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Carl Friedrich Hindenburg (1796)
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‘Hindenburg
and his school
[in Leipzig]
attempted
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combinatorials,
to give it a key
position within
the various
mathematical
disciplines.
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Peter Nicholson
(1818)

Scottish practical builder
and mathematician

. BSSATS

COMBINATORIAL ANALYSIS;

SHEWING ITS

APPLICATION

70 SOME OF THE MOST USEFUL AND INTERESTING

Problemg of QAlgebra;

SUCH AS 6

The Expansion of a Multinomial according to any
given Exponent, . :

THE PRODUCT OF TWO OR MORE MULTINOMIALS,

THE QUOTIENT ARISING BY DIVIDING ONE MULTINOMIAL BY
ANOTHER,

The Reversion and Conversion of Series,

., +~ THE THEORY OF INDETERMINATE EQUATIONS, &c. &c.

And clearly indicating " v

THE LAW OF EXPANSION,

AND THE

Simple and almost mechanical Processes from which the resulting
Series may be obtained by finding any one Term
indcpendently of the Rest.

e

Br P. NICHOLSON, .
Private Teacher of the Mathemutics. .
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Louis Poinsot’s diagram-
tracing puzzles (1809)

Given some points situated at
random in space, it is required
to arrange a single flexible thread
uniting them two by two in all
possible ways, so that finally the
two ends of the thread join up,

and so that the total length is |
equal to the sum of all the 4
mutual distances. As we shall odd complete graphs,
see, the solution is possible only Ks, K, Ky, - . .
for an odd number of points. 0123456 0246135 03625140




J. B. Listing’s diagrams
Vorstudien zur Topologie (1847)

Here there are 8

odd intersections,
so we need 4 paths

< >

This can be drawn in a single stroke, since it has
only two points of odd type, both five-fold . . .



Gaston Tarry
Le probleme des labyrinthes (1895)

Tarry’s rule: do not return along the passage which has led to
a junction for the first time unless you cannot do otherwise.
Tarry also gave a practical method for carrying this out.



W. W. Rouse Ball (1892)
Mathematical Recreations and Problems

Solving the Kdnigsberg In 1735 Euler did NOT
bridges problem corresponds

to the solving the diagram-tracing
puzzle on the right

draw such a picture



William Rowan Hamilton (1805-1865)

Can we visit each
vertex just once
and return to our
starting point?




Hamilton investigates.. ..
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Hamilton’s ‘quaternions’:

=j2=k2=—1,ijk=—1




Hamilton’s
icosian

ame
(1859)

‘A Voyage
Around the
World’

[ S

THE ICOSIAN GAME.

R

Entered Registered
at

Stationers’ Hall. Act V. & VI, Vie. cap. 100.

by him named Icosian, from o Greek word signirying “twenty”) a player is to place the
whole or part of a set of twenty numbered picces or men upon the points or in the holes

Ve

of a board, represented by the diagram above drawn in such & manner as always to process
along the lines of the figure, and also to fulfil certain ofher conditions, which may in various

ways be assigned by another player. Ingenuity and skill may thus be exercised in proposing as

the remaining fifteen men consecutively in such 2 manner that the succession may be cuclical,
that is, so that No. 20 may be adjacent to No.1; and it is always possible to answer any question
of this kind. Thus, if BC D I T he the five given initial points, it is allowed to complete
the succession by following tuc alphabetical order of the twenty consonants, as sugzested by

(by the supposed conditions) to put No. 7 in X instead of J, and then to coaclude with the
succession, WR STV JKLMXNPQ7Z Other Examples of Icosian Problems, with solu-
tions of some of them, will Le fund in the flluwing pawe.

LONDON:

PUBLISHED AND SOLD WHOLESALE BY JOHN JAQUES AND SON, 102 HATTON GARDEN;
AND TO BE HaD AT MO0ST OF THE LEADING FANCY REPOSITORIES
TAROVUGKOUT THE KINGDOO.




1COSIan game

Marketing the
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ICOSIan game

Hamilton sold the
to a games manufacturer for £25
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, as it didn’t sell.
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Kirkman’s ‘cell of a bee’ (1856)

Kirkman investigated closed
paths on ‘polyedra’.
But if we cut in two the cell
of a bee (giving the picture
above), is there such a path?




Kirchhoff’s electrical networks (1845/7)

Problem: Find all the

currents and voltages
(using Kirchhoff’s laws)

w
s P g . currents
cycle VXYVv: i,R,+i,R, = E = Yy z
eyele VWYV: 3R +i,R,~1,R,=0 Fundamental set of
cycle VWYXY: iR, + isR3+iyRy = E cycles for a spanning tree




Counting trees

The six trees with 6 vertices
how many trees have 100 vertices?

)
H—C—H

!

H, ., havea
tree structure: how many
have n carbon atoms?

Alkanes C,

H
i
|

H

)
C—H H*C“?*C*C-H
H H H

s 9 2o



Good Will Hunting

® )

Draw all the homeomorphically irreducible trees with 10 vertices



Cayley’s trees (1857/9)

Arthur Cayley

" ON THE ANALYTICAL FORMS CALLED TREES. Secoxp Parr.
e —— @ e,

- [From the Plilosoplical Magazine, vol. Xvitt. (18595, pp. 374—378.  Continuation of 203.]

THE following class of “trees” presented itself to me in some researches relating
to functxon.ﬂ s)mbols viz, attending ouly to the terminal knots, the trecs with one

knot, two Lnots three Luots and 1oux kots respectively are shown in the figures
1,2 3and &

Fig. 4.
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~end eimilarly for any number of knots. The trees with four knots are formed first

from those of one knot by attaching thereto in every pessible way (oue way only)




Cayley’s 1881 paper

To count rovted trees, Coyley wsed

o qenersking Funstion |4 Ayx+ Ayxts..
whae An 5 number of moted trees with
n brunches :
he obtained the
eqprakion

I+ A;x+ Axtse... = (1ox)” (1=32)™ (1x3)" ™

To count unrooted trees, he storted
from the ‘centre’ of the tree and
worked outwerds.

23456 78 9 10...
2 4 9 20 48 1S 286 TIY 1SK2 ...

n: |
rooted.: |
wuooted: | 1 2 3 6 N 23 47 106 235 .-

'88| On the Analytical Forms called Trees.

By Proressorn Cayiey.

In a tree of & knots, selecling any knot at pleasure as a root, the iree may
be regarded asspringing from this root, and it is then called a root-tree. The
same tree thus presents itself in various forms asa root-trec ; and if we consider
the different root-trees with ¥ knots, these are not all of them distinct trees,
We have thus the two guestions, to fud the number of root-trees with ¥ knots :
‘and, to find the nwmber of distinet trees with & knots.
I have in my paper “On the Theory of the Analytical Forms called Trees,”
hil. Mg, £ 13 (1857), pp. 172-176, given the solution of the first question ; viz.
if ¢y denotes the number of the root-trees with ¥ knots, then the successive
numbers ¢y, ¢y, ¢, etc, are given by the formula
S Fapta .= (L—a) (L (I — ),
viz. we thus find ' :
suffixofp 1 2 8 4 5 6 7 8 9 10 11 12 13
¢ =1 1 2 4 9 20 48 115 286 719 1342 4766 12486

And I have, in the paper *On the Analytical Forms called Trees, with Appli- .
catious to the Theory of Chemical Combinations,” Brit. Assoc. Report, 1873, py-
257-805, also shown how by the -cousideration of the centre or bicenire *uf
length” we can obtain formulae for the number of central and bicentral trevs,
that is for the number of distinct trees, with ¥ knots : the numerical resiilt
obtained for the total number of distinct trees with & knots is given as follows:

No. of Knots 12 3 4 & 6 7 8 9 10 11 12 13
No.of Central Trees 1T 0 1 1 2 o 7 12 97 55 127 234  Usz
? Bieeatral » 0 1 0 1 1 3 4 11 20 51 108 267 G
1 1 1.2 3 6 11 23 47 106 235 351 154l

Total




° :
co u ntl n g A THEOREM ON TREES. _ g :
I a b e I I e d t r e e S ; [From ;t'he Quarter‘ly .J.om;na,l éf P;;'e 3%41_ ‘;;fﬁ;iqd Mathematics, vol. XXI1IL (1889),‘

THE number of trees which can be formed with 2+1 given knets q, B, ¥, ... is

=(n+1)*?; for instance m=3, the number of trees with the 4 given knots a, 8, v,

1 2 1 ) 1 2 1 2 8 1s 4°=16, for in the first form shown in the figure the a, 3, v, & may be arranged
‘ 3 : 5 »
WP, | u B I :
4 3 4 3 4 3 4 - - ; . - :
. - » . o B 3 )
—— e e, S VA
1 2 1 2 1 5 1 2 i ' o . T . : ' ‘ . .
ac . . .
Z X N M | . ' ’ ) ' |
3 1 in 12 different orders (2348 being regardad as equivalent to 8yBa), and in the second
’ . ¥ o y ¥ form any one of the 4 knots &, B, 4, & may be in the place occupied by the a:
the whole number is thus 12 + 4, =16.
1 2 1 2 ’ 1 2 1 2 Considering for greater clearness a larger value of =, say n=35, I state the
particular case of the theorem as follows: :
l : z ’ D< N No. of trees (a, B, v, 8, €, §)=No. of terms of (a+ 8+« +8+ e+ £)* aBydet, =6, =1296,
2 i e hy 3 4 3 i and it will be at once seen that the proof given for this particular case is applicable

for any value whatever of n.

"1 use for any tree whatever the following notation: for instance, in the first of

the forms shown in the figurc, the branches are af, By, ¥5; and the tree is said
to be afy'8 (viz. the knots @, & occur each once, but 8, v each twice); similarly
in the second of the same forms, the branches are afB, ay, o, and the tree is said

\

Arthur Cayley, 1889:
The number of n-vertex labelled trees is n"2.




Chemical diagrams — ‘graphic formulae’

By 1850 it was known that elements combined in fixed
proportions to make compounds— formulas such as
C,H.OH were known — but how did elements combine?

Answer: VALENCY
00

©
Sulphuric acid SO,Hos. @-0) é (0O-®)
i ey JENHL G ) 0
@ @ @ “‘“ @ Carbonic anhydride CO,.
Potassic carbonate COKos. ®-O)-O)-0-®
©
In 1864 Alexander Crum Brown ®
introduced his ‘graphic formulae’, | Marshes CH.. B-O-®
which then appeared in a popular =
@O @O
textbook by Edward Frankland. Ammonic atonste oA @H-O-C-OHF-D
® © @




J. ). Sylvester (Nature, 1878)

. . . | hardly ever take up
Dr. Frankland’s
exceedingly valuable
Notes for Chemical
Students, which are
drawn up exclusively
on the basis of Kekule’s
exquisite concept of
valence, without
deriving suggestions
for new researches in
the theory of
algebraical forms. ..

The analogy is between atoms and binary
quantics exEIusiver.—i compare every binary
quantic with a chemical atom. The number of
factors ... in a binary quantic is the analogue
of the number of bonds, or the valence, ... of
a chemical atom...

An invariant of a system of binary quantics
of various degrees is the aﬁélogue of a
chemical substance composed of atoms of
corresponding valences... A co-variant is the
analogue of an (organic or inorganic)

compound radical...

radical. Every invariant and covariant thus
becomes expressible by a graph precisely
identical with a Kekuléan diagram or
chemicograph...




Chemistry and algebra

American Journal of Mathematics, 1878

Chemistry has the same quickening and
suggestive influence upon the algebraist as a
visit to the Royal Academy, or the old
masters may be supposed to have on a
Browning or a Tennyson.

Indeed it seems to me that an exact

homology exists between painting and poetry
on the one hand and modern chemistry and
modern algebra on the other.




Sylvester’s

chemical trees
(1878)
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J. J. Sylvester and W. K. Clifford

atom € binary quantic (ax3 + 3bx%y + 3cxy? + dy3)
number of bonds € number of factors

chemical substance € invariant (functions of a, b, c, . .

invariant/covariant €> graph
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Cayley and Sylvester’s
work on invariant theory
was eventually supplanted
by the more powerful
methods of Gordan and
Hilbert — the ‘finite basis
theorem’.



Euler diagrams (1761)
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Venn diagrams (1881)

(3D

Some x are y Noxarey

Venn diagrams for 2, 3, 4, 5 sets




Lewis Carroll’s diagrams

A Spllogism worked out.

That storp of pours, about pour once meeting the
sea-gerpent, alpaps sets me off patoning;

¥ neber paton, unicss when F'm listening fo somes
thing totallp veboid of interest.

The Premisses, separately.

o 1 O
[

O
O

The Premisses, combined.

(@) ©)
@0
O

The Conclugion.

®|O

That storp of pours, about pour once meeting the

sea-sevpent, is totallp beboiv of interest.

l
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Euler’s formula for plane graphs

cube

(number of faces) + (number of vertices)
= (number of edges) + 2
6+8=12+2

Augustin-Louis Cauchy




Mobius’s problem (c.1840)

A king lay on his death-bed:
‘My five sons, divide my land
among you, so that each part has
a border with each of the others.’

Dual form:
Can you join five towns
by non-crossing roads?
no — so K; is non-planar

Mobius’s problem has no
solution: five neighbouring
regions cannot exist




The utilities problem (Sam Loyd, 1900)
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Can we connect the three houses A, B, C
to the three utilities gas, water, electricity
without any of the connections crossing?
(Here, house B is not joined to water)



Solving the utilities problem

G W E

Is this graph K; ;
planar?

B C

Look at the 6-cycle
A-G-B-W-C-E-A, and try
to add the connections

A-W, G-C,and E-B...




