
Polynomial algorithm to compute the toughness of
graphs with bounded treewidth

Gyula Y. Katona

Department of Computer Science and Information Theory
Budapest University of Technology and Economics

September 21, 2022

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 1 / 21



Toughness

Definition
Let t be a positive real number. A graph G is
called t-tough, if

c(G −S) ≤ ∣S∣
t

for any cutset S of G.
The toughness of G, denoted by τ(G), is the
largest t for which G is t-tough, taking
τ(Kn) = ∞ for all n ≥ 1.

The Petersen graph is
4/3-tough.

A cycle is 1-tough.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 2 / 21



Toughness

Definition
Let t be a positive real number. A graph G is
called t-tough, if

c(G −S) ≤ ∣S∣
t

for any cutset S of G.
The toughness of G, denoted by τ(G), is the
largest t for which G is t-tough, taking
τ(Kn) = ∞ for all n ≥ 1.

The Petersen graph is
4/3-tough.

A cycle is 1-tough.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 2 / 21



Toughness

Definition
Let t be a positive real number. A graph G is
called t-tough, if

c(G −S) ≤ ∣S∣
t

for any cutset S of G.
The toughness of G, denoted by τ(G), is the
largest t for which G is t-tough, taking
τ(Kn) = ∞ for all n ≥ 1.

The Petersen graph is
4/3-tough.

A cycle is 1-tough.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 2 / 21



Toughness

In other words: for a non-complete, connected graph G,

τ(G) = min
S cutset

∣S∣
c(G −S) .

S is called a tough set if it gives the ratio τ(G).

Observation
For a non-complete, connected graph G on n vertices the toughness
τ(G) is a rational number p

q with 1 ≤ p,q ≤ n.

Proof.
Clearly 1 ≤ ∣S∣ ≤ n − 2 and 2 ≤ c(G −S) ≤ n − 1.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 3 / 21



Complexity of toughness

Let t be an arbitrary positive rational number and consider the
following problem.

t -TOUGH
Instance: A graph G,
Question: Is it true that τ(G) ≥ t?

Theorem (Bauer, Hakimi, Schmeichel, 1990)
For any positive rational number t, t -TOUGH is coNP-complete.

Theorem (Bauer, van den Heuvel, Morgana, Schmeichel, 1998)
1-TOUGH is coNP-complete for r -regular graphs for all r ≥ 3.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 4 / 21



Complexity of toughness

Let t be an arbitrary positive rational number and consider the
following problem.

t -TOUGH
Instance: A graph G,
Question: Is it true that τ(G) ≥ t?

Theorem (Bauer, Hakimi, Schmeichel, 1990)
For any positive rational number t, t -TOUGH is coNP-complete.

Theorem (Bauer, van den Heuvel, Morgana, Schmeichel, 1998)
1-TOUGH is coNP-complete for r -regular graphs for all r ≥ 3.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 4 / 21



Complexity of toughness in special graph classes

Theorem (Kratsch, Lehel, Müller, 1996)
The problem 1-TOUGH is coNP-complete for bipartite graphs.

Theorem (GY. K., K. Varga, 2022)

For any positive rational number t ≤ 1 the problem t -TOUGH remains
coNP-complete for bipartite graphs.

Deciding the toughness remains coNP-hard in many other special
graph classes.

Famous open cases: planar graphs, chordal graphs

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 5 / 21



Complexity of toughness in special graph classes

Theorem (Kratsch, Lehel, Müller, 1996)
The problem 1-TOUGH is coNP-complete for bipartite graphs.

Theorem (GY. K., K. Varga, 2022)

For any positive rational number t ≤ 1 the problem t -TOUGH remains
coNP-complete for bipartite graphs.

Deciding the toughness remains coNP-hard in many other special
graph classes.

Famous open cases: planar graphs, chordal graphs

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 5 / 21



Complexity of toughness in special graph classes

Theorem (Kratsch, Lehel, Müller, 1996)
The problem 1-TOUGH is coNP-complete for bipartite graphs.

Theorem (GY. K., K. Varga, 2022)

For any positive rational number t ≤ 1 the problem t -TOUGH remains
coNP-complete for bipartite graphs.

Deciding the toughness remains coNP-hard in many other special
graph classes.

Famous open cases: planar graphs, chordal graphs

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 5 / 21



Complexity of toughness in special graph classes

For some other special graph classes there are polynomial algorithms
to compute the toughness:

Claw-free graphs (Matthews, Sumner, 1984)
Split graphs (Kratsch, Lehel, Müller, 1996; Woeginger, 1998)
Interval graphs (Kratsch, Kloks, Müller, 1994)
2K2-free graphs (Broersma, Patel, Pyatkin, 2014)
some other more special classes . . .

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 6 / 21



Main result

Theorem
There exists an algorithm to compute the toughness of a graph G
width running time O(n3 ⋅ tw(G)2tw(G)), where n is the number of
vertices in G and tw(G) is the treewidth of G.

Corollary
The toughness can be computed in polynomial time for graphs width
bounded treewidth.

Corollary
Toughness is FPT parameterized with treewidth.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 7 / 21



Main result

Theorem
There exists an algorithm to compute the toughness of a graph G
width running time O(n3 ⋅ tw(G)2tw(G)), where n is the number of
vertices in G and tw(G) is the treewidth of G.

Corollary
The toughness can be computed in polynomial time for graphs width
bounded treewidth.

Corollary
Toughness is FPT parameterized with treewidth.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 7 / 21



Main result

Theorem
There exists an algorithm to compute the toughness of a graph G
width running time O(n3 ⋅ tw(G)2tw(G)), where n is the number of
vertices in G and tw(G) is the treewidth of G.

Corollary
The toughness can be computed in polynomial time for graphs width
bounded treewidth.

Corollary
Toughness is FPT parameterized with treewidth.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 7 / 21



Tree decomposition

Let G = (V ,E) be a graph. Let (Xt)t∈V(T) be a family of vertex sets
Xt ⊆ V (bags) indexed by the nodes of a tree T . The pair
(T ,{Xt ∣ t ∈ V(T )} is a tree decomposition of G if it satisfies the
following conditions:

⋃t∈V(T)Xi = V ;
for every edge e = vw ∈ E there is a t ∈ V(T ) with v ,w ∈ Xt ;
if i , j ,k ∈ V(T ) and node j is on the path in T between nodes i and
k , then Xi ∩Xk ⊆ Xj .

The width of the tree decomposition is maxt∈V(T) ∣Xt ∣ − 1.
The treewidth of a G is the minimum width of a tree decomposition of
G.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 8 / 21



Tree decomposition

Graph G

A B

C

D E

F

G

H

Tree decomposition (T ,X)

B
C

E

B
A

C

C

D
E

E
G

B

G

F
B

E
H

G

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 9 / 21



Bounded treewidth

Theorem (Bodlaender, 1996)
A tree decomposition with width tw(G) can be constructed in
tw(G)O(tw(G)3) ⋅ n time.

Many NP-hard problems are FPT parameterized with treewidth, so
they are solvable in polynomial time if the treewidth is bounded.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 10 / 21



Bounded treewidth

Theorem (Bodlaender, 1996)
A tree decomposition with width tw(G) can be constructed in
tw(G)O(tw(G)3) ⋅ n time.

Many NP-hard problems are FPT parameterized with treewidth, so
they are solvable in polynomial time if the treewidth is bounded.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 10 / 21



Trees

Graphs with tw(G) = 1 are trees.

Lemma
The toughness of a tree is 1/∆(G).

Proof.
Every tough set is a single vertex with maximum degree.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 11 / 21



Trees

Graphs with tw(G) = 1 are trees.

Lemma
The toughness of a tree is 1/∆(G).

Proof.
Every tough set is a single vertex with maximum degree.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 11 / 21



Series parallel graphs

Graphs with tw(G) = 2 are series parallel graphs.

A polynomial algorithm can be designed using dynamic programming
on the series-parallel decomposition tree.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 12 / 21



Series parallel graphs

Graphs with tw(G) = 2 are series parallel graphs.

A polynomial algorithm can be designed using dynamic programming
on the series-parallel decomposition tree.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 12 / 21



Series parallel graphs

Graphs with tw(G) = 2 are series parallel graphs.

A polynomial algorithm can be designed using dynamic programming
on the series-parallel decomposition tree.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 12 / 21



Series parallel graphs

Graphs with tw(G) = 2 are series parallel graphs.

A polynomial algorithm can be designed using dynamic programming
on the series-parallel decomposition tree.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 12 / 21



Nice tree decomposition

A rooted tree decomposition (T ,{Xt ∶ t ∈ T}) of a graph G is nice if
every node t ∈ V(T )/ root is of one of the following four types:

Leaf: no children and ∣Xt ∣ = 1.
Introduce: a unique child t ′ and Xt = Xt ′ ∪ {v} with v ∉ Xt ′ .
Forget: a unique child t ′ and Xt = Xt ′/{v} with v ∈ Xt ′ .
Join: two children t1 and t2 with Xt = Xt1 = Xt2 .

Theorem (Bodlaender, Kloks, 1996)
A tree decomposition (T ,{Xt ∶ t ∈ T}) of width tw(G) of an n-vertex
graph G can be transformed in time O(tw(G)2 ⋅ n) into a nice tree
decomposition of G of width tw(G) and 4n nodes.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 13 / 21



Nice tree decomposition

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 14 / 21



The algorithm

Take a nice, rooted tree decomposition and compute the following
information for each vertex t ∈ V(T ) in a bottom up order.

Vt : all vertices of G appearing in bags that are descendants of t
Gt ∶= G[Vt]
MNC(t ,s,Q,P): the maximum number of components of Gt −S
where the maximum is taken for all sets S ⊆ Vt having

▸ ∣S∣ = s,
▸ S ∩Xt = Q, and
▸ P is the partition of Xt −Q (= Xt −S) that is the partition of Gt −S to

components restricted to Xt −Q.

For every t compute MNC(t ,s,Q,P) for each possible value of
0 ≤ s < n, Q ⊆ Xt and P using the previously computed info for the
child/children of t .
The total size of information for one vertex of t is
O(n ⋅ tw(G)tw(G)).

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 15 / 21



The algorithm

Take a nice, rooted tree decomposition and compute the following
information for each vertex t ∈ V(T ) in a bottom up order.
Vt : all vertices of G appearing in bags that are descendants of t
Gt ∶= G[Vt]

MNC(t ,s,Q,P): the maximum number of components of Gt −S
where the maximum is taken for all sets S ⊆ Vt having

▸ ∣S∣ = s,
▸ S ∩Xt = Q, and
▸ P is the partition of Xt −Q (= Xt −S) that is the partition of Gt −S to

components restricted to Xt −Q.

For every t compute MNC(t ,s,Q,P) for each possible value of
0 ≤ s < n, Q ⊆ Xt and P using the previously computed info for the
child/children of t .
The total size of information for one vertex of t is
O(n ⋅ tw(G)tw(G)).

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 15 / 21



The algorithm

Take a nice, rooted tree decomposition and compute the following
information for each vertex t ∈ V(T ) in a bottom up order.
Vt : all vertices of G appearing in bags that are descendants of t
Gt ∶= G[Vt]
MNC(t ,s,Q,P): the maximum number of components of Gt −S
where the maximum is taken for all sets S ⊆ Vt having

▸ ∣S∣ = s,
▸ S ∩Xt = Q, and
▸ P is the partition of Xt −Q (= Xt −S) that is the partition of Gt −S to

components restricted to Xt −Q.

For every t compute MNC(t ,s,Q,P) for each possible value of
0 ≤ s < n, Q ⊆ Xt and P using the previously computed info for the
child/children of t .
The total size of information for one vertex of t is
O(n ⋅ tw(G)tw(G)).

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 15 / 21



The algorithm

Take a nice, rooted tree decomposition and compute the following
information for each vertex t ∈ V(T ) in a bottom up order.
Vt : all vertices of G appearing in bags that are descendants of t
Gt ∶= G[Vt]
MNC(t ,s,Q,P): the maximum number of components of Gt −S
where the maximum is taken for all sets S ⊆ Vt having

▸ ∣S∣ = s,

▸ S ∩Xt = Q, and
▸ P is the partition of Xt −Q (= Xt −S) that is the partition of Gt −S to

components restricted to Xt −Q.

For every t compute MNC(t ,s,Q,P) for each possible value of
0 ≤ s < n, Q ⊆ Xt and P using the previously computed info for the
child/children of t .
The total size of information for one vertex of t is
O(n ⋅ tw(G)tw(G)).

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 15 / 21



The algorithm

Take a nice, rooted tree decomposition and compute the following
information for each vertex t ∈ V(T ) in a bottom up order.
Vt : all vertices of G appearing in bags that are descendants of t
Gt ∶= G[Vt]
MNC(t ,s,Q,P): the maximum number of components of Gt −S
where the maximum is taken for all sets S ⊆ Vt having

▸ ∣S∣ = s,
▸ S ∩Xt = Q, and

▸ P is the partition of Xt −Q (= Xt −S) that is the partition of Gt −S to
components restricted to Xt −Q.

For every t compute MNC(t ,s,Q,P) for each possible value of
0 ≤ s < n, Q ⊆ Xt and P using the previously computed info for the
child/children of t .
The total size of information for one vertex of t is
O(n ⋅ tw(G)tw(G)).

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 15 / 21



The algorithm

Take a nice, rooted tree decomposition and compute the following
information for each vertex t ∈ V(T ) in a bottom up order.
Vt : all vertices of G appearing in bags that are descendants of t
Gt ∶= G[Vt]
MNC(t ,s,Q,P): the maximum number of components of Gt −S
where the maximum is taken for all sets S ⊆ Vt having

▸ ∣S∣ = s,
▸ S ∩Xt = Q, and
▸ P is the partition of Xt −Q (= Xt −S) that is the partition of Gt −S to

components restricted to Xt −Q.

For every t compute MNC(t ,s,Q,P) for each possible value of
0 ≤ s < n, Q ⊆ Xt and P using the previously computed info for the
child/children of t .
The total size of information for one vertex of t is
O(n ⋅ tw(G)tw(G)).

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 15 / 21



The algorithm

Take a nice, rooted tree decomposition and compute the following
information for each vertex t ∈ V(T ) in a bottom up order.
Vt : all vertices of G appearing in bags that are descendants of t
Gt ∶= G[Vt]
MNC(t ,s,Q,P): the maximum number of components of Gt −S
where the maximum is taken for all sets S ⊆ Vt having

▸ ∣S∣ = s,
▸ S ∩Xt = Q, and
▸ P is the partition of Xt −Q (= Xt −S) that is the partition of Gt −S to

components restricted to Xt −Q.

For every t compute MNC(t ,s,Q,P) for each possible value of
0 ≤ s < n, Q ⊆ Xt and P using the previously computed info for the
child/children of t .

The total size of information for one vertex of t is
O(n ⋅ tw(G)tw(G)).

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 15 / 21



The algorithm

Take a nice, rooted tree decomposition and compute the following
information for each vertex t ∈ V(T ) in a bottom up order.
Vt : all vertices of G appearing in bags that are descendants of t
Gt ∶= G[Vt]
MNC(t ,s,Q,P): the maximum number of components of Gt −S
where the maximum is taken for all sets S ⊆ Vt having

▸ ∣S∣ = s,
▸ S ∩Xt = Q, and
▸ P is the partition of Xt −Q (= Xt −S) that is the partition of Gt −S to

components restricted to Xt −Q.

For every t compute MNC(t ,s,Q,P) for each possible value of
0 ≤ s < n, Q ⊆ Xt and P using the previously computed info for the
child/children of t .
The total size of information for one vertex of t is
O(n ⋅ tw(G)tw(G)).

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 15 / 21



The algorithm

For the root r of the tree compute:

τ(G) = min{ s
MNC(r ,s,Q,P) ∣0 ≤ s < n;MNC(r ,s,Q,P)≥ 2}

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 16 / 21



How to compute MNC(t ,s,Q,P)?

Leaf: trivial
Forget: easy

Introduce: harder
Join: hardest case

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 17 / 21



How to compute MNC(t ,s,Q,P)?

Leaf: trivial
Forget: easy
Introduce: harder

Join: hardest case

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 17 / 21



How to compute MNC(t ,s,Q,P)?

Leaf: trivial
Forget: easy
Introduce: harder
Join: hardest case

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 17 / 21



How to compute for join?

Xt

XtXt

S

Xt

S

Xt

S

Xt

S
Q

P

Xt

S
Q

P

P ′

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 18 / 21



How to compute for join?

XtXt

Xt

S

Xt

S

Xt

S

Xt

S
Q

P

Xt

S
Q

P

P ′

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 18 / 21



How to compute for join?

XtXtXt

S

Xt

S

Xt

S

Xt

S
Q

P

Xt

S
Q

P

P ′

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 18 / 21



How to compute for join?

XtXtXt

S

Xt

S

Xt

S

Xt

S
Q

P

Xt

S
Q

P

P ′

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 18 / 21



How to compute for join?

XtXtXt

S

Xt

S

Xt

S

Xt

S
Q

P

Xt

S
Q

P

P ′

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 18 / 21



How to compute for join?

XtXtXt

S

Xt

S

Xt

S

Xt

S
Q

P

Xt

S
Q

P

P ′

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 18 / 21



How to compute for join?

XtXtXt

S

Xt

S

Xt

S

Xt

S
Q

P

Xt

S
Q

P

P ′

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 18 / 21



Running time

Number of vertices in the tree: O(n)
Computing for Leafs: O(1)
Computing for Introduce, Forget: O(n ⋅ tw(G)tw(G))
Computing for Join: O(n2 ⋅ tw(G)2tw(G))
Computing at the end: O(n ⋅ tw(G)tw(G))

Running time: O(n3 ⋅ tw(G)2tw(G))

Conjecture
There exists an algorithm to compute the toughness of a graph G
width running time O(n2 ⋅ 2O(tw(G))).

I believe that the methods invented by Bodlaender, Cygan, Kratsch
and Nederlof (2013) will work here, too.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 19 / 21



Running time

Number of vertices in the tree: O(n)
Computing for Leafs: O(1)
Computing for Introduce, Forget: O(n ⋅ tw(G)tw(G))
Computing for Join: O(n2 ⋅ tw(G)2tw(G))
Computing at the end: O(n ⋅ tw(G)tw(G))

Running time: O(n3 ⋅ tw(G)2tw(G))

Conjecture
There exists an algorithm to compute the toughness of a graph G
width running time O(n2 ⋅ 2O(tw(G))).

I believe that the methods invented by Bodlaender, Cygan, Kratsch
and Nederlof (2013) will work here, too.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 19 / 21



Running time

Number of vertices in the tree: O(n)
Computing for Leafs: O(1)
Computing for Introduce, Forget: O(n ⋅ tw(G)tw(G))
Computing for Join: O(n2 ⋅ tw(G)2tw(G))
Computing at the end: O(n ⋅ tw(G)tw(G))

Running time: O(n3 ⋅ tw(G)2tw(G))

Conjecture
There exists an algorithm to compute the toughness of a graph G
width running time O(n2 ⋅ 2O(tw(G))).

I believe that the methods invented by Bodlaender, Cygan, Kratsch
and Nederlof (2013) will work here, too.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 19 / 21



Running time

Number of vertices in the tree: O(n)
Computing for Leafs: O(1)
Computing for Introduce, Forget: O(n ⋅ tw(G)tw(G))
Computing for Join: O(n2 ⋅ tw(G)2tw(G))
Computing at the end: O(n ⋅ tw(G)tw(G))

Running time: O(n3 ⋅ tw(G)2tw(G))

Conjecture
There exists an algorithm to compute the toughness of a graph G
width running time O(n2 ⋅ 2O(tw(G))).

I believe that the methods invented by Bodlaender, Cygan, Kratsch
and Nederlof (2013) will work here, too.

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 19 / 21



Open questions

Question
What is the complexity of t -TOUGH for

chordal graphs?
planar graphs?

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 20 / 21



The End

Gyula Y. Katona (Hungary) Polynomial algorithm to . . . GROW 2022 21 / 21


	Introduction

