
On Structural Parameterizations of Continuous Facility Location
Problems on Graphs

Stefan Lendl

Institute of Operations and Information Systems
University of Graz

joint work with Tim A. Hartmann

GROW 2022

Continuous Facility Location on Graphs

Graph G = (V ,E), connected, unit length

P(G) continuum set of points on edges and vertices

d(p, q) shortest distance between p and q

2 / 18

Continuous Facility Location on Graphs

Graph G = (V ,E), connected, unit length

P(G) continuum set of points on edges and vertices

d(p, q) shortest distance between p and q

2 / 18

Continuous Facility Location on Graphs

Graph G = (V ,E), connected, unit length

P(G) continuum set of points on edges and vertices

d(p, q) shortest distance between p and q

2 / 18

𝛿-Dispersion and 𝛿-Covering Number

S ⊂ P(G) 𝛿-dispersed: ∀ p ̸= q ∈ S : d(p, q) ≥ 𝛿

𝛿-disp(G) = max{|S | : S ⊂ P(G), S 𝛿-dispersed}

S ⊂ P(G) 𝛿-covering: ∀ p ∈ P(G) ∃ s ∈ S : d(p, s) ≤ 𝛿

𝛿-cov(G) = min{|S | : S ⊂ P(G), S 𝛿-covering}

3 / 18

𝛿-Dispersion and 𝛿-Covering Number

S ⊂ P(G) 𝛿-dispersed: ∀ p ̸= q ∈ S : d(p, q) ≥ 𝛿

𝛿-disp(G) = max{|S | : S ⊂ P(G), S 𝛿-dispersed}

S ⊂ P(G) 𝛿-covering: ∀ p ∈ P(G) ∃ s ∈ S : d(p, s) ≤ 𝛿

𝛿-cov(G) = min{|S | : S ⊂ P(G), S 𝛿-covering}

3 / 18

Computational Complexity of 𝛿-Dispersion

[Grigiorev, Hartmann, L. Woeginger, STACS 2019]
Complete picture of computational complexity for rational 𝛿:

𝛿 = 1
b :

1

b
-disp(G) =

{︃
b|E |+ 1 G is a tree

b|E | else

𝛿 = 2
b : polynomial time algorithm

Matchings (Edmonds-Gallai decomposition)
Submodular optimization (directed s-t-cut)

𝛿 = a
b , a ≥ 3, gcd(a, b) = 1: NP-hard

Independent set in cubic graphs
Lemma of Bézout

[Hartmann, L. Woeginger, IPCO 2020] Similar results for 𝛿-covering

4 / 18

Computational Complexity of 𝛿-Dispersion

[Grigiorev, Hartmann, L. Woeginger, STACS 2019]
Complete picture of computational complexity for rational 𝛿:

𝛿 = 1
b :

1

b
-disp(G) =

{︃
b|E |+ 1 G is a tree

b|E | else

𝛿 = 2
b : polynomial time algorithm

Matchings (Edmonds-Gallai decomposition)
Submodular optimization (directed s-t-cut)

𝛿 = a
b , a ≥ 3, gcd(a, b) = 1: NP-hard

Independent set in cubic graphs
Lemma of Bézout

[Hartmann, L. Woeginger, IPCO 2020] Similar results for 𝛿-covering

4 / 18

Computational Complexity of 𝛿-Dispersion

[Grigiorev, Hartmann, L. Woeginger, STACS 2019]
Complete picture of computational complexity for rational 𝛿:

𝛿 = 1
b :

1

b
-disp(G) =

{︃
b|E |+ 1 G is a tree

b|E | else

𝛿 = 2
b : polynomial time algorithm

Matchings (Edmonds-Gallai decomposition)
Submodular optimization (directed s-t-cut)

𝛿 = a
b , a ≥ 3, gcd(a, b) = 1: NP-hard

Independent set in cubic graphs
Lemma of Bézout

[Hartmann, L. Woeginger, IPCO 2020] Similar results for 𝛿-covering

4 / 18

Computational Complexity of 𝛿-Dispersion

[Grigiorev, Hartmann, L. Woeginger, STACS 2019]
Complete picture of computational complexity for rational 𝛿:

𝛿 = 1
b :

1

b
-disp(G) =

{︃
b|E |+ 1 G is a tree

b|E | else

𝛿 = 2
b : polynomial time algorithm

Matchings (Edmonds-Gallai decomposition)
Submodular optimization (directed s-t-cut)

𝛿 = a
b , a ≥ 3, gcd(a, b) = 1: NP-hard

Independent set in cubic graphs
Lemma of Bézout

[Hartmann, L. Woeginger, IPCO 2020] Similar results for 𝛿-covering

4 / 18

Computational Complexity of 𝛿-Dispersion

[Grigiorev, Hartmann, L. Woeginger, STACS 2019]
Complete picture of computational complexity for rational 𝛿:

𝛿 = 1
b :

1

b
-disp(G) =

{︃
b|E |+ 1 G is a tree

b|E | else

𝛿 = 2
b : polynomial time algorithm

Matchings (Edmonds-Gallai decomposition)
Submodular optimization (directed s-t-cut)

𝛿 = a
b , a ≥ 3, gcd(a, b) = 1: NP-hard

Independent set in cubic graphs
Lemma of Bézout

[Hartmann, L. Woeginger, IPCO 2020] Similar results for 𝛿-covering

4 / 18

Influence of Structural Graph Parameters?

Studied structural parameters:

PART I: Parameters leading to sparse graphs:

treewidth tw(G)

pathwidth pw(G)

size of a feedback vertex set fvs(G)

treedepth td(G)

PART II: Structural parameterizations of dense graphs:

neighborhood diversity nd(G)

5 / 18

Overview of results

[Hartmann, L.; MFCS 2022] Main ingredients:

Connection to distance-d independent set

L length of longest path in G and rounding 𝛿

treewidth tw(G)

XP with running time (2L)tw(G)n𝒪(1)

no no(tw(G)+
√
k), assuming ETH

pathwidth pw(G), size of a feedback vertex set fvs(G)

W[1]-hard even for the combined parameter pw(G) + k

W[1]-hard for fvs(G)

treedepth td(G)

FPT with running time 2𝒪(td(G)2)n𝒪(1)

no 2o(td(G)2) algorithm, assuming ETH

6 / 18

Overview of results

[Hartmann, L.; MFCS 2022] Main ingredients:

Connection to distance-d independent set

L length of longest path in G and rounding 𝛿

treewidth tw(G)

XP with running time (2L)tw(G)n𝒪(1)

no no(tw(G)+
√
k), assuming ETH

pathwidth pw(G), size of a feedback vertex set fvs(G)

W[1]-hard even for the combined parameter pw(G) + k

W[1]-hard for fvs(G)

treedepth td(G)

FPT with running time 2𝒪(td(G)2)n𝒪(1)

no 2o(td(G)2) algorithm, assuming ETH

6 / 18

Dispersion and Independent Set

𝛼d(G) maximum size of a distance-d independent set

Lemma

Consider integers a, b and a 2b-subdivision G2b of a graph G. Then a
b -disp(G) = 𝛼2a(G2b).

Using [Katsikarelis, Lampis, Paschos; DAM 2022] we get

Theorem
a
b -disp(G) can be computed in time (2a)tw(G)(bn)𝒪(1).

7 / 18

Dispersion and Independent Set

𝛼d(G) maximum size of a distance-d independent set

Lemma

Consider integers a, b and a 2b-subdivision G2b of a graph G. Then a
b -disp(G) = 𝛼2a(G2b).

Using [Katsikarelis, Lampis, Paschos; DAM 2022] we get

Theorem
a
b -disp(G) can be computed in time (2a)tw(G)(bn)𝒪(1).

7 / 18

Dispersion and Independent Set

𝛼d(G) maximum size of a distance-d independent set

Lemma

Consider integers a, b and a 2b-subdivision G2b of a graph G. Then a
b -disp(G) = 𝛼2a(G2b).

Using [Katsikarelis, Lampis, Paschos; DAM 2022] we get

Theorem
a
b -disp(G) can be computed in time (2a)tw(G)(bn)𝒪(1).

7 / 18

Translating 𝛿-Dispersion

Lemma

For 𝛿 ∈ (0, 3] we have 𝛿-disp(G) = 𝛿
𝛿+1 -disp(G) + |E (G)|.

Problem for 𝛿 > 3: locally-injective p to p walk.

𝛿 = 3 + 𝜀⇒ 𝛿
𝛿+1 > 3

4

8 / 18

Translating 𝛿-Dispersion

Lemma

For 𝛿 ∈ (0, 3] we have 𝛿-disp(G) = 𝛿
𝛿+1 -disp(G) + |E (G)|.

Problem for 𝛿 > 3: locally-injective p to p walk.

𝛿 = 3 + 𝜀⇒ 𝛿
𝛿+1 > 3

4

8 / 18

Rounding the Distance

Observation: For given G and 𝛿 there might exist 𝛿⋆ > 𝛿 such that 𝛿-disp(G) = 𝛿⋆-disp(G).

Question: Can we state some properties of 𝛿⋆?

Illustrative example: P6

𝛿 =

𝛿* depends on L, the length of the longest (non-induced) path in G

9 / 18

Rounding the Distance

Observation: For given G and 𝛿 there might exist 𝛿⋆ > 𝛿 such that 𝛿-disp(G) = 𝛿⋆-disp(G).

Question: Can we state some properties of 𝛿⋆?

Illustrative example: P6

𝛿 =

𝛿* depends on L, the length of the longest (non-induced) path in G

9 / 18

Rounding the Distance

Observation: For given G and 𝛿 there might exist 𝛿⋆ > 𝛿 such that 𝛿-disp(G) = 𝛿⋆-disp(G).

Question: Can we state some properties of 𝛿⋆?

Illustrative example: P6

𝛿 = 15
11

𝛿* depends on L, the length of the longest (non-induced) path in G

9 / 18

Rounding the Distance

Observation: For given G and 𝛿 there might exist 𝛿⋆ > 𝛿 such that 𝛿-disp(G) = 𝛿⋆-disp(G).

Question: Can we state some properties of 𝛿⋆?

Illustrative example: P6

𝛿 = 3
4

𝛿* depends on L, the length of the longest (non-induced) path in G

9 / 18

Rounding the Distance

Observation: For given G and 𝛿 there might exist 𝛿⋆ > 𝛿 such that 𝛿-disp(G) = 𝛿⋆-disp(G).

Question: Can we state some properties of 𝛿⋆?

Illustrative example: P6

𝛿 = 3
4

𝛿* depends on L, the length of the longest (non-induced) path in G

9 / 18

Rounding the Distance

Theorem

Let 𝛿 ∈ R+. Let L be an upper bound on the length of paths in G. Let 𝛿⋆ = a⋆

b⋆ ≥ 𝛿 minimal
with a⋆ ≤ 2L and b⋆ ∈ N. Then 𝛿-disp(G) = 𝛿⋆-disp(G).

Observation: Inverse of 𝛿⋆ is the next smaller rational number of the inverse of 𝛿 in the Farey
sequence of order 2L.

Main idea: Push points of 𝛿-dispersed set S away from each other such that the new set is
(𝛿 + 𝜖)-dispersed.
During pushing certain events occur or we reach 𝛿⋆.

A pair of points {p, q} is 𝛿-critical, if they have distance exactly 𝛿. These points we push!

(Event 1) A 𝛿-uncritical pair of points {p, q} becomes (𝛿 + 𝜀)-critical.

10 / 18

Rounding the Distance

Theorem

Let 𝛿 ∈ R+. Let L be an upper bound on the length of paths in G. Let 𝛿⋆ = a⋆

b⋆ ≥ 𝛿 minimal
with a⋆ ≤ 2L and b⋆ ∈ N. Then 𝛿-disp(G) = 𝛿⋆-disp(G).

Observation: Inverse of 𝛿⋆ is the next smaller rational number of the inverse of 𝛿 in the Farey
sequence of order 2L.

Main idea: Push points of 𝛿-dispersed set S away from each other such that the new set is
(𝛿 + 𝜖)-dispersed.
During pushing certain events occur or we reach 𝛿⋆.

A pair of points {p, q} is 𝛿-critical, if they have distance exactly 𝛿. These points we push!

(Event 1) A 𝛿-uncritical pair of points {p, q} becomes (𝛿 + 𝜀)-critical.

10 / 18

Rounding the Distance

Theorem

Let 𝛿 ∈ R+. Let L be an upper bound on the length of paths in G. Let 𝛿⋆ = a⋆

b⋆ ≥ 𝛿 minimal
with a⋆ ≤ 2L and b⋆ ∈ N. Then 𝛿-disp(G) = 𝛿⋆-disp(G).

Observation: Inverse of 𝛿⋆ is the next smaller rational number of the inverse of 𝛿 in the Farey
sequence of order 2L.

Main idea: Push points of 𝛿-dispersed set S away from each other such that the new set is
(𝛿 + 𝜖)-dispersed.
During pushing certain events occur or we reach 𝛿⋆.

A pair of points {p, q} is 𝛿-critical, if they have distance exactly 𝛿. These points we push!

(Event 1) A 𝛿-uncritical pair of points {p, q} becomes (𝛿 + 𝜀)-critical.

10 / 18

Rounding the Distance

Theorem

Let 𝛿 ∈ R+. Let L be an upper bound on the length of paths in G. Let 𝛿⋆ = a⋆

b⋆ ≥ 𝛿 minimal
with a⋆ ≤ 2L and b⋆ ∈ N. Then 𝛿-disp(G) = 𝛿⋆-disp(G).

Observation: Inverse of 𝛿⋆ is the next smaller rational number of the inverse of 𝛿 in the Farey
sequence of order 2L.

Main idea: Push points of 𝛿-dispersed set S away from each other such that the new set is
(𝛿 + 𝜖)-dispersed.
During pushing certain events occur or we reach 𝛿⋆.

A pair of points {p, q} is 𝛿-critical, if they have distance exactly 𝛿. These points we push!

(Event 1) A 𝛿-uncritical pair of points {p, q} becomes (𝛿 + 𝜀)-critical.

10 / 18

Rounding the Distance

Theorem

Let 𝛿 ∈ R+. Let L be an upper bound on the length of paths in G. Let 𝛿⋆ = a⋆

b⋆ ≥ 𝛿 minimal
with a⋆ ≤ 2L and b⋆ ∈ N. Then 𝛿-disp(G) = 𝛿⋆-disp(G).

Observation: Inverse of 𝛿⋆ is the next smaller rational number of the inverse of 𝛿 in the Farey
sequence of order 2L.

Main idea: Push points of 𝛿-dispersed set S away from each other such that the new set is
(𝛿 + 𝜖)-dispersed.
During pushing certain events occur or we reach 𝛿⋆.

A pair of points {p, q} is 𝛿-critical, if they have distance exactly 𝛿. These points we push!

(Event 1) A 𝛿-uncritical pair of points {p, q} becomes (𝛿 + 𝜀)-critical.

10 / 18

Coordination of Movement

Consider a sequence of point p0, p1, p2, . . . with {pi , pi+1} critical.
Move p0 by 0, p1 by 𝜀, p2 by 2𝜀,

Problems:

(Event 2) A non-half-integral p ∈ S becomes half-integral.

(Event 3) A non-pivot point r ∈ P(G) becomes a pivot.

Spines (pushed sequences of points) start with a root (half-integral point if possible).

11 / 18

Coordination of Movement

Consider a sequence of point p0, p1, p2, . . . with {pi , pi+1} critical.
Move p0 by 0, p1 by 𝜀, p2 by 2𝜀,

Problems:

(Event 2) A non-half-integral p ∈ S becomes half-integral.

(Event 3) A non-pivot point r ∈ P(G) becomes a pivot.

Spines (pushed sequences of points) start with a root (half-integral point if possible).

11 / 18

Coordination of Movement

Consider a sequence of point p0, p1, p2, . . . with {pi , pi+1} critical.
Move p0 by 0, p1 by 𝜀, p2 by 2𝜀,

Problems:

(Event 2) A non-half-integral p ∈ S becomes half-integral.

(Event 3) A non-pivot point r ∈ P(G) becomes a pivot.

Spines (pushed sequences of points) start with a root (half-integral point if possible).

11 / 18

Coordination of Movement

Consider a sequence of point p0, p1, p2, . . . with {pi , pi+1} critical.
Move p0 by 0, p1 by 𝜀, p2 by 2𝜀,

Problems:

(Event 2) A non-half-integral p ∈ S becomes half-integral.

(Event 3) A non-pivot point r ∈ P(G) becomes a pivot.

Spines (pushed sequences of points) start with a root (half-integral point if possible).
11 / 18

Velocities

Another problem appears within our simple pushing idea:

We can orchestrate this type of movement by introducing

well-defined directions between points,

movement signs and velocities,

spines only starting in a defined set of roots.

Lemma

The choice of such a spine does not influence the movement of a point.

12 / 18

Velocities

Another problem appears within our simple pushing idea:

We can orchestrate this type of movement by introducing

well-defined directions between points,

movement signs and velocities,

spines only starting in a defined set of roots.

Lemma

The choice of such a spine does not influence the movement of a point.

12 / 18

Velocities

Another problem appears within our simple pushing idea:

We can orchestrate this type of movement by introducing

well-defined directions between points,

movement signs and velocities,

spines only starting in a defined set of roots.

Lemma

The choice of such a spine does not influence the movement of a point.

12 / 18

Algorithmic Implications

treewidth tw(G)

XP with running time (2L)tw(G)n𝒪(1)

no no(tw(G)+
√
k), assuming ETH

pathwidth pw(G), size of a feedback vertex set fvs(G)

W[1]-hard even for the combined parameter pw(G) + k

W[1]-hard for fvs(G)

treedepth td(G)

FPT with running time 2𝒪(td(G)2)n𝒪(1)

no 2o(td(G)2) algorithm, assuming ETH

natural parameter k :

FPT if 𝛿 ≤ 2

W[1]-hard if 𝛿 > 2

13 / 18

Dense Graphs – Cliques

14 / 18

Neighborhood Diversity

[Hartmann, L.; 2022+] Structural parameterization of dense graphs

Parameter including large cliques:

Neighborhood diversity nd(G)

Illustration from [Ganian; SOFSEM 2012]

15 / 18

Canonical Form

‖

∅ ∅

⋆

←→⋆ ‖ ←−⋆

16 / 18

Algorithmic Techniques

1 Guess structure of canonical form and position of additional points

2 Linear programming to compute existence of feasible edge positions

3 Maximizing the Matchings

Theorem

Dispersion can be solved in time 2𝒪(nd(G)2)n𝒪(1).

17 / 18

Algorithmic Techniques

1 Guess structure of canonical form and position of additional points

2 Linear programming to compute existence of feasible edge positions

3 Maximizing the Matchings

Theorem

Dispersion can be solved in time 2𝒪(nd(G)2)n𝒪(1).

17 / 18

Algorithmic Techniques

1 Guess structure of canonical form and position of additional points

2 Linear programming to compute existence of feasible edge positions

3 Maximizing the Matchings

Theorem

Dispersion can be solved in time 2𝒪(nd(G)2)n𝒪(1).

17 / 18

Algorithmic Techniques

1 Guess structure of canonical form and position of additional points

2 Linear programming to compute existence of feasible edge positions

3 Maximizing the Matchings

Theorem

Dispersion can be solved in time 2𝒪(nd(G)2)n𝒪(1).

17 / 18

Thank you!

18 / 18

