# Model-Checking for First-Order Logic with Disjoint Paths Predicates in Proper Minor-Closed Graph Classes 

## Giannos Stamoulis

LIRMM, Université de Montpellier, CNRS, Montpellier, France

> Joint work with

Petr A. Golovach ${ }^{1}$ and Dimitrios M. Thilikos ${ }^{2}$.
${ }^{1}$ Department of Informatics, University of Bergen, Norway.
${ }^{2}$ LIRMM, Université de Montpellier, CNRS, Montpellier, France.

> GROW, Koper, Slovenia, 21/09/2022

LIRMM

Algorithmic Meta-Theorems (AMTs):


Algorithmic Meta-Theorems (AMTs):


Logic is used to describe Computational Problems, study Computational Complexity, and design efficient algorithms.

Logic is used to describe Computational Problems, study Computational Complexity, and design efficient algorithms.


AMTs: General conditions that imply the automatic derivation of efficient algorithms.

Logic is used to describe Computational Problems, study Computational Complexity, and design efficient algorithms.


AMTs: General conditions that imply the automatic derivation of efficient algorithms.
"Algorithms that output algorithms"

## Form of an AMT:

"All problems definable in a certain logic on a certain class of structures can be solved efficiently."

## Form of an AMT:

"All problems definable in a certain logic on a certain class of structures can be solved efficiently."

- Problem $\rightarrow$ decision/counting/enumeration problem


## Form of an AMT:

"All problems definable in a certain logic on a certain class of structures can be solved efficiently."

- Problem $\rightarrow$ decision/counting/enumeration problem
- Efficiency $\rightarrow$ P, FPT, approximation,...


## Form of an AMT:

"All problems definable in a certain logic on a certain class of structures can be solved efficiently."

- Problem $\rightarrow$ decision/counting/enumeration problem
- Efficiency $\rightarrow$ P, FPT, approximation,...
- Logic $\rightarrow$ descriptive complexity


## Form of an AMT:

"All problems definable in a certain logic on a certain class of structures can be solved efficiently."

- Problem $\rightarrow$ decision/counting/enumeration problem
- Efficiency $\rightarrow$ P, FPT, approximation,...
- Logic $\rightarrow$ descriptive complexity
- Structure $\rightarrow$ Structural Graph Theory

Form of an AMT:
"All problems definable in a certain logic on a certain class of structures can be solved efficiently."

- Problem $\rightarrow$ decision/counting/enumeration problem
- Efficiency $\rightarrow$ P, FPT, approximation, $\ldots$
- Logic $\rightarrow$ descriptive complexity
- Structure $\rightarrow$ Structural Graph Theory
- width parameters
- containment in graph classes
- sparsity measures
- ...

|  | First Order Logic <br> $($ FOL $)$ |
| :--- | :--- |
| Variables | vertices |
| Predicates | $=, \sim$ (adjacency) |
| Quantifiers over | vertices |

## Monadic Second Order Logic (MSOL)

vertices/edges sets of vertices/edges

$$
=, \sim, \in
$$

sets of vertices/edges

## Subgraph Isomorphism

Does $G$ contain $H$ as a subgraph?


## Subgraph Isomorphism

Does $G$ contain $H$ as a subgraph?


FOL-expressible:

$$
\exists x \exists y \exists z((x \sim y) \wedge(y \sim z) \wedge(x \sim z))
$$

## Vertex Cover

Does $G$ contain a set $S$ of $k$ vertices that intersects all the edges of $G$ ?


## Vertex Cover

Does $G$ contain a set $S$ of $k$ vertices that intersects all the edges of $G$ ?


FOL-expressible:

$$
\exists v_{1}, \ldots, v_{k} \quad \forall x \forall y\left(x \sim y \rightarrow \bigvee_{i \in\{1, \ldots, k\}}\left(v_{i}=x \vee v_{i}=y\right)\right)
$$

## 3-colorability

Is there a 3-coloring of $G$ ?


## 3-colorability

Is there a 3-coloring of $G$ ?


MSOL-expressible:

$$
\begin{aligned}
& \exists V_{1} \exists V_{2} \exists V_{3}\left(\left(\forall x\left(x \in V_{1} \vee x \in V_{2} \vee x \in V_{3}\right)\right) \wedge\right. \\
& \left.\left(\forall x, y \in V_{1} \neg(x \sim y)\right) \wedge\left(\forall x, y \in V_{2} \neg(x \sim y)\right) \wedge\left(\forall x, y \in V_{3} \neg(x \sim y)\right)\right)
\end{aligned}
$$

## Connectivity

Is the graph $G$ connected?

## MSOL-expressible:

$$
\forall x \forall y \neg(\exists V \quad(x \in V \wedge y \notin V \wedge(\forall u \forall v(u \sim v) \Longrightarrow(u \in V \Leftrightarrow v \in V))))
$$

## General form of AMTs

## General form of AMTs

Given a graph class $\mathcal{C}$ :

$$
\text { Deciding FOL/MSOL-expressible properties is } \mathrm{FPT}^{1} \text { on } \mathcal{C} \text {. }
$$

${ }^{1}$ there is an $f(|\varphi|) \cdot n^{\mathcal{O}(1)}$-time algorithm, where $|\varphi|$ is the size of the given FOL/MSOL-formula and $n$ is the size of the input graph.

## General form of AMTs

Given a graph class $\mathcal{C}$ :

$$
\text { Deciding FOL/MSOL-expressible properties is } \mathrm{FPT}^{1} \text { on } \mathcal{C} \text {. }
$$

- Deciding FOL properties on nowhere dense graph classes.
[Grohe, Kreutzer, \& Siebertz, 2017]
${ }^{1}$ there is an $f(|\varphi|) \cdot n^{\mathcal{O}(1)}$-time algorithm, where $|\varphi|$ is the size of the given FOL/MSOL-formula and $n$ is the size of the input graph.


## General form of AMTs

Given a graph class $\mathcal{C}$ :

$$
\text { Deciding FOL/MSOL-expressible properties is } \mathrm{FPT}^{1} \text { on } \mathcal{C} \text {. }
$$

- Deciding FOL properties on nowhere dense graph classes.
[Grohe, Kreutzer, \& Siebertz, 2017]
- Deciding FOL properties on graphs of bounded twin-width. [Bonnet, Kim, Thomassé, \& Watrigant, 2022]
${ }^{1}$ there is an $f(|\varphi|) \cdot n^{\mathcal{O}(1)}$-time algorithm, where $|\varphi|$ is the size of the given FOL/MSOL-formula and $n$ is the size of the input graph.


## General form of AMTs

Given a graph class $\mathcal{C}$ :

$$
\text { Deciding FOL/MSOL-expressible properties is } \mathrm{FPT}^{1} \text { on } \mathcal{C} \text {. }
$$

- Deciding FOL properties on nowhere dense graph classes. [Grohe, Kreutzer, \& Siebertz, 2017]
- Deciding FOL properties on graphs of bounded twin-width. [Bonnet, Kim, Thomassé, \& Watrigant, 2022]
- Courcelle's Theorem: Deciding MSOL properties on graphs of bounded treewidth. [Courcelle, 1990]
${ }^{1}$ there is an $f(|\varphi|) \cdot n^{\mathcal{O}(1)}$-time algorithm, where $|\varphi|$ is the size of the given FOL/MSOL-formula and $n$ is the size of the input graph.



## What to do next?

- Meta-algorithmics of FOL:
counting predicates, transitive-closure operators, fixed-point operators, successor-invariant formulas, FOL-interpretability,...


## What to do next?

- Meta-algorithmics of FOL:
counting predicates, transitive-closure operators, fixed-point operators, successor-invariant formulas, FOL-interpretability,...
- Consider logics between FOL and MSOL.


## Separator logic (FOL+conn):

[Schirrmacher, Siebertz, \& Vigny, 2021]
[Bojańczyk, 2021]

Additional predicate conn ${ }_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)$ :
There is an $(x, y)$-path that avoids $z_{1}, \ldots, z_{k}$.


## Separator logic (FOL+conn):

[Schirrmacher, Siebertz, \& Vigny, 2021]
[Bojańczyk, 2021]

Additional predicate conn $_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)$ :
There is an ( $x, y$ )-path that avoids $z_{1}, \ldots, z_{k}$.


Can express:
k-connectivity.
Elimination distance to $\phi$, for $\phi \in \mathrm{FOL}+$ conn.
Feedback Vertex Set.
Cannot express:
Planarity, (Topological) Minor Containment.

## Separator logic (FOL+conn):

[Schirrmacher, Siebertz, \& Vigny, 2021]
[Bojańczyk, 2021]

Additional predicate conn ${ }_{k}\left(x, y, z_{1}, \ldots, z_{k}\right)$ :
There is an ( $x, y$ )-path that avoids $z_{1}, \ldots, z_{k}$.

Can express:
k-connectivity.
Elimination distance to $\phi$, for $\phi \in \mathrm{FOL}+$ conn.
Feedback Vertex Set.
Cannot express:
Planarity, (Topological) Minor Containment.

$$
\mathrm{FOL} \subseteq \mathrm{FOL}+\mathrm{conn} \subseteq \mathrm{MSOL}
$$



Deciding FOL+conn properties is FPT on graphs of bounded Hajós number*.
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, \& Vigny, 2022]

* Hajós number $=$ maximum $h$ for which $G$ contains a subdivision of $K_{h}$ as a subgraph.


## FOL+DP

[Schirrmacher, Siebertz, \& Vigny, 2021]

Additional predicate $\operatorname{dp}_{k}\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)$ :
There are pairwise vertex-disjoint paths between $x_{i}$ and $y_{i}$, for every $i \in\{1, \ldots, k\}$.


## FOL+DP

[Schirrmacher, Siebertz, \& Vigny, 2021]

Additional predicate $\operatorname{dp}_{k}\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)$ :
There are pairwise vertex-disjoint paths between $x_{i}$ and $y_{i}$, for every $i \in\{1, \ldots, k\}$.

Can express:
(Topological) Minor Containment.
Cannot express:
Bipartiteness.


## FOL+DP

[Schirrmacher, Siebertz, \& Vigny, 2021]

Additional predicate $\operatorname{dp}_{k}\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)$ :
There are pairwise vertex-disjoint paths between $x_{i}$ and $y_{i}$, for every $i \in\{1, \ldots, k\}$.

Can express:
(Topological) Minor Containment.
Cannot express:
Bipartiteness.

$\mathrm{FOL} \subseteq \mathrm{FOL}+\mathrm{conn} \subseteq \mathrm{FOL}+\mathrm{DP} \subseteq \mathrm{MSOL}$


## Theorem 1

Deciding FOL+DP properties is FPT on graphs of bounded Hadwiger number*.

* Hadwiger number $=$ maximum $r$ for which $G$ contains $K_{r}$ as a minor.

Indicative (meta) problems (whose standard parameterizations) automatically classified in FPT.

- Minor Containment,
- Topological Minor Containment,
- Cyclabllity,
- Unordered Linkability,
- Ordered Linkability,
- $\mathcal{F}$-Minor-Deletion,
- F-Topological Minor-Deletion,
- $\mathcal{F}$-Contraction Deletion (for bounded genus graphs),
- Annotated $\mathcal{F}$ - $\preceq$-Deletion,
- Subset $\mathcal{F}$ - $\preceq$-Deletion,
- $\varphi$-Deletion,
- $\varphi$-Amalgamation,
- $\mathcal{L}$ - $\varphi$-Replacement,
- $\varphi$-Elimination distance,
- $\varphi$-Reconfiguration.


## FOL+SDP

Scattered disjoint paths predicates:


## FOL+SDP

Scattered disjoint paths predicates:
$s-\operatorname{dp}_{k}\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)$
There are pairwise vertex-disjoint paths between $x_{i}$ and $y_{i}$, for every $i \in\{1, \ldots, k\}$
s.t. no two vertices of two distinct paths are within distance $\leq s$.


## FOL+SDP

Scattered disjoint paths predicates:
$s-\operatorname{dp}_{k}\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)$
There are pairwise vertex-disjoint paths
between $x_{i}$ and $y_{i}$, for every $i \in\{1, \ldots, k\}$
s.t. no two vertices of two distinct paths are within distance $\leq s$.

$\operatorname{dp}_{k}\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)=0-\operatorname{dp}_{k}\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)$


## Theorem 2

Deciding FOL+SDP properties is FPT on graphs of bounded Euler genus.

Indicative (meta) problems (whose standard parameterizations) automatically classified in FPT.

- Induced Minor Containment,
- Induced Topological Minor Containment,
- Contraction Containment,
- Induced Unordered Linkability,
- Induced Ordered Linkability,
- F-Induced Minor Deletion,
- F-Induced Topological Minor Deletion,
- $\varphi$-Deletion,
- $\varphi$-Amalgamation,
- $\mathcal{L}$ - $\varphi$-Replacement,
- $\varphi$-Elimination distance,
- $\varphi$-Reconfiguration.

Sketch of proof: .

Sketch of proof: ..

Sketch of proof: ...

## Sketch of proof: ....

## Sketch of proof: .....

## Sketch of proof: ......

## Irrelevant vertex technique

Detect vertex whose removal does not affect the existence of solution.
Build reduction rule to simplify instance.
[Robertson \& Seymour, 1994]


## Sketch of proof: ......

## Irrelevant vertex technique

Detect vertex whose removal does not affect the existence of solution.
Build reduction rule to simplify instance.
[Robertson \& Seymour, 1994]
Abstraction of irrelevant vertex technique for graphs of bounded Hadwiger number / Euler genus to two AMTs.


## Sketch of proof: ......

## Irrelevant vertex technique

Detect vertex whose removal does not affect the existence of solution.
Build reduction rule to simplify instance.
[Robertson \& Seymour, 1994]
Abstraction of irrelevant vertex technique for graphs of bounded Hadwiger number / Euler genus to two AMTs.

- Flat walls framework
[Sau, S., \& Thilikos, 2021]
[Sau, S., \& Thilikos, 2021]
[Sau, S., \& Thilikos, 2022]



## Sketch of proof: ......

## Irrelevant vertex technique

Detect vertex whose removal does not affect the existence of solution.
Build reduction rule to simplify instance.
[Robertson \& Seymour, 1994]
Abstraction of irrelevant vertex technique for graphs of bounded Hadwiger number / Euler genus to two AMTs.

## - Flat walls framework

[Sau, S., \& Thilikos, 2021]
[Sau, S., \& Thilikos, 2021]
[Sau, S., \& Thilikos, 2022]

- Combing Linkages in Annuli


[^0]
## Conclusion



## Conclusion



## Research directions:

- Extend Theorem 1 to graphs of bounded Hajós number.
- Enhance FOL+(S)DP with additional properties on paths.


## Conclusion



## Research directions:

- Extend Theorem 1 to graphs of bounded Hajós number.

Thank you!

- Enhance FOL+(S)DP with additional properties on paths.


[^0]:    [Golovach, S., \& Thilikos, 2022]

