Model-Checking for First-Order Logic with Disjoint Paths Predicates in Proper Minor-Closed Graph Classes

Giannos Stamoulis

LIRMM, Université de Montpellier, CNRS, Montpellier, France

Joint work with

Petr A. Golovach¹ and Dimitrios M. Thilikos².

¹ Department of Informatics, University of Bergen, Norway.
² LIRMM, Université de Montpellier, CNRS, Montpellier, France.

GROW, Koper, Slovenia, 21/09/2022

Algorithmic Meta-Theorems (AMTs):

Algorithmic Meta-Theorems (AMTs):

Logic is used to *describe Computational Problems*, *study Computational Complexity*, and *design efficient algorithms*.

Logic is used to *describe Computational Problems*, *study Computational Complexity*, and *design efficient algorithms*.

Logic is used to *describe Computational Problems*, *study Computational Complexity*, and *design efficient algorithms*.

AMTs: General conditions that imply the automatic derivation of efficient algorithms. *"Algorithms that output algorithms"*

"All *problems* definable in a certain *logic* on a certain class of *structures* can be solved *efficiently*."

 $\circ \ {\rm Problem} \rightarrow {\rm decision/counting/enumeration} \ {\rm problem}$

- $\circ \ \mathsf{Problem} \to \mathsf{decision}/\mathsf{counting}/\mathsf{enumeration} \ \mathsf{problem}$
- Efficiency \rightarrow P, FPT, approximation,...

- $\circ \ \mathsf{Problem} \to \mathsf{decision}/\mathsf{counting}/\mathsf{enumeration} \ \mathsf{problem}$
- Efficiency \rightarrow P, FPT, approximation,...
- $\circ \ \text{Logic} \rightarrow \text{descriptive complexity}$

- $\circ \ \mathsf{Problem} \to \mathsf{decision}/\mathsf{counting}/\mathsf{enumeration} \ \mathsf{problem}$
- Efficiency \rightarrow P, FPT, approximation,...
- $\circ \ {\sf Logic} \to {\sf descriptive\ complexity}$
- Structure \rightarrow Structural Graph Theory

- $\circ \ \mathsf{Problem} \to \mathsf{decision}/\mathsf{counting}/\mathsf{enumeration} \ \mathsf{problem}$
- Efficiency \rightarrow P, FPT, approximation,...
- $\circ \ {\sf Logic} \to {\sf descriptive\ complexity}$
- Structure \rightarrow Structural Graph Theory
 - width parameters
 - containment in graph classes
 - sparsity measures

	First Order Logic (FOL)	Monadic Second Order Logic (MSOL)
Variables	vertices	vertices/edges sets of vertices/edges
Predicates	=, \sim (adjacency)	$=,\sim,\in$
Quantifiers over	vertices	sets of vertices/edges

Subgraph Isomorphism

Does G contain H as a subgraph?

Subgraph Isomorphism

Does G contain H as a subgraph?

FOL-expressible:

$$\exists x \exists y \exists z \ \Big((x \sim y) \land (y \sim z) \land (x \sim z) \Big)$$

Vertex Cover

Does G contain a set S of k vertices that intersects all the edges of G?

Vertex Cover

Does G contain a set S of k vertices that intersects all the edges of G?

FOL-expressible:

$$\exists v_1, \ldots, v_k \quad \forall x \; \forall y \; \Big(x \sim y \; \rightarrow \; \bigvee_{i \in \{1, \ldots, k\}} (v_i = x \lor v_i = y) \Big)$$

3-colorability

Is there a 3-coloring of G?

3-colorability

Is there a 3-coloring of G?

MSOL-expressible:

$$\exists V_1 \exists V_2 \exists V_3 \left(\left(\forall x \ (x \in V_1 \lor x \in V_2 \lor x \in V_3) \right) \land \right. \\ \left(\forall x, y \in V_1 \neg (x \sim y) \right) \land \left(\forall x, y \in V_2 \neg (x \sim y) \right) \land \left(\forall x, y \in V_3 \neg (x \sim y) \right) \right)$$

Is the graph *G* connected? **MSOL**-expressible:

$$\forall x \; \forall y \; \neg \left(\exists V \; \left(x \in V \; \land \; y \notin V \; \land \left(\forall u \; \forall v \; (u \sim v) \implies (u \in V \Leftrightarrow v \in V) \right) \right) \right)$$

Given a graph class C:

Deciding **FOL**/**MSOL**-expressible properties is FPT^1 on \mathcal{C} .

¹ there is an $f(|\varphi|) \cdot n^{\mathcal{O}(1)}$ -time algorithm, where $|\varphi|$ is the size of the given FOL/MSOL-formula and *n* is the size of the input graph.

Given a graph class \mathcal{C} :

Deciding **FOL**/**MSOL**-expressible properties is FPT^1 on \mathcal{C} .

 Deciding FOL properties on nowhere dense graph classes. [Grohe, Kreutzer, & Siebertz, 2017]

¹ there is an $f(|\varphi|) \cdot n^{\mathcal{O}(1)}$ -time algorithm, where $|\varphi|$ is the size of the given FOL/MSOL-formula and *n* is the size of the input graph.

Given a graph class C:

Deciding **FOL**/**MSOL**-expressible properties is FPT^1 on C.

 Deciding FOL properties on nowhere dense graph classes. [Grohe, Kreutzer, & Siebertz, 2017]

Deciding FOL properties on graphs of bounded twin-width.
[Bonnet, Kim, Thomassé, & Watrigant, 2022]

¹ there is an $f(|\varphi|) \cdot n^{\mathcal{O}(1)}$ -time algorithm, where $|\varphi|$ is the size of the given FOL/MSOL-formula and *n* is the size of the input graph.

Given a graph class C:

Deciding **FOL**/**MSOL**-expressible properties is FPT^1 on C.

 Deciding FOL properties on nowhere dense graph classes. [Grohe, Kreutzer, & Siebertz, 2017]

Deciding FOL properties on graphs of bounded twin-width.
[Bonnet, Kim, Thomassé, & Watrigant, 2022]

 Courcelle's Theorem: Deciding MSOL properties on graphs of bounded treewidth. [Courcelle, 1990]

¹ there is an $f(|\varphi|) \cdot n^{\mathcal{O}(1)}$ -time algorithm, where $|\varphi|$ is the size of the given FOL/MSOL-formula and *n* is the size of the input graph.

► *Meta-algorithmics* of FOL:

counting predicates, transitive-closure operators, fixed-point operators, successor-invariant formulas, FOL-interpretability,...

► *Meta-algorithmics* of FOL:

counting predicates, transitive-closure operators, fixed-point operators, successor-invariant formulas, FOL-interpretability,...

Consider logics between FOL and MSOL.

Separator logic (FOL+conn):

[Schirrmacher, Siebertz, & Vigny, 2021] [Bojańczyk, 2021]

Additional predicate $\operatorname{conn}_k(x, y, z_1, \ldots, z_k)$:

There is an (x, y)-path that avoids z_1, \ldots, z_k .

Separator logic (FOL+conn):

[Schirrmacher, Siebertz, & Vigny, 2021] [Bojańczyk, 2021]

Additional predicate $\operatorname{conn}_k(x, y, z_1, \ldots, z_k)$:

There is an (x, y)-path that avoids z_1, \ldots, z_k .

Can express:

k-connectivity.

ELIMINATION DISTANCE TO ϕ , for $\phi \in \mathsf{FOL}+\mathsf{conn}$. FEEDBACK VERTEX SET.

Cannot express: PLANARITY, (TOPOLOGICAL) MINOR CONTAINMENT. **Separator logic** (FOL+conn):

[Schirrmacher, Siebertz, & Vigny, 2021] [Bojańczyk, 2021]

Additional predicate $\operatorname{conn}_k(x, y, z_1, \ldots, z_k)$:

There is an (x, y)-path that avoids z_1, \ldots, z_k .

Can express:

k-connectivity.

ELIMINATION DISTANCE TO ϕ , for $\phi \in \mathsf{FOL}+\mathsf{conn}$. FEEDBACK VERTEX SET.

Cannot express: Planarity, (Topological) Minor Containment.

 $\mathsf{FOL} \subseteq \mathsf{FOL}{+}\mathsf{conn} \subseteq \mathsf{MSOL}$

Deciding FOL+conn properties is FPT on graphs of bounded Hajós number*. [Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny, 2022]

* *Hajós number* = maximum *h* for which *G* contains a subdivision of K_h as a subgraph.

FOL+DP

[Schirrmacher, Siebertz, & Vigny, 2021]

Additional predicate $dp_k(x_1, y_1, \ldots, x_k, y_k)$:

There are pairwise vertex-disjoint paths between x_i and y_i , for every $i \in \{1, \ldots, k\}$.

FOL+DP

[Schirrmacher, Siebertz, & Vigny, 2021]

Additional predicate $dp_k(x_1, y_1, \ldots, x_k, y_k)$:

There are pairwise vertex-disjoint paths between x_i and y_i , for every $i \in \{1, ..., k\}$.

Can express: (TOPOLOGICAL) MINOR CONTAINMENT.

Cannot express: *Bipartiteness*.

FOL+DP

[Schirrmacher, Siebertz, & Vigny, 2021]

Additional predicate $dp_k(x_1, y_1, \ldots, x_k, y_k)$:

There are pairwise vertex-disjoint paths between x_i and y_i , for every $i \in \{1, \ldots, k\}$.

Can express: (TOPOLOGICAL) MINOR CONTAINMENT.

Cannot express: Bipartiteness.

 $\mathsf{FOL} \subseteq \mathsf{FOL} + \mathsf{conn} \subseteq \mathsf{FOL} + \mathsf{DP} \subseteq \mathsf{MSOL}$

Theorem 1

Deciding FOL+DP properties is FPT on graphs of bounded Hadwiger number*.

* Hadwiger number = maximum r for which G contains K_r as a minor.

Indicative (meta) problems (whose standard parameterizations) automatically classified in FPT.

- ► MINOR CONTAINMENT,
- ► TOPOLOGICAL MINOR CONTAINMENT,
- ► CYCLABILITY,
- ► UNORDERED LINKABILITY,
- ► ORDERED LINKABILITY,
- \mathcal{F} -Minor-Deletion,
- \mathcal{F} -Topological Minor-Deletion,
- ► *F*-CONTRACTION DELETION (for bounded genus graphs),
- ▶ ANNOTATED \mathcal{F} - \preceq -Deletion,
- ▶ SUBSET \mathcal{F} - \preceq -Deletion,
- φ -Deletion,
- φ -Amalgamation,
- \mathcal{L} - φ -Replacement,
- φ -Elimination distance,
- φ -Reconfiguration.

FOL+SDP

Scattered disjoint paths predicates:

 $s-dp_k(x_1, y_1, \ldots, x_k, y_k)$

There are pairwise vertex-disjoint paths between x_i and y_i , for every $i \in \{1, ..., k\}$ s.t. no two vertices of two distinct paths are within distance $\leq s$.

FOL+SDP

Scattered disjoint paths predicates:

 $s-dp_k(x_1, y_1, \ldots, x_k, y_k)$

There are pairwise vertex-disjoint paths between x_i and y_i , for every $i \in \{1, ..., k\}$ s.t. no two vertices of two distinct paths are within distance $\leq s$.

FOL+SDP

Scattered disjoint paths predicates:

 $s-dp_k(x_1, y_1, \ldots, x_k, y_k)$

There are pairwise vertex-disjoint paths between x_i and y_i , for every $i \in \{1, ..., k\}$ s.t. no two vertices of two distinct paths are within distance $\leq s$.

$$dp_k(x_1, y_1, \ldots, x_k, y_k) = 0 - dp_k(x_1, y_1, \ldots, x_k, y_k)$$

Theorem 2 Deciding FOL+SDP properties is FPT on graphs of bounded Euler genus. Indicative (meta) problems (whose standard parameterizations) automatically classified in FPT.

- ► INDUCED MINOR CONTAINMENT,
- ► INDUCED TOPOLOGICAL MINOR CONTAINMENT,
- ► CONTRACTION CONTAINMENT,
- ► INDUCED UNORDERED LINKABILITY,
- ► INDUCED ORDERED LINKABILITY,
- \mathcal{F} -INDUCED MINOR DELETION,
- ▶ \mathcal{F} -Induced Topological Minor Deletion,
- φ -Deletion,
- φ -Amalgamation,
- \mathcal{L} - φ -Replacement,
- φ -Elimination distance,
- φ -Reconfiguration.

Sketch of proof: .

Irrelevant vertex technique

Detect vertex whose removal does not affect the existence of solution. Build reduction rule to simplify instance. [Robertson & Seymour, 1994]

Irrelevant vertex technique

Detect vertex whose removal does not affect the existence of solution. Build reduction rule to simplify instance.

[Robertson & Seymour, 1994]

Abstraction of irrelevant vertex technique for graphs of bounded Hadwiger number / Euler genus to two **AMTs**.

Irrelevant vertex technique

Detect vertex whose removal does not affect the existence of solution. Build reduction rule to simplify instance.

[Robertson & Seymour, 1994]

Abstraction of irrelevant vertex technique for graphs of bounded Hadwiger number / Euler genus to two **AMTs**.

• Flat walls framework [Sau, S., & Thilikos, 2021] [Sau, S., & Thilikos, 2021] [Sau, S., & Thilikos, 2022]

Irrelevant vertex technique

Detect vertex whose removal does not affect the existence of solution. Build reduction rule to simplify instance.

[Robertson & Seymour, 1994]

Abstraction of irrelevant vertex technique for graphs of bounded Hadwiger number / Euler genus to two **AMTs**.

• Flat walls framework [Sau, S., & Thilikos, 2021] [Sau, S., & Thilikos, 2021] [Sau, S., & Thilikos, 2022]

• Combing Linkages in Annuli [Golovach, S., & Thilikos, 2022]

Conclusion

Conclusion

Research directions:

- Extend **Theorem 1** to graphs of bounded Hajós number.
- Enhance FOL+(S)DP with additional properties on paths.

Conclusion

Research directions:

- Extend **Theorem 1** to graphs of bounded Hajós number.
- Enhance FOL+(S)DP with additional properties on paths.

Thank you !