On Structural Parameterizations of Continuous Facility Location Problems on Graphs

Stefan Lendl

Institute of Operations and Information Systems University of Graz

joint work with Tim A. Hartmann

GROW 2022

Continuous Facility Location on Graphs

• Graph G = (V, E), connected, unit length

Continuous Facility Location on Graphs

- Graph G = (V, E), connected, unit length
- P(G) continuum set of points on edges and vertices

Continuous Facility Location on Graphs

- Graph G = (V, E), connected, unit length
- P(G) continuum set of points on edges and vertices
- d(p,q) shortest distance between p and q

$\delta\textsc{-Dispersion}$ and $\delta\textsc{-Covering}$ Number

• $S \subset P(G)$ δ -dispersed: $\forall p \neq q \in S : d(p,q) \ge \delta$

 $\delta\text{-disp}(G) = \max\{|S| \colon S \subset P(G), S \ \delta\text{-dispersed}\}$

$\delta\textsc{-Dispersion}$ and $\delta\textsc{-Covering}$ Number

• $S \subset P(G)$ δ -dispersed: $\forall p \neq q \in S : d(p,q) \ge \delta$

 δ -disp(G) = max{|S|: S $\subset P(G), S \delta$ -dispersed}

• $S \subset P(G)$ δ -covering: $\forall p \in P(G) \exists s \in S : d(p,s) \le \delta$

 δ -cov(G) = min{|S|: S \subset P(G), S \delta-covering}

[Grigiorev, Hartmann, L. Woeginger, STACS 2019] Complete picture of **computational complexity** for rational δ :

• $\delta = \frac{1}{h}$:

[Grigiorev, Hartmann, L. Woeginger, STACS 2019] Complete picture of **computational complexity** for rational δ :

$$rac{1}{b} ext{-disp}(G) = egin{cases} b|E|+1 & G ext{ is a tree} \ b|E| & ext{else} \end{cases}$$

[Grigiorev, Hartmann, L. Woeginger, STACS 2019] Complete picture of **computational complexity** for rational δ :

$$rac{1}{b} ext{-disp}(\mathit{G}) = egin{cases} b|\mathit{E}|+1 & \mathit{G} ext{ is a tree} \ b|\mathit{E}| & ext{else} \end{cases}$$

•
$$\delta = \frac{a}{b}, a \ge 3, \gcd(a, b) = 1$$
: NP-hard

- Independent set in cubic graphs
- Lemma of Bézout

• $\delta = \frac{1}{b}$:

[Grigiorev, Hartmann, L. Woeginger, STACS 2019] Complete picture of **computational complexity** for rational δ :

$$rac{1}{b} ext{-disp}(G) = egin{cases} b|E|+1 & G ext{ is a tree} \ b|E| & ext{else} \end{cases}$$

- $\delta = \frac{2}{b}$: polynomial time algorithm
 - Matchings (Edmonds-Gallai decomposition)
 - Submodular optimization (directed s-t-cut)
- $\delta = \frac{a}{b}, a \ge 3, \operatorname{gcd}(a, b) = 1$: NP-hard
 - Independent set in cubic graphs
 - Lemma of Bézout

• $\delta = \frac{1}{h}$:

[Grigiorev, Hartmann, L. Woeginger, STACS 2019] Complete picture of **computational complexity** for rational δ :

$$rac{1}{b} ext{-disp}(G) = egin{cases} b|E|+1 & G ext{ is a tree} \ b|E| & ext{else} \ \end{cases}$$

- $\delta = \frac{2}{b}$: polynomial time algorithm
 - Matchings (Edmonds-Gallai decomposition)
 - Submodular optimization (directed s-t-cut)
- $\delta = \frac{a}{b}, a \ge 3, gcd(a, b) = 1$: NP-hard
 - Independent set in cubic graphs
 - Lemma of Bézout

• $\delta = \frac{1}{h}$:

[Hartmann, L. Woeginger, IPCO 2020] Similar results for δ -covering

Studied structural parameters:

PART I: Parameters leading to sparse graphs:

- treewidth tw(G)
- pathwidth pw(G)
- size of a feedback vertex set fvs(G)
- treedepth td(G)

PART II: Structural parameterizations of dense graphs:

• neighborhood diversity nd(G)

Overview of results

[Hartmann, L.; MFCS 2022] Main ingredients:

- Connection to distance-d independent set
- L length of longest path in G and rounding δ

Overview of results

[Hartmann, L.; MFCS 2022] Main ingredients:

- Connection to distance-d independent set
- L length of longest path in G and rounding δ

treewidth tw(G)

- **XP** with running time $(2L)^{tw(G)} n^{\mathcal{O}(1)}$
- no $n^{o(tw(G)+\sqrt{k})}$, assuming ETH

pathwidth pw(G), size of a feedback vertex set fvs(G)

- W[1]-hard even for the combined parameter pw(G) + k
- W[1]-hard for fvs(G)

treedepth td(G)

- **FPT** with running time $2^{\mathcal{O}(td(G)^2)} n^{\mathcal{O}(1)}$
- no $2^{o(td(G)^2)}$ algorithm, assuming ETH

Dispersion and Independent Set

 $\alpha_d(G)$ maximum size of a distance-d independent set

Lemma

Consider integers a, b and a 2b-subdivision G_{2b} of a graph G. Then $\frac{a}{b}$ -disp $(G) = \alpha_{2a}(G_{2b})$.

Dispersion and Independent Set

 $\alpha_d(G)$ maximum size of a distance-d independent set

Lemma

Consider integers a, b and a 2b-subdivision G_{2b} of a graph G. Then $\frac{a}{b}$ -disp $(G) = \alpha_{2a}(G_{2b})$.

Dispersion and Independent Set

 $\alpha_d(G)$ maximum size of a distance-d independent set

Lemma

Consider integers a, b and a 2b-subdivision G_{2b} of a graph G. Then $\frac{a}{b}$ -disp $(G) = \alpha_{2a}(G_{2b})$.

Using [Katsikarelis, Lampis, Paschos; DAM 2022] we get

Theorem

 $\frac{a}{b}$ -disp(G) can be computed in time $(2a)^{tw(G)}(bn)^{\mathcal{O}(1)}$.

Lemma

For
$$\delta \in (0,3]$$
 we have δ -disp $(G) = \frac{\delta}{\delta+1}$ -disp $(G) + |E(G)|$.

Lemma

For
$$\delta \in (0,3]$$
 we have δ -disp $(G) = \frac{\delta}{\delta+1}$ -disp $(G) + |E(G)|$.

Problem for $\delta > 3$: locally-injective p to p walk.

Observation: For given G and δ there might exist $\delta^* > \delta$ such that δ -disp $(G) = \delta^*$ -disp(G).

Illustrative example: P_6

Illustrative example: P_6

Illustrative example: P_6

 δ^* depends on L, the length of the longest (non-induced) path in G

Let $\delta \in \mathbb{R}^+$. Let L be an upper bound on the length of paths in G. Let $\delta^* = \frac{a^*}{b^*} \ge \delta$ minimal with $a^* \le 2L$ and $b^* \in \mathbb{N}$. Then δ -disp $(G) = \delta^*$ -disp(G).

Let $\delta \in \mathbb{R}^+$. Let L be an upper bound on the length of paths in G. Let $\delta^* = \frac{a^*}{b^*} \ge \delta$ minimal with $a^* \le 2L$ and $b^* \in \mathbb{N}$. Then δ -disp(G) = δ^* -disp(G).

Observation: Inverse of δ^* is the next smaller rational number of the inverse of δ in the Farey sequence of order 2*L*.

Let $\delta \in \mathbb{R}^+$. Let L be an upper bound on the length of paths in G. Let $\delta^* = \frac{a^*}{b^*} \ge \delta$ minimal with $a^* \le 2L$ and $b^* \in \mathbb{N}$. Then δ -disp(G) = δ^* -disp(G).

Observation: Inverse of δ^* is the next smaller rational number of the inverse of δ in the Farey sequence of order 2*L*.

Main idea: Push points of δ -dispersed set *S* away from each other such that the new set is $(\delta + \epsilon)$ -dispersed.

During pushing certain **events** occur or we reach δ^* .

Let $\delta \in \mathbb{R}^+$. Let L be an upper bound on the length of paths in G. Let $\delta^* = \frac{a^*}{b^*} \ge \delta$ minimal with $a^* \le 2L$ and $b^* \in \mathbb{N}$. Then δ -disp(G) = δ^* -disp(G).

Observation: Inverse of δ^* is the next smaller rational number of the inverse of δ in the Farey sequence of order 2*L*.

Main idea: Push points of δ -dispersed set *S* away from each other such that the new set is $(\delta + \epsilon)$ -dispersed.

During pushing certain **events** occur or we reach δ^* .

A pair of points $\{p, q\}$ is δ -critical, if they have distance exactly δ . These points we push!

Let $\delta \in \mathbb{R}^+$. Let L be an upper bound on the length of paths in G. Let $\delta^* = \frac{a^*}{b^*} \ge \delta$ minimal with $a^* \le 2L$ and $b^* \in \mathbb{N}$. Then δ -disp(G) = δ^* -disp(G).

Observation: Inverse of δ^* is the next smaller rational number of the inverse of δ in the Farey sequence of order 2*L*.

Main idea: Push points of δ -dispersed set *S* away from each other such that the new set is $(\delta + \epsilon)$ -dispersed.

During pushing certain **events** occur or we reach δ^* .

A pair of points $\{p, q\}$ is δ -critical, if they have distance exactly δ . These points we push!

(Event 1) A δ -uncritical pair of points {p, q} becomes ($\delta + \varepsilon$)-critical.

Consider a sequence of point p_0, p_1, p_2, \ldots with $\{p_i, p_{i+1}\}$ critical. Move p_0 by 0, p_1 by ε , p_2 by 2ε , \ldots .

Consider a sequence of point p_0, p_1, p_2, \ldots with $\{p_i, p_{i+1}\}$ critical. Move p_0 by 0, p_1 by ε , p_2 by 2ε , \ldots .

Consider a sequence of point p_0, p_1, p_2, \ldots with $\{p_i, p_{i+1}\}$ critical. Move p_0 by 0, p_1 by ε , p_2 by 2ε , \ldots .

Problems:

(Event 2) A non-half-integral $p \in S$ becomes half-integral.

(Event 3) A non-pivot point $r \in P(G)$ becomes a pivot.

Consider a sequence of point p_0, p_1, p_2, \ldots with $\{p_i, p_{i+1}\}$ critical. Move p_0 by 0, p_1 by ε , p_2 by 2ε , \ldots .

Problems:

(Event 2) A non-half-integral $p \in S$ becomes half-integral.

(Event 3) A non-pivot point $r \in P(G)$ becomes a pivot.

Spines (pushed sequences of points) start with a root (half-integral point if possible).

Velocities

Another problem appears within our simple pushing idea:

Velocities

Another problem appears within our simple pushing idea:

We can orchestrate this type of movement by introducing

- well-defined directions between points,
- movement signs and velocities,
- spines only starting in a defined set of roots.

Velocities

Another problem appears within our simple pushing idea:

We can orchestrate this type of movement by introducing

- well-defined directions between points,
- movement signs and velocities,
- spines only starting in a defined set of roots.

Lemma

The choice of such a spine does not influence the movement of a point.

Algorithmic Implications

treewidth tw(G)

- **XP** with running time $(2L)^{tw(G)} n^{\mathcal{O}(1)}$
- no $n^{o(tw(G)+\sqrt{k})}$, assuming ETH

pathwidth pw(G), size of a feedback vertex set fvs(G)

- W[1]-hard even for the combined parameter pw(G) + k
- W[1]-hard for fvs(G)

treedepth td(G)

- **FPT** with running time $2^{\mathcal{O}(td(G)^2)} n^{\mathcal{O}(1)}$
- no $2^{o(td(G)^2)}$ algorithm, assuming ETH

natural parameter k:

- FPT if $\delta \leq 2$
- W[1]-hard if $\delta > 2$

Dense Graphs – Cliques

(a) $\delta \in (\frac{3}{2}, 2]$: F(S) is a matching.

(b) $\delta \in (1, \frac{3}{2}]$: F(S) is a star.

[Hartmann, L.; 2022+] Structural parameterization of dense graphs

Parameter including large cliques: Naighborhood diversity pd(C)

Neighborhood diversity nd(G)

Illustration from [Ganian; SOFSEM 2012]

(Guess structure of canonical form and position of additional points

- **(** Guess structure of canonical form and position of additional points
- ② Linear programming to compute existence of feasible edge positions

- **(**) Guess structure of canonical form and position of additional points
- 2 Linear programming to compute existence of feasible edge positions
- Maximizing the Matchings

- Guess structure of canonical form and position of additional points
- 2 Linear programming to compute existence of feasible edge positions
- Maximizing the Matchings

Theorem

DISPERSION can be solved in time $2^{\mathcal{O}(nd(G)^2)}n^{\mathcal{O}(1)}$.

Thank you!

