A splitter theorem for directed graphs

Meike Hatzel,

joint work with: Stephan Kreutzer, Evangelos Protopapas, Florian Reich, Giannos Stamoulis, Sebastian Wiederrecht

Koper, September 20th 2022

Generating strongly 2-connected graphs

Meike Hatzel,

joint work with: Stephan Kreutzer, Evangelos Protopapas, Florian Reich, Giannos Stamoulis, Sebastian Wiederrecht

Koper, September 20th 2022

The class of all 2-connected graphs can be constructed from cycles by adding internally disjoint paths (ears). [Whitney '32]

The class of all 2-connected graphs can be constructed from cycles by adding internally disjoint paths (ears). [Whitney '32]

The class of all 3-connected graphs can be constructed from K_4 by 3-augmentations. [Barnette, Grünbaum '69, Titov '75]

Theorem [Seymour '80]

If G and H are 3-connected graphs such that H is a proper minor of G, then there exists a 3-connected graph K such that K is a minor of G and one of the following statements holds:

 ${\cal K}$ can be obtained from ${\cal H}$ by 3-expansion or edge addition, or

H and K are wheels and |V(H)| + 1 = |V(K)|.

Generation-Corollary

The class of 3-connected graphs can be constructed from the set of wheels by 3-expansions and edge-additions.

Generation-Corollary

The class of 3-connected graphs can be constructed from the set of wheels by 3-expansions and edge-additions.

Split-Corollary

The class of graphs with a proper K_5 minor is disjoint from the class of graphs excluding $K_{3,3}$ as a minor.

The class of all 2-connected graphs can be constructed from cycles by adding internally disjoint paths (ears).

The class of all strongly connected digraphs can be constructed from directed cycles by internally disjoint directed "paths" (start and end vertex may be the same). The class of all 2-connected graphs can be constructed from cycles by adding internally disjoint paths (ears).

The class of all strongly connected digraphs can be constructed from directed cycles by internally disjoint directed "paths" (start and end vertex may be the same).

What about strongly 2-connected digraphs?

Every digraph can be decomposed along separations of order one into a tree of strongly 2-connected digraphs.

Every digraph can be decomposed along separations of order one into a tree of strongly 2-connected digraphs.

Thus, constructing the strongly 2-connected digraphs allows us to construct all digraphs.

Butterfly minors

Butterfly minors

Butterfly minor models

Let H and D be digraphs. We call a subgraph H' of D an H-expansion, if H' is a minor model of H.

D

D'

D

D'

D

D'

Directed splitter theorem

If D and H are strongly 2-connected digraphs and H' is an H-expansion in D, then there exists a strongly 2-connected digraph K such that D is a K-expansion and K is an H-augmentation.

Base class \mathcal{B}

 A_4

Base class \mathcal{B}

Base-Theorem [Wiederrecht '20]

Every strongly 2-connected digraph on at least 3 vertices contains a digraph from \mathcal{B} as a butterfly minor.

Corollary

For every strongly 2-connected digraph D there exists a sequence (D_0, \ldots, D_k) of strongly 2-connected digraphs such that $D_0 \in \mathcal{B}, D_k \cong D$, and D_{i+1} is an augmentation of D_i for all $1 \le i \le k$.

 $D_k \cong D$

Corollary

For every strongly 2-connected digraph D there exists a sequence (D_0, \ldots, D_k) of strongly 2-connected digraphs such that $D_0 \in \mathcal{B}, D_k \cong D$, and

 D_{i+1} is an augmentation of D_i for all $1 \le i \le k$.

Corollary

For every strongly 2-connected digraph D there exists a sequence (D_0, \ldots, D_k) of strongly 2-connected digraphs such that $D_0 \in \mathcal{B}, D_k \cong D$, and

 D_{i+1} is an augmentation of D_i for all $1 \le i \le k$.

apply Directed Splitter Theorem to D and D_0

Corollary

For every strongly 2-connected digraph D there exists a sequence (D_0, \ldots, D_k) of strongly 2-connected digraphs such that $D_0 \in \mathcal{B}, D_k \cong D$, and

 D_{i+1} is an augmentation of D_i for all $1 \le i \le k$.

apply Directed Splitter Theorem to Dand D_1

Corollary

For every strongly 2-connected digraph D there exists a sequence (D_0, \ldots, D_k) of strongly 2-connected digraphs such that $D_0 \in \mathcal{B}, D_k \cong D$, and

 D_{i+1} is an augmentation of D_i for all $1 \le i \le k$.

What does our obtained ear look like?

What does our obtained ear look like?

switching – we can replace a path in the minor model by the ear-path getting a new model for D_i

What does our obtained ear look like?

switching – we can replace a path in the minor model by the ear-path getting a new model for D_i augmenting – adding this ear-path immediately yields a valid model for a larger graph (D_{i+1})

What does our obtained ear look like?

switching – we can replace a path in the minor model by the ear-path getting a new model for D_i augmenting – adding this ear-path immediately yields a valid model for a larger graph (D_{i+1})

bad – can not be easily added as it would close a cycle in the minor model

/

case 2: there is a chain

case 1: there is an augmenting path

case 2: there is a chain

case 2: there is a chain

case 3: there is a vertex with non-trivial model and in- and out-degree 2

case 1: there is an augmenting path

case 2: there is a chain

case 3: there is a vertex with non-trivial model and in- and out-degree 2

case 1: there is an augmenting path
case 2: there is a chain
case 3: there is a vertex with non-trivial model and in- and
out-degree 2

case 4: there is a vertex with non-trivial branch set and in- or out-degree at least 3

 What would be a good definition of k-blocks for directed graphs?

Can we characterise or construct them?

What are minors enforcing such k-blocks?

- $\cdot\,$ Can one prove splitter theorems for strong minors?
- $\cdot\,$ What kind of classes can we split with our theorem?

 What would be a good definition of k-blocks for directed graphs?

Can we characterise or construct them?

What are minors enforcing such k-blocks?

- $\cdot\,$ Can one prove splitter theorems for strong minors?
- $\cdot\,$ What kind of classes can we split with our theorem?

Thank you!