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Toughness

Definition
Let t be a positive real number. A graph G is
called t-tough, if

c(G −S) ≤ ∣S∣
t

for any cutset S of G.
The toughness of G, denoted by τ(G), is the
largest t for which G is t-tough, taking
τ(Kn) = ∞ for all n ≥ 1.

The Petersen graph is
4/3-tough.

A cycle is 1-tough.
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Toughness

In other words: for a non-complete, connected graph G,

τ(G) = min
S cutset

∣S∣
c(G −S) .

S is called a tough set if it gives the ratio τ(G).

Observation
For a non-complete, connected graph G on n vertices the toughness
τ(G) is a rational number p

q with 1 ≤ p,q ≤ n.

Proof.
Clearly 1 ≤ ∣S∣ ≤ n − 2 and 2 ≤ c(G −S) ≤ n − 1.
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Complexity of toughness

Let t be an arbitrary positive rational number and consider the
following problem.

t -TOUGH
Instance: A graph G,
Question: Is it true that τ(G) ≥ t?

Theorem (Bauer, Hakimi, Schmeichel, 1990)
For any positive rational number t, t -TOUGH is coNP-complete.

Theorem (Bauer, van den Heuvel, Morgana, Schmeichel, 1998)
1-TOUGH is coNP-complete for r -regular graphs for all r ≥ 3.
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Complexity of toughness in special graph classes

Theorem (Kratsch, Lehel, Müller, 1996)
The problem 1-TOUGH is coNP-complete for bipartite graphs.

Theorem (GY. K., K. Varga, 2022)

For any positive rational number t ≤ 1 the problem t -TOUGH remains
coNP-complete for bipartite graphs.

Deciding the toughness remains coNP-hard in many other special
graph classes.

Famous open cases: planar graphs, chordal graphs
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Complexity of toughness in special graph classes

For some other special graph classes there are polynomial algorithms
to compute the toughness:

Claw-free graphs (Matthews, Sumner, 1984)
Split graphs (Kratsch, Lehel, Müller, 1996; Woeginger, 1998)
Interval graphs (Kratsch, Kloks, Müller, 1994)
2K2-free graphs (Broersma, Patel, Pyatkin, 2014)
some other more special classes . . .
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Main result

Theorem
There exists an algorithm to compute the toughness of a graph G
width running time O(n3 ⋅ tw(G)2tw(G)), where n is the number of
vertices in G and tw(G) is the treewidth of G.

Corollary
The toughness can be computed in polynomial time for graphs width
bounded treewidth.

Corollary
Toughness is FPT parameterized with treewidth.
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Tree decomposition

Let G = (V ,E) be a graph. Let (Xt)t∈V(T) be a family of vertex sets
Xt ⊆ V (bags) indexed by the nodes of a tree T . The pair
(T ,{Xt ∣ t ∈ V(T )} is a tree decomposition of G if it satisfies the
following conditions:

⋃t∈V(T)Xi = V ;
for every edge e = vw ∈ E there is a t ∈ V(T ) with v ,w ∈ Xt ;
if i , j ,k ∈ V(T ) and node j is on the path in T between nodes i and
k , then Xi ∩Xk ⊆ Xj .

The width of the tree decomposition is maxt∈V(T) ∣Xt ∣ − 1.
The treewidth of a G is the minimum width of a tree decomposition of
G.
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Tree decomposition

Graph G
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Bounded treewidth

Theorem (Bodlaender, 1996)
A tree decomposition with width tw(G) can be constructed in
tw(G)O(tw(G)3) ⋅ n time.

Many NP-hard problems are FPT parameterized with treewidth, so
they are solvable in polynomial time if the treewidth is bounded.
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Trees

Graphs with tw(G) = 1 are trees.

Lemma
The toughness of a tree is 1/∆(G).

Proof.
Every tough set is a single vertex with maximum degree.
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Series parallel graphs

Graphs with tw(G) = 2 are series parallel graphs.

A polynomial algorithm can be designed using dynamic programming
on the series-parallel decomposition tree.
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Nice tree decomposition

A rooted tree decomposition (T ,{Xt ∶ t ∈ T}) of a graph G is nice if
every node t ∈ V(T )/ root is of one of the following four types:

Leaf: no children and ∣Xt ∣ = 1.
Introduce: a unique child t ′ and Xt = Xt ′ ∪ {v} with v ∉ Xt ′ .
Forget: a unique child t ′ and Xt = Xt ′/{v} with v ∈ Xt ′ .
Join: two children t1 and t2 with Xt = Xt1 = Xt2 .

Theorem (Bodlaender, Kloks, 1996)
A tree decomposition (T ,{Xt ∶ t ∈ T}) of width tw(G) of an n-vertex
graph G can be transformed in time O(tw(G)2 ⋅ n) into a nice tree
decomposition of G of width tw(G) and 4n nodes.
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Nice tree decomposition
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The algorithm

Take a nice, rooted tree decomposition and compute the following
information for each vertex t ∈ V(T ) in a bottom up order.

Vt : all vertices of G appearing in bags that are descendants of t
Gt ∶= G[Vt]
MNC(t ,s,Q,P): the maximum number of components of Gt −S
where the maximum is taken for all sets S ⊆ Vt having

▸ ∣S∣ = s,
▸ S ∩Xt = Q, and
▸ P is the partition of Xt −Q (= Xt −S) that is the partition of Gt −S to

components restricted to Xt −Q.

For every t compute MNC(t ,s,Q,P) for each possible value of
0 ≤ s < n, Q ⊆ Xt and P using the previously computed info for the
child/children of t .
The total size of information for one vertex of t is
O(n ⋅ tw(G)tw(G)).
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The algorithm

For the root r of the tree compute:

τ(G) = min{ s
MNC(r ,s,Q,P) ∣0 ≤ s < n;MNC(r ,s,Q,P)≥ 2}
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How to compute MNC(t ,s,Q,P)?

Leaf: trivial
Forget: easy

Introduce: harder
Join: hardest case
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How to compute for join?

Xt
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Running time

Number of vertices in the tree: O(n)
Computing for Leafs: O(1)
Computing for Introduce, Forget: O(n ⋅ tw(G)tw(G))
Computing for Join: O(n2 ⋅ tw(G)2tw(G))
Computing at the end: O(n ⋅ tw(G)tw(G))

Running time: O(n3 ⋅ tw(G)2tw(G))

Conjecture
There exists an algorithm to compute the toughness of a graph G
width running time O(n2 ⋅ 2O(tw(G))).

I believe that the methods invented by Bodlaender, Cygan, Kratsch
and Nederlof (2013) will work here, too.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 19 / 21



Running time

Number of vertices in the tree: O(n)
Computing for Leafs: O(1)
Computing for Introduce, Forget: O(n ⋅ tw(G)tw(G))
Computing for Join: O(n2 ⋅ tw(G)2tw(G))
Computing at the end: O(n ⋅ tw(G)tw(G))

Running time: O(n3 ⋅ tw(G)2tw(G))

Conjecture
There exists an algorithm to compute the toughness of a graph G
width running time O(n2 ⋅ 2O(tw(G))).

I believe that the methods invented by Bodlaender, Cygan, Kratsch
and Nederlof (2013) will work here, too.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 19 / 21



Running time

Number of vertices in the tree: O(n)
Computing for Leafs: O(1)
Computing for Introduce, Forget: O(n ⋅ tw(G)tw(G))
Computing for Join: O(n2 ⋅ tw(G)2tw(G))
Computing at the end: O(n ⋅ tw(G)tw(G))

Running time: O(n3 ⋅ tw(G)2tw(G))

Conjecture
There exists an algorithm to compute the toughness of a graph G
width running time O(n2 ⋅ 2O(tw(G))).

I believe that the methods invented by Bodlaender, Cygan, Kratsch
and Nederlof (2013) will work here, too.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 19 / 21



Running time

Number of vertices in the tree: O(n)
Computing for Leafs: O(1)
Computing for Introduce, Forget: O(n ⋅ tw(G)tw(G))
Computing for Join: O(n2 ⋅ tw(G)2tw(G))
Computing at the end: O(n ⋅ tw(G)tw(G))

Running time: O(n3 ⋅ tw(G)2tw(G))

Conjecture
There exists an algorithm to compute the toughness of a graph G
width running time O(n2 ⋅ 2O(tw(G))).

I believe that the methods invented by Bodlaender, Cygan, Kratsch
and Nederlof (2013) will work here, too.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 19 / 21



Open questions

Question
What is the complexity of t -TOUGH for

chordal graphs?
planar graphs?
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The End
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