

n/2 + o(n) is tight

Graph	V	E	lb_1	tww	$ub_{\rm greedy}$	Variables	Clauses
Brinkmann	21	42	6	6	6	34526	150770
Chvátal	12	24	2	3	5	5611	18288
Clebsch	16	40	6	6	8	15510	64517
Desargues	20	30	4	4	5	28383	132636
Dodecahedron	20	30	4	4	4	26863	126244
Dürer	12	18	2	3	4	5347	18602
Errera	17	45	4	5	6	17720	75895
FlowerSnark	20	30	4	4	4	28383	119176
Folkman	20	40	2	3	3	10311	35761
Franklin	12	18	2	2	4	5347	16354
Frucht	12	18	2	3	3	5083	17573
Goldner	11	27	2	2	4	4067	11813
Grid $6 \times 8^*$	48	82	2	3	4	396751	3493676
Grötzsch	11	20	2	3	5	4287	13910
Herschel	11	18	2	2	4	4067	13590
Hoffman	16	32	2	4	5	14070	58051
Holt	27	54	6	6	7	79513	405925
Kittell	23	63	4	5	6	46161	171811
McGee	24	36	4	4	5	50087	238494
Moser	7	11	2	2	2	252	502
Nauru	24	36	4	4	5	50087	239051
Paley-73*	73	1314	36	36	64	2530300	21107035
Pappus	18	27	4	4	5	20399	89670
Peterson	10	15	4	4	4	3009	9388
Poussin	15	39	3	4	5	11571	31049
Robertson	19	38	6	6	6	25369	114592
Rook $6 \times 6^*$	36	180	10	10	12	216499	1236368
Shrikhande	16	48	6	6	8	15510	64431
Sousselier	16	27	4	4	5	14070	51414
Tietze	12	18	2	4	4	5347	18628
Wagner	8	12	2	2	2	1418	3909

Jungho Ahn (KAIST & IBS DIMAG)

GROW 2022 13 / 1

æ

メロト メポト メヨト メヨト

Definition (Paley graph)

For each prime power q with $q \equiv 1 \pmod{4}$, the Paley graph P(q) is a graph on \mathbb{F}_q with $|\mathbb{F}_q| = q$ such that vertices a and b are adjacent in P(q) if and only if $a - b = c^2$ for some $c \in \mathbb{F}_q \setminus \{0\}$.

Theorem (A., Hendrey, Kim, and Oum, 2022)

Every n-vertex Paley graph has twin-width exactly (n-1)/2.

Definition (Paley graph)

For each prime power q with $q \equiv 1 \pmod{4}$, the Paley graph P(q) is a graph on \mathbb{F}_q with $|\mathbb{F}_q| = q$ such that vertices a and b are adjacent in P(q) if and only if $a - b = c^2$ for some $c \in \mathbb{F}_q \setminus \{0\}$.

Question

Is there an *n*-vertex graph having twin-width larger than (n-1)/2?

く 白 ト く ヨ ト く ヨ ト

Theorem (A., Chakraborti, Hendrey, Kim, and Oum, 2022+) There exists $p^* \in (0.401, 0.402)$ such that the following hold for a real p and q := 1 - p. (1) If $p^* , then with high probability,$ $\operatorname{tww}(G(n,p)) = 2pqn - \sqrt{6pq(1-2pq)n\ln n} + o(\sqrt{n\ln n}).$ (2) If $0 , then there exists <math>\delta := \delta(p) > 0$ such that with high probability. $\operatorname{tww}(G(n,p)) > (2pq + \delta)n.$

Corollary (A., Chakraborti, Hendrey, Kim, and Oum, 2022+)

With high probability,

tww(G(n, 1/2)) =
$$\frac{n}{2} - \frac{\sqrt{3n \ln n}}{2} + o(\sqrt{n \ln n}).$$

Theorem (A., Hendrey, Kim, and Oum, 2022)

For a graph G with n vertices and m edges,

$$\operatorname{tww}(G) < \frac{1}{2}(n + \sqrt{n \ln n} + \sqrt{n} + 2 \ln n),$$

$$\operatorname{tww}(G) < \sqrt{3m} + \frac{m^{1/4}\sqrt{\ln m}}{4 \cdot 3^{1/4}} + \frac{3m^{1/4}}{2}.$$

Jungho Ahn (KAIST & IBS DIMAG)

Bounds for the twin-width of graphs

GROW 2022 16 / 17

▶ **∢ ∃** ▶

Theorem (A., Hendrey, Kim, and Oum, 2022)

$$\lim_{n \to \infty} \max\left\{ \frac{\operatorname{tww}(G)}{|V(G)|} : |V(G)| = n \right\} = \frac{1}{2},$$

1.088 < $\frac{4\sqrt{6}}{9} \le \limsup_{m \to \infty} \max\left\{ \frac{\operatorname{tww}(G)}{\sqrt{|E(G)|}} : |E(G)| = m \right\} \le \sqrt{3} < 1.733.$

Question

What's the correct value of $\limsup \max\{tww(G)/\sqrt{E(G)} : |E(G)| = m\}$? Can we reduce the upper bound $\sqrt{3}$ to a smaller number?

- 4 個 ト 4 ヨ ト 4 ヨ ト -

Thank you for your attention!