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Universal Graphs

(Introduced in 1982 by Babai, Chung, Erdős, Graham, Spencer.)

Universal graph for H: graph containing all graphs in H as induced
subgraphs.

(Usually: all graphs in H with n vertices)

Union of paths? O(n)

Union of cycles? O(n)

Trees?
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Adjacency labelling schemes

Input: any tree T on n vertices
Output: a label on k bits for each vertex of T encoding adjacencies

Un: graph containing all trees on n vertices as induced subgraphs.

Vertices of Un ⇔ Labels for vertices of a tree on n vertices.

“Labelling scheme” with labels on k bits ⇔ Universal graph on 2k

vertices.

Implicit representation.

Labelling scheme of size 2 log n for trees (name, name of the
father). So universal graph of size n2 for trees.

Theorem (Alstrup, Dahlgaard, Knudsen ’17)

Universal graph for trees on O(n) vertices.
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More universal graphs

Universal graph for all graphs on n vertices?

Theorem (Alon ’17)

Universal graph for all graphs on (1+ o(1)) · 2
n−1
2 vertices.

Tight!

Universal graph for planar graphs?

n6: easy (5-degeneracy), n4 (Kannan et al. ’88), n3 (Schnyder
’89), n2+o(1) (Gavoille, Labourel ’07).
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A key lemma for planar graphs

Theorem (Dujmović, Joret, Micek, Morin, Ueckerdt, Wood ’19)

Every planar graph is the almost-induced subgraph of P �H, where
P is a path, and H a graph of treewidth 8.

Theorem (Dujmović, Joret, Micek, Morin, Ueckerdt, Wood ’19)

Planar graphs have bounded queue number.

(’92 question by Heath, Leighton, Rosenberg)

Theorem (Dujmović, Esperet, Joret, Walczak, Wood ’19)

Planar graphs admit a nonrepetitive colouring with O(1) colours.

(’02 question by Alon, Grytczuk, Hałuszczak, Riordan)
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A key lemma for planar graphs (2)

Theorem (Dujmović, Joret, Micek, Morin, Ueckerdt, Wood ’19)

Every planar graph is the almost-induced subgraph of P �H, where
P is a path, and H a graph of treewidth 8.

⇒ log n + logD labelling scheme for planar graphs of diameter D.

Express a planar graph as a “small” diameter planar graph (plus
leftovers).

Theorem (B., Gavoille, Pilipczuk ’19)

Universal graph for planar graphs on n
4
3+o(1) vertices.

Theorem (Dujmović, Esperet, Joret, Gavoille, Micek, Morin ’20)

Universal graph for planar graphs on n1+o(1) vertices.
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Lower bounds

Relative speed of a graph class H : µH(n) = 1
n log |Hn|.

No universal graph of size less than 2µH(n).

Conjecture (Implicit Graph Conjecture, Kannan, Naor, Rudich ’88)

If µH(n) = O(log n) and H is hereditary, there is a universal graph
for H on 2O(log n) = Poly(n) vertices.

Theorem (B., Esperet, Groenland, Scott ’20)

For every hereditary H, there is a universal graph on 2µH(n)+o(n)

vertices.

⇒ Every dense class can be optimally compressed.
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Ruining the game

Conjecture (Implicit Graph Conjecture, Kannan, Naor, Rudich ’88)

If µH(n) = O(log n) and H is hereditary, there is a universal graph
for H on 2O(log n) = Poly(n) vertices.

Theorem (Hatami, Hatami ’21)

No. (Sometimes need (almost) 2
√
n.)
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Conclusion

Conjecture
If H is characterized by a finite number of forbidden subgraphs,
there is a universal graph for H on 2(1+o(1))·µH(n) vertices.

Theorem (Alon ’22)

If µH(n) < (1
4 − ε) · n and H is hereditary, there is a universal

graph for H on 2n
1− 1

d ·log n vertices, where d = dε.

Thank you!
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