One graph to rule them all

Marthe Bonamy

September 19, 2022

Universal Graphs

(Introduced in 1982 by Babai, Chung, Erdős, Graham, Spencer.)
Universal graph for \mathcal{H} : graph containing all graphs in \mathcal{H} as induced subgraphs.

Universal Graphs

(Introduced in 1982 by Babai, Chung, Erdős, Graham, Spencer.)
Universal graph for \mathcal{H} : graph containing all graphs in \mathcal{H} as induced subgraphs. (Usually: all graphs in \mathcal{H} with n vertices)

Universal Graphs

(Introduced in 1982 by Babai, Chung, Erdős, Graham, Spencer.)
Universal graph for \mathcal{H} : graph containing all graphs in \mathcal{H} as induced subgraphs. (Usually: all graphs in \mathcal{H} with n vertices)

Union of paths?

Universal Graphs

(Introduced in 1982 by Babai, Chung, Erdős, Graham, Spencer.)
Universal graph for \mathcal{H} : graph containing all graphs in \mathcal{H} as induced subgraphs. (Usually: all graphs in \mathcal{H} with n vertices)

Union of paths? $O(n)$

Universal Graphs

(Introduced in 1982 by Babai, Chung, Erdős, Graham, Spencer.)
Universal graph for \mathcal{H} : graph containing all graphs in \mathcal{H} as induced subgraphs. (Usually: all graphs in \mathcal{H} with n vertices)

Union of paths? $O(n)$

Union of cycles?

Universal Graphs

(Introduced in 1982 by Babai, Chung, Erdős, Graham, Spencer.)
Universal graph for \mathcal{H} : graph containing all graphs in \mathcal{H} as induced subgraphs. (Usually: all graphs in \mathcal{H} with n vertices)

Union of paths? $O(n)$

Union of cycles? $O(n)$

Universal Graphs

(Introduced in 1982 by Babai, Chung, Erdős, Graham, Spencer.)
Universal graph for \mathcal{H} : graph containing all graphs in \mathcal{H} as induced subgraphs. (Usually: all graphs in \mathcal{H} with n vertices)

Union of paths? $O(n)$

Union of cycles? $O(n)$

Trees?

Adjacency labelling schemes

Input: any tree T on n vertices
Output: a label on k bits for each vertex of T encoding adjacencies

Adjacency labelling schemes

Input: any tree T on n vertices
Output: a label on k bits for each vertex of T encoding adjacencies
\mathcal{U}_{n} : graph containing all trees on n vertices as induced subgraphs.

Adjacency labelling schemes

Input: any tree T on n vertices
Output: a label on k bits for each vertex of T encoding adjacencies \mathcal{U}_{n} : graph containing all trees on n vertices as induced subgraphs.

Vertices of $\mathcal{U}_{n} \Leftrightarrow$ Labels for vertices of a tree on n vertices.
"Labelling scheme" with labels on k bits \Leftrightarrow Universal graph on 2^{k} vertices.

Adjacency labelling schemes

Input: any tree T on n vertices
Output: a label on k bits for each vertex of T encoding adjacencies \mathcal{U}_{n} : graph containing all trees on n vertices as induced subgraphs.

Vertices of $\mathcal{U}_{n} \Leftrightarrow$ Labels for vertices of a tree on n vertices.
"Labelling scheme" with labels on k bits \Leftrightarrow Universal graph on 2^{k} vertices.

Implicit representation.

Adjacency labelling schemes

Input: any tree T on n vertices
Output: a label on k bits for each vertex of T encoding adjacencies \mathcal{U}_{n} : graph containing all trees on n vertices as induced subgraphs.

Vertices of $\mathcal{U}_{n} \Leftrightarrow$ Labels for vertices of a tree on n vertices.
"Labelling scheme" with labels on k bits \Leftrightarrow Universal graph on 2^{k} vertices.

Implicit representation.

Labelling scheme of size $2 \log n$ for trees (name, name of the father). So universal graph of size n^{2} for trees.

Adjacency labelling schemes

Input: any tree T on n vertices
Output: a label on k bits for each vertex of T encoding adjacencies \mathcal{U}_{n} : graph containing all trees on n vertices as induced subgraphs.

Vertices of $\mathcal{U}_{n} \Leftrightarrow$ Labels for vertices of a tree on n vertices.
"Labelling scheme" with labels on k bits \Leftrightarrow Universal graph on 2^{k} vertices.

Implicit representation.

Labelling scheme of size $2 \log n$ for trees (name, name of the father). So universal graph of size n^{2} for trees.

Theorem (Alstrup, Dahlgaard, Knudsen '17)

Universal graph for trees on $O(n)$ vertices.

More universal graphs

Universal graph for all graphs on n vertices?

More universal graphs

Universal graph for all graphs on n vertices?

Theorem (Alon '17)
Universal graph for all graphs on $(1+o(1)) \cdot 2^{\frac{n-1}{2}}$ vertices.

More universal graphs

Universal graph for all graphs on n vertices?

Theorem (Alon '17)
Universal graph for all graphs on $(1+o(1)) \cdot 2^{\frac{n-1}{2}}$ vertices.

Tight!

More universal graphs

Universal graph for all graphs on n vertices?

Theorem (Alon '17)
Universal graph for all graphs on $(1+o(1)) \cdot 2^{\frac{n-1}{2}}$ vertices.

Tight!
Universal graph for planar graphs?

More universal graphs

Universal graph for all graphs on n vertices?

Theorem (Alon '17)
Universal graph for all graphs on $(1+o(1)) \cdot 2^{\frac{n-1}{2}}$ vertices.

Tight!

Universal graph for planar graphs?
n^{6} : easy (5-degeneracy),

More universal graphs

Universal graph for all graphs on n vertices?

Theorem (Alon '17)
 Universal graph for all graphs on $(1+o(1)) \cdot 2^{\frac{n-1}{2}}$ vertices.

Tight!

Universal graph for planar graphs?
n^{6} : easy (5-degeneracy), n^{4} (Kannan et al. '88),

More universal graphs

Universal graph for all graphs on n vertices?

Theorem (Alon '17)

Universal graph for all graphs on $(1+o(1)) \cdot 2^{\frac{n-1}{2}}$ vertices.

Tight!

Universal graph for planar graphs?
n^{6} : easy (5-degeneracy), n^{4} (Kannan et al. '88), n^{3} (Schnyder '89),

More universal graphs

Universal graph for all graphs on n vertices?

Theorem (Alon '17)

Universal graph for all graphs on $(1+o(1)) \cdot 2^{\frac{n-1}{2}}$ vertices.

Tight!

Universal graph for planar graphs?
n^{6} : easy (5-degeneracy), n^{4} (Kannan et al. '88), n^{3} (Schnyder '89), $n^{2+o(1)}$ (Gavoille, Labourel '07).

A key lemma for planar graphs

Theorem (Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19)

Every planar graph is the almost-induced subgraph of $P \boxtimes H$, where P is a path, and H a graph of treewidth 8.

A key lemma for planar graphs

Theorem (Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19)

Every planar graph is the almost-induced subgraph of $P \boxtimes H$, where P is a path, and H a graph of treewidth 8.

Theorem (Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19)
Planar graphs have bounded queue number.
('92 question by Heath, Leighton, Rosenberg)

A key lemma for planar graphs

Theorem (Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19)

Every planar graph is the almost-induced subgraph of $P \boxtimes H$, where P is a path, and H a graph of treewidth 8.

Theorem (Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19)
Planar graphs have bounded queue number.
('92 question by Heath, Leighton, Rosenberg)

Theorem (Dujmović, Esperet, Joret, Walczak, Wood '19)
Planar graphs admit a nonrepetitive colouring with $O(1)$ colours.
('02 question by Alon, Grytczuk, Hałuszczak, Riordan)

A key lemma for planar graphs (2)

Theorem (Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19)

Every planar graph is the almost-induced subgraph of $P \boxtimes H$, where P is a path, and H a graph of treewidth 8.

A key lemma for planar graphs (2)

Theorem (Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19)

Every planar graph is the almost-induced subgraph of $P \boxtimes H$, where P is a path, and H a graph of treewidth 8.
$\Rightarrow \log n+\log D$ labelling scheme for planar graphs of diameter D.

A key lemma for planar graphs (2)

Theorem (Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19)

Every planar graph is the almost-induced subgraph of $P \boxtimes H$, where P is a path, and H a graph of treewidth 8.
$\Rightarrow \log n+\log D$ labelling scheme for planar graphs of diameter D.
Express a planar graph as a "small" diameter planar graph (plus leftovers).

A key lemma for planar graphs (2)

Theorem (Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19)

Every planar graph is the almost-induced subgraph of $P \boxtimes H$, where P is a path, and H a graph of treewidth 8.
$\Rightarrow \log n+\log D$ labelling scheme for planar graphs of diameter D.
Express a planar graph as a "small" diameter planar graph (plus leftovers).

Theorem (B., Gavoille, Pilipczuk '19)

Universal graph for planar graphs on $n^{\frac{4}{3}+o(1)}$ vertices.

A key lemma for planar graphs (2)

Theorem (Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19)

Every planar graph is the almost-induced subgraph of $P \boxtimes H$, where P is a path, and H a graph of treewidth 8.
$\Rightarrow \log n+\log D$ labelling scheme for planar graphs of diameter D.
Express a planar graph as a "small" diameter planar graph (plus leftovers).

Theorem (B., Gavoille, Pilipczuk '19)

Universal graph for planar graphs on $n^{\frac{4}{3}+o(1)}$ vertices.

Theorem (Dujmović, Esperet, Joret, Gavoille, Micek, Morin '20)
Universal graph for planar graphs on $n^{1+o(1)}$ vertices.

Lower bounds

Relative speed of a graph class $\mathcal{H}: \mu_{\mathcal{H}}(n)=\frac{1}{n} \log \left|\mathcal{H}_{n}\right|$.

Lower bounds

Relative speed of a graph class $\mathcal{H}: \mu_{\mathcal{H}}(n)=\frac{1}{n} \log \left|\mathcal{H}_{n}\right|$.
No universal graph of size less than $2^{\mu_{\mathcal{H}}(n)}$.

Lower bounds

Relative speed of a graph class $\mathcal{H}: \mu_{\mathcal{H}}(n)=\frac{1}{n} \log \left|\mathcal{H}_{n}\right|$.
No universal graph of size less than $2^{\mu_{\mathcal{H}}(n)}$.

Conjecture (Implicit Graph Conjecture, Kannan, Naor, Rudich '88)

If $\mu_{\mathcal{H}}(n)=O(\log n)$ and \mathcal{H} is hereditary, there is a universal graph for \mathcal{H} on $2^{O(\log n)}=\operatorname{Poly}(n)$ vertices.

Lower bounds

Relative speed of a graph class $\mathcal{H}: \mu_{\mathcal{H}}(n)=\frac{1}{n} \log \left|\mathcal{H}_{n}\right|$.
No universal graph of size less than $2^{\mu_{\mathcal{H}}(n)}$.

Conjecture (Implicit Graph Conjecture, Kannan, Naor, Rudich '88)

If $\mu_{\mathcal{H}}(n)=O(\log n)$ and \mathcal{H} is hereditary, there is a universal graph for \mathcal{H} on $2^{O(\log n)}=\operatorname{Poly}(n)$ vertices.

Theorem (B., Esperet, Groenland, Scott '20)

For every hereditary \mathcal{H}, there is a universal graph on $2^{\mu_{\mathcal{H}}(n)+o(n)}$ vertices.

Lower bounds

Relative speed of a graph class $\mathcal{H}: \mu_{\mathcal{H}}(n)=\frac{1}{n} \log \left|\mathcal{H}_{n}\right|$.
No universal graph of size less than $2^{\mu_{\mathcal{H}}(n)}$.

Conjecture (Implicit Graph Conjecture, Kannan, Naor, Rudich '88)

If $\mu_{\mathcal{H}}(n)=O(\log n)$ and \mathcal{H} is hereditary, there is a universal graph for \mathcal{H} on $2^{O(\log n)}=\operatorname{Poly}(n)$ vertices.

Theorem (B., Esperet, Groenland, Scott '20)

For every hereditary \mathcal{H}, there is a universal graph on $2^{\mu_{\mathcal{H}}(n)+o(n)}$ vertices.
\Rightarrow Every dense class can be optimally compressed.

Ruining the game

> Conjecture (Implicit Graph Conjecture, Kannan, Naor, Rudich '88) If $\mu_{\mathcal{H}}(n)=O(\log n)$ and \mathcal{H} is hereditary, there is a universal graph for \mathcal{H} on $2^{O(\log n)}=\operatorname{Poly}(n)$ vertices.

Theorem (Hatami, Hatami '21)

No. (Sometimes need (almost) $2^{\sqrt{n}}$.)

Conclusion

Conclusion

Conjecture

If \mathcal{H} is characterized by a finite number of forbidden subgraphs, there is a universal graph for \mathcal{H} on $2^{(1+o(1)) \cdot \mu_{\mathcal{H}}(n)}$ vertices.

Conclusion

Conjecture

If \mathcal{H} is characterized by a finite number of forbidden subgraphs, there is a universal graph for \mathcal{H} on $2^{(1+o(1)) \cdot \mu_{\mathcal{H}}(n)}$ vertices.

Theorem (Alon '22)

If $\mu_{\mathcal{H}}(n)<\left(\frac{1}{4}-\varepsilon\right) \cdot n$ and \mathcal{H} is hereditary, there is a universal graph for \mathcal{H} on $2^{n^{1-\frac{1}{d}} \cdot \log n}$ vertices, where $d=d_{\varepsilon}$.

Conclusion

Conjecture

If \mathcal{H} is characterized by a finite number of forbidden subgraphs, there is a universal graph for \mathcal{H} on $2^{(1+o(1)) \cdot \mu_{\mathcal{H}}(n)}$ vertices.

Theorem (Alon '22)

If $\mu_{\mathcal{H}}(n)<\left(\frac{1}{4}-\varepsilon\right) \cdot n$ and \mathcal{H} is hereditary, there is a universal graph for \mathcal{H} on $2^{n^{1-\frac{1}{d}} \cdot \log n}$ vertices, where $d=d_{\varepsilon}$.

Thank you!

Conclusion

