On Structural Parameterizations of Continuous Facility Location Problems on Graphs

Stefan Lendl
Institute of Operations and Information Systems
University of Graz

joint work with Tim A. Hartmann

GROW 2022

Continuous Facility Location on Graphs

- Graph $G=(V, E)$, connected, unit length

Continuous Facility Location on Graphs

- Graph $G=(V, E)$, connected, unit length
- $P(G)$ continuum set of points on edges and vertices

Continuous Facility Location on Graphs

- Graph $G=(V, E)$, connected, unit length
- $P(G)$ continuum set of points on edges and vertices
- $d(p, q)$ shortest distance between p and q

δ-Dispersion and δ-Covering Number

- $S \subset P(G) \delta$-dispersed: $\forall p \neq q \in S: d(p, q) \geq \delta$

$$
\delta \text {-disp }(G)=\max \{|S|: S \subset P(G), S \delta \text {-dispersed }\}
$$

δ-Dispersion and δ-Covering Number

- $S \subset P(G) \delta$-dispersed: $\forall p \neq q \in S: d(p, q) \geq \delta$

$$
\delta \text {-disp }(G)=\max \{|S|: S \subset P(G), S \delta \text {-dispersed }\}
$$

- $S \subset P(G) \delta$-covering: $\forall p \in P(G) \exists s \in S: d(p, s) \leq \delta$

$$
\delta-\operatorname{cov}(G)=\min \{|S|: S \subset P(G), S \delta \text {-covering }\}
$$

Computational Complexity of δ-Dispersion

[Grigiorev, Hartmann, L. Woeginger, STACS 2019]
Complete picture of computational complexity for rational δ :

Computational Complexity of δ-Dispersion

[Grigiorev, Hartmann, L. Woeginger, STACS 2019]
Complete picture of computational complexity for rational δ :

- $\delta=\frac{1}{b}$:

$$
\frac{1}{b}-\operatorname{disp}(G)= \begin{cases}b|E|+1 & G \text { is a tree } \\ b|E| & \text { else }\end{cases}
$$

Computational Complexity of δ-Dispersion

[Grigiorev, Hartmann, L. Woeginger, STACS 2019]
Complete picture of computational complexity for rational δ :

- $\delta=\frac{1}{b}$:

$$
\frac{1}{b}-\operatorname{disp}(G)= \begin{cases}b|E|+1 & G \text { is a tree } \\ b|E| & \text { else }\end{cases}
$$

- $\delta=\frac{a}{b}, a \geq 3, \operatorname{gcd}(a, b)=1$: NP-hard
- Independent set in cubic graphs
- Lemma of Bézout

Computational Complexity of δ-Dispersion

[Grigiorev, Hartmann, L. Woeginger, STACS 2019]
Complete picture of computational complexity for rational δ :

- $\delta=\frac{1}{b}$:

$$
\frac{1}{b}-\operatorname{disp}(G)= \begin{cases}b|E|+1 & G \text { is a tree } \\ b|E| & \text { else }\end{cases}
$$

- $\delta=\frac{2}{b}$: polynomial time algorithm
- Matchings (Edmonds-Gallai decomposition)
- Submodular optimization (directed s - t-cut)
- $\delta=\frac{a}{b}, a \geq 3, \operatorname{gcd}(a, b)=1$: NP-hard
- Independent set in cubic graphs
- Lemma of Bézout

Computational Complexity of δ-Dispersion

[Grigiorev, Hartmann, L. Woeginger, STACS 2019]
Complete picture of computational complexity for rational δ :

- $\delta=\frac{1}{b}$:

$$
\frac{1}{b}-\operatorname{disp}(G)= \begin{cases}b|E|+1 & G \text { is a tree } \\ b|E| & \text { else }\end{cases}
$$

- $\delta=\frac{2}{b}$: polynomial time algorithm
- Matchings (Edmonds-Gallai decomposition)
- Submodular optimization (directed s - t-cut)
- $\delta=\frac{a}{b}, a \geq 3, \operatorname{gcd}(a, b)=1$: NP-hard
- Independent set in cubic graphs
- Lemma of Bézout
[Hartmann, L. Woeginger, IPCO 2020] Similar results for δ-covering

Influence of Structural Graph Parameters?

Studied structural parameters:

PART I: Parameters leading to sparse graphs:

- treewidth $\mathrm{tw}(G)$
- pathwidth pw(G)
- size of a feedback vertex set fvs (G)
- treedepth $\operatorname{td}(G)$

PART II: Structural parameterizations of dense graphs:

- neighborhood diversity nd(G)

Overview of results

[Hartmann, L.; MFCS 2022] Main ingredients:

- Connection to distance- d independent set
- L length of longest path in G and rounding δ

Overview of results

[Hartmann, L.; MFCS 2022] Main ingredients:

- Connection to distance- d independent set
- L length of longest path in G and rounding δ
treewidth $\mathrm{tw}(G)$
- XP with running time $(2 L)^{\operatorname{tw}(G)} n^{\mathcal{O}(1)}$
- no $n^{o(\operatorname{tw}(G)+\sqrt{k})}$, assuming ETH
pathwidth $\mathrm{pw}(G)$, size of a feedback vertex set fvs (G)
- W[1]-hard even for the combined parameter $\mathrm{pw}(G)+k$
- W[1]-hard for fvs(G)
treedepth $\operatorname{td}(G)$
- FPT with running time $2^{\mathcal{O}\left(\operatorname{td}(G)^{2}\right)} n^{\mathcal{O}(1)}$
- no $2^{o\left(\operatorname{td}(G)^{2}\right)}$ algorithm, assuming ETH

Dispersion and Independent Set

$\alpha_{d}(G)$ maximum size of a distance- d independent set

Lemma

Consider integers a, b and a $2 b$-subdivision $G_{2 b}$ of a graph G. Then $\frac{a}{b}$-disp $(G)=\alpha_{2 a}\left(G_{2 b}\right)$.

Dispersion and Independent Set

$\alpha_{d}(G)$ maximum size of a distance- d independent set

Lemma

Consider integers a, b and a $2 b$-subdivision $G_{2 b}$ of a graph G. Then $\frac{a}{b}$-disp $(G)=\alpha_{2 a}\left(G_{2 b}\right)$.

Dispersion and Independent Set

$\alpha_{d}(G)$ maximum size of a distance- d independent set

Lemma

Consider integers a, b and $a b$-subdivision $G_{2 b}$ of a graph G. Then $\frac{a}{b}$-disp $(G)=\alpha_{2 a}\left(G_{2 b}\right)$.

Using [Katsikarelis, Lampis, Paschos; DAM 2022] we get

Theorem

$\frac{a}{b}-\operatorname{disp}(G)$ can be computed in time $(2 a)^{\operatorname{tw}(G)}(b n)^{\mathcal{O}(1)}$.

Translating δ-Dispersion

Lemma

For $\delta \in(0,3]$ we have $\delta-\operatorname{disp}(G)=\frac{\delta}{\delta+1}-\operatorname{disp}(G)+|E(G)|$.

Translating δ-Dispersion

Lemma

For $\delta \in(0,3]$ we have $\delta-\operatorname{disp}(G)=\frac{\delta}{\delta+1}-\operatorname{disp}(G)+|E(G)|$.

Problem for $\delta>3$: locally-injective p to p walk.

$$
\delta=3+\varepsilon \Rightarrow \frac{\delta}{\delta+1}>\frac{3}{4}
$$

Rounding the Distance

Observation: For given G and δ there might exist $\delta^{\star}>\delta$ such that δ-disp $(G)=\delta^{\star}$-disp (G).

Rounding the Distance

Observation: For given G and δ there might exist $\delta^{\star}>\delta$ such that δ-disp $(G)=\delta^{\star}$-disp (G). Question: Can we state some properties of δ^{\star} ?

Rounding the Distance

Observation: For given G and δ there might exist $\delta^{\star}>\delta$ such that δ-disp $(G)=\delta^{\star}$-disp (G). Question: Can we state some properties of δ^{\star} ?

Illustrative example: P_{6}

$$
\delta=\frac{15}{11}
$$

Rounding the Distance

Observation: For given G and δ there might exist $\delta^{\star}>\delta$ such that δ-disp $(G)=\delta^{\star}$-disp (G). Question: Can we state some properties of δ^{\star} ?

Illustrative example: P_{6}

$$
\delta=\frac{3}{4}
$$

Rounding the Distance

Observation: For given G and δ there might exist $\delta^{\star}>\delta$ such that δ-disp $(G)=\delta^{\star}$-disp (G). Question: Can we state some properties of δ^{\star} ?

Illustrative example: P_{6}

$$
\delta=\frac{3}{4}
$$

δ^{*} depends on L, the length of the longest (non-induced) path in G

Rounding the Distance

Theorem

Let $\delta \in \mathbb{R}^{+}$. Let L be an upper bound on the length of paths in G. Let $\delta^{\star}=\frac{a^{\star}}{b^{\star}} \geq \delta$ minimal with $a^{\star} \leq 2 L$ and $b^{\star} \in \mathbb{N}$. Then $\delta-\operatorname{disp}(G)=\delta^{\star}-\operatorname{disp}(G)$.

Rounding the Distance

Theorem

Let $\delta \in \mathbb{R}^{+}$. Let L be an upper bound on the length of paths in G. Let $\delta^{\star}=\frac{a^{\star}}{b^{\star}} \geq \delta$ minimal with $a^{\star} \leq 2 L$ and $b^{\star} \in \mathbb{N}$. Then $\delta-\operatorname{disp}(G)=\delta^{\star}-\operatorname{disp}(G)$.

Observation: Inverse of δ^{\star} is the next smaller rational number of the inverse of δ in the Farey sequence of order $2 L$.

Rounding the Distance

Theorem

Let $\delta \in \mathbb{R}^{+}$. Let L be an upper bound on the length of paths in G. Let $\delta^{\star}=\frac{a^{\star}}{b^{\star}} \geq \delta$ minimal with $a^{\star} \leq 2 L$ and $b^{\star} \in \mathbb{N}$. Then $\delta-\operatorname{disp}(G)=\delta^{\star}-\operatorname{disp}(G)$.

Observation: Inverse of δ^{\star} is the next smaller rational number of the inverse of δ in the Farey sequence of order $2 L$.

Main idea: Push points of δ-dispersed set S away from each other such that the new set is $(\delta+\epsilon)$-dispersed.
During pushing certain events occur or we reach δ^{\star}.

Rounding the Distance

Theorem

Let $\delta \in \mathbb{R}^{+}$. Let L be an upper bound on the length of paths in G. Let $\delta^{\star}=\frac{a^{\star}}{b^{\star}} \geq \delta$ minimal with $a^{\star} \leq 2 L$ and $b^{\star} \in \mathbb{N}$. Then $\delta-\operatorname{disp}(G)=\delta^{\star}-\operatorname{disp}(G)$.

Observation: Inverse of δ^{\star} is the next smaller rational number of the inverse of δ in the Farey sequence of order $2 L$.

Main idea: Push points of δ-dispersed set S away from each other such that the new set is $(\delta+\epsilon)$-dispersed.
During pushing certain events occur or we reach δ^{\star}.
A pair of points $\{p, q\}$ is δ-critical, if they have distance exactly δ. These points we push!

Rounding the Distance

Theorem

Let $\delta \in \mathbb{R}^{+}$. Let L be an upper bound on the length of paths in G. Let $\delta^{\star}=\frac{a^{\star}}{b^{\star}} \geq \delta$ minimal with $a^{\star} \leq 2 L$ and $b^{\star} \in \mathbb{N}$. Then $\delta-\operatorname{disp}(G)=\delta^{\star}-\operatorname{disp}(G)$.

Observation: Inverse of δ^{\star} is the next smaller rational number of the inverse of δ in the Farey sequence of order $2 L$.

Main idea: Push points of δ-dispersed set S away from each other such that the new set is $(\delta+\epsilon)$-dispersed.
During pushing certain events occur or we reach δ^{\star}.
A pair of points $\{p, q\}$ is δ-critical, if they have distance exactly δ. These points we push!
(Event 1) A δ-uncritical pair of points $\{p, q\}$ becomes $(\delta+\varepsilon)$-critical.

Coordination of Movement

Consider a sequence of point $p_{0}, p_{1}, p_{2}, \ldots$ with $\left\{p_{i}, p_{i+1}\right\}$ critical.
Move p_{0} by $0, p_{1}$ by ε, p_{2} by $2 \varepsilon, \ldots$.

Coordination of Movement

Consider a sequence of point $p_{0}, p_{1}, p_{2}, \ldots$ with $\left\{p_{i}, p_{i+1}\right\}$ critical.
Move p_{0} by $0, p_{1}$ by ε, p_{2} by $2 \varepsilon, \ldots$.

Coordination of Movement

Consider a sequence of point $p_{0}, p_{1}, p_{2}, \ldots$ with $\left\{p_{i}, p_{i+1}\right\}$ critical.
Move p_{0} by $0, p_{1}$ by ε, p_{2} by $2 \varepsilon, \ldots$.

Problems:

(Event 2) A non-half-integral $p \in S$ becomes half-integral.
(Event 3) A non-pivot point $r \in P(G)$ becomes a pivot.

Coordination of Movement

Consider a sequence of point $p_{0}, p_{1}, p_{2}, \ldots$ with $\left\{p_{i}, p_{i+1}\right\}$ critical.
Move p_{0} by $0, p_{1}$ by ε, p_{2} by $2 \varepsilon, \ldots$.

Problems:

(Event 2) A non-half-integral $p \in S$ becomes half-integral.
(Event 3) A non-pivot point $r \in P(G)$ becomes a pivot.
Spines (pushed sequences of points) start with a root (half-integral point if possible).

Velocities

Another problem appears within our simple pushing idea:

Velocities

Another problem appears within our simple pushing idea:

We can orchestrate this type of movement by introducing

- well-defined directions between points,
- movement signs and velocities,
- spines only starting in a defined set of roots.

Velocities

Another problem appears within our simple pushing idea:

We can orchestrate this type of movement by introducing

- well-defined directions between points,
- movement signs and velocities,
- spines only starting in a defined set of roots.

Lemma

The choice of such a spine does not influence the movement of a point.

Algorithmic Implications

treewidth $\mathrm{tw}(G)$

- XP with running time $(2 L)^{\operatorname{tw}(G)} n^{\mathcal{O}(1)}$
- no $n^{o(\operatorname{tw}(G)+\sqrt{k})}$, assuming ETH
pathwidth $\mathrm{pw}(G)$, size of a feedback vertex set fvs (G)
- W[1]-hard even for the combined parameter $\mathrm{pw}(G)+k$
- W[1]-hard for fvs(G)
treedepth $\operatorname{td}(G)$
- FPT with running time $2^{\mathcal{O}\left(\operatorname{td}(G)^{2}\right)} n^{\mathcal{O}(1)}$
- no $2^{o\left(\operatorname{td}(G)^{2}\right)}$ algorithm, assuming ETH
natural parameter k :
- FPT if $\delta \leq 2$
- W[1]-hard if $\delta>2$

Dense Graphs - Cliques

(a) $\delta \in\left(\frac{3}{2}, 2\right]: F(S)$ is a matching.

(b) $\delta \in\left(1, \frac{3}{2}\right]: F(S)$ is a star.

Neighborhood Diversity

[Hartmann, L.; 2022+] Structural parameterization of dense graphs
Parameter including large cliques:
Neighborhood diversity $\operatorname{nd}(G)$

Illustration from [Ganian; SOFSEM 2012]

Canonical Form

Algorithmic Techniques

(1) Guess structure of canonical form and position of additional points

Algorithmic Techniques

(1) Guess structure of canonical form and position of additional points
(2) Linear programming to compute existence of feasible edge positions

Algorithmic Techniques

(1) Guess structure of canonical form and position of additional points
(2) Linear programming to compute existence of feasible edge positions

- Maximizing the Matchings

Algorithmic Techniques

(1) Guess structure of canonical form and position of additional points
(2) Linear programming to compute existence of feasible edge positions
(3) Maximizing the Matchings

Theorem

DISPERSION can be solved in time $2^{\mathcal{O}\left(\operatorname{nd}(G)^{2}\right)} n^{\mathcal{O}(1)}$.

Thank you!

