A splitter theorem for directed graphs

Meike Hatzel,
joint work with: Stephan Kreutzer, Evangelos Protopapas, Florian Reich, Giannos Stamoulis, Sebastian Wiederrecht

Koper, September 20th 2022

Generating strongly 2-connected graphs

Meike Hatzel,
joint work with: Stephan Kreutzer, Evangelos Protopapas, Florian Reich, Giannos Stamoulis, Sebastian Wiederrecht

Koper, September 20th 2022

Generation of graphs

The class of all 2-connected graphs can be constructed from cycles by adding internally disjoint paths (ears). [Whitney '32]

Generation of graphs

The class of all 2-connected graphs can be constructed from cycles by adding internally disjoint paths (ears). [Whitney '32]

The class of all 3-connected graphs can be constructed from K_{4} by 3-augmentations. [Barnette, Grünbaum '69, Titov '75]

Seymour's splitter theorem

Theorem [Seymour '80]

If G and H are 3-connected graphs such that H is a proper minor of G, then there exists a 3 -connected graph K such that K is a minor of G and one of the following statements holds:

K can be obtained from H by 3-expansion or edge addition, or
H and K are wheels and $|V(H)|+1=|V(K)|$.

Implications of Seymour's splitter theorem

Generation-Corollary

The class of 3-connected graphs can be constructed from the set of wheels by 3-expansions and edge-additions.

Implications of Seymour's splitter theorem

Generation-Corollary

The class of 3-connected graphs can be constructed from the set of wheels by 3-expansions and edge-additions.

Split-Corollary

The class of graphs with a proper K_{5} minor is disjoint from the class of graphs excluding $K_{3,3}$ as a minor.

From graphs to directed graphs

The class of all 2-connected graphs can be constructed from cycles by adding internally disjoint paths (ears).

The class of all strongly connected digraphs can be constructed from directed cycles by internally disjoint directed "paths" (start and end vertex may be the same).

From graphs to directed graphs

The class of all 2-connected graphs can be constructed from cycles by adding internally disjoint paths (ears).

The class of all strongly connected digraphs can be constructed from directed cycles by internally disjoint directed "paths" (start and end vertex may be the same).

What about strongly 2-connected digraphs?

Decompositions along 1 -separations

Every digraph can be decomposed along separations of order one into a tree of strongly 2-connected digraphs.

Decompositions along 1-separations

Every digraph can be decomposed along separations of order one into a tree of strongly 2 -connected digraphs.

Thus, constructing the strongly 2-connected digraphs allows us to construct all digraphs.

Butterfly minors

Butterfly minors

Butterfly minor models

Let H and D be digraphs. We call a subgraph H^{\prime} of D an H-expansion, if H^{\prime} is a minor model of H.

splits

$$
\left|N_{b}\right| \geq 1,\left|N_{e}\right| \geq 2
$$

splits

splits

splits

Augmentations

A_{1}) basic augmentation
A_{2}) chain augmentation
$\left.A_{3}\right)$ collarette augmentation
$\left.A_{4}\right)$ bracelet augmentation

Augmentations

A_{1}) basic augmentation

D

Augmentations

A_{1}) basic augmentation

D

Augmentations

A_{2}) chain augmentation

D

Augmentations

A_{2}) chain augmentation

D

Augmentations

A_{3}) collarette augmentation

Augmentations

A_{3}) collarette augmentation

D^{\prime}

Augmentations

A_{4}) bracelet augmentation

D
D^{\prime}

Augmentations

A_{4}) bracelet augmentation

D
D^{\prime}

A splitter theorem for directed graphs

Directed splitter theorem

If D and H are strongly 2 -connected digraphs and H^{\prime} is an H-expansion in D, then there exists a strongly 2 -connected digraph K such that D is a K-expansion and K is an H augmentation.

Base class \mathcal{B}

C_{3}

C_{4}

C_{5}

C_{6}

Base-Theorem [Wiederrecht '20]
Every strongly 2-connected digraph on at least 3 vertices contains a digraph from \mathcal{B} as a butterfly minor.
A_{4}

Generation sequence

Corollary

For every strongly 2 -connected digraph D there exists a sequence $\left(D_{0}, \ldots, D_{k}\right)$ of strongly 2-connected digraphs such that $\quad D_{0} \in \mathcal{B}, D_{k} \cong D$, and
D_{i+1} is an augmentation of D_{i} for all $1 \leq i \leq k$.

$$
D_{k} \cong D
$$

Generation sequence

Corollary

For every strongly 2 -connected digraph D there exists a sequence (D_{0}, \ldots, D_{k}) of strongly 2-connected digraphs such that $\quad D_{0} \in \mathcal{B}, D_{k} \cong D$, and
D_{i+1} is an augmentation of D_{i} for all $1 \leq i \leq k$.

Generation sequence

Corollary

For every strongly 2 -connected digraph D there exists a sequence $\left(D_{0}, \ldots, D_{k}\right)$ of strongly 2-connected digraphs such that $\quad D_{0} \in \mathcal{B}, D_{k} \cong D$, and
D_{i+1} is an augmentation of D_{i} for all $1 \leq i \leq k$.

apply Directed Splitter Theorem to D and D_{0}

Generation sequence

Corollary

For every strongly 2 -connected digraph D there exists a sequence $\left(D_{0}, \ldots, D_{k}\right)$ of strongly 2-connected digraphs such that $\quad D_{0} \in \mathcal{B}, D_{k} \cong D$, and
D_{i+1} is an augmentation of D_{i} for all $1 \leq i \leq k$.

apply Directed Splitter Theorem to D and D_{1}

Generation sequence

Corollary

For every strongly 2 -connected digraph D there exists a sequence $\left(D_{0}, \ldots, D_{k}\right)$ of strongly 2-connected digraphs such that $\quad D_{0} \in \mathcal{B}, D_{k} \cong D$, and
D_{i+1} is an augmentation of D_{i} for all $1 \leq i \leq k$.

example construction

example construction

example construction

example construction

Proof sketch

If $D_{i} \not \not \equiv D$ yet, then there is an ear-path with respect to the minor model of D_{i} in D.

Proof sketch

If $D_{i} \not \not \equiv D$ yet, then there is an ear-path with respect to the minor model of D_{i} in D.

What does our obtained ear look like?

Proof sketch

If $D_{i} \not \approx D$ yet, then there is an ear-path with respect to the minor model of D_{i} in D.

What does our obtained ear look like?
switching - we can replace a path in the minor model by the ear-path getting a new model for D_{i}

Proof sketch

If $D_{i} \not \approx D$ yet, then there is an ear-path with respect to the minor model of D_{i} in D.

What does our obtained ear look like?
switching - we can replace a path in the minor model by the ear-path getting a new model for D_{i}
augmenting - adding this ear-path immediately yields a valid model for a larger graph $\left(D_{i+1}\right)$

Proof sketch

If $D_{i} \not \approx D$ yet, then there is an ear-path with respect to the minor model of D_{i} in D.

What does our obtained ear look like?
switching - we can replace a path in the minor model by the ear-path getting a new model for D_{i}
augmenting - adding this ear-path immediately yields a valid model for a larger graph $\left(D_{i+1}\right)$
bad - can not be easily added as it would close a cycle in the minor model

Proof sketch

case 1: there is an augmenting path

Proof sketch

case 1: there is an augmenting path

Proof sketch

case 1: there is an augmenting path
case 2: there is a chain

Proof sketch

case 1: there is an augmenting path
case 2: there is a chain

Proof sketch

case 1: there is an augmenting path
case 2: there is a chain

case 3: there is a vertex with non-trivial model and in- and out-degree 2

Proof sketch

case 1: there is an augmenting path
case 2: there is a chain

case 3: there is a vertex with non-trivial model and in- and out-degree 2

Proof sketch

case 1: there is an augmenting path
case 2: there is a chain

case 3: there is a vertex with non-trivial model and in- and out-degree 2
case 4: there is a vertex with non-trivial branch set and in- or out-degree at least 3

Proof sketch

case 1: there is an augmenting path
case 2: there is a chain

case 3: there is a vertex with non-trivial model and in- and out-degree 2
case 4: there is a vertex with non-trivial branch set and in- or out-degree at least 3 switch

Proof sketch

case 1: there is an augmenting path
case 2: there is a chain

case 3: there is a vertex with non-trivial model and in- and out-degree 2
case 4: there is a vertex with non-trivial branch set and in- or
out-degree at least 3 switch .
case 5: trivial branch sets and a certain type of switching path

Proof sketch

case 1: there is an augmenting path
case 2: there is a chain

case 3: there is a vertex with non-trivial model and in- and out-degree 2
case 4: there is a vertex with non-trivial branch set and in- or
out-degree at least 3 switch .
case 5: trivial branch sets and a certain type of switching path switch non-trivial branch set
case 6: trivial branch sets and no such switching path

Proof sketch

case 1: there is an augmenting path
case 2: there is a chain

case 3: there is a vertex with non-trivial model and in- and out-degree 2
case 4: there is a vertex with non-trivial branch set and in- or out-degree at least 3 switch

case 5: trivial branch sets and a certain type of switching path switch non-trivial branch set
case 6: trivial branch sets and no such switching path choose ear carefully $<$

Open questions

- What would be a good definition of k-blocks for directed graphs?
Can we characterise or construct them?
What are minors enforcing such k-blocks?
- Can one prove splitter theorems for strong minors?
-What kind of classes can we split with our theorem?

Open questions

- What would be a good definition of k-blocks for directed graphs?
Can we characterise or construct them?
What are minors enforcing such k-blocks?
- Can one prove splitter theorems for strong minors?
-What kind of classes can we split with our theorem?

Thank you!

