
7/8.   A Century of Graph Theory 
A ‘whistle-stop tour’ with Robin Wilson of graph theory 

milestones and personalities from 1890 to 1990,  



Graph theory: 1840–1890 

1852:  The 4-colour problem is posed 
1879: Kempe ‘proves’ the 4-colour theorem 

1880: Tait introduces edge-colourings 
 

1855–57: Kirkman and Hamilton on cycles 
1871: Hierholzer on Eulerian graphs 

 

1845: Kirchhoff introduces spanning trees 
1857–75: Cayley counts trees and molecules 

1878: Sylvester’s chemistry and ‘graphs’ 
1889: Cayley’s nn−2 theorem 

 

1861: Listing’s topological complexes 



Four themes 

A. Colouring maps and graphs  
 (Four-colour theorem, Heawood conjecture) 
 

B.   The structure of graphs 
 

C. Algorithms  
 

D. The development of graph theory as a subject 
 



A  1890: Percy Heawood 
 Map-colour theorem 

Heawood pointed out the 
error in Kempe’s ‘proof’ of 
the four-colour theorem, 

 

salvaged enough to prove  
the five-colour theorem, 

 

and showed that,  
for maps on a g-holed 

torus (for g ≥ 1),   
[1/2(7 + √(1 + 48g))]  

colours are sufficient 



A  1891: Lothar Heffter 
Ueber das problem der Nachbargebiete 

For g > 1, Heawood didn’t prove that  
[1/2(7 + √(1 + 48g))] colours may actually be needed  

Heffter noticed the omission and asked (equivalently):  
 

What is the least genus for n neighbouring regions  
on the surface?  For n ≥ 7 it’s at least {1/12(n – 3)(n – 4)} 

Heffter proved this for n ≤ 12 and some other values 
 

He also ‘dualized’ the problem to  
embedding complete graphs on a surface:  
what’s the least genus g for the graph Kn?     

K7 on a torus 



B  1891/1898: Julius Petersen 
Die Theorie der regulären Graphs 

When can you factorize a regular graph 
into regular ‘factors’ of given degree r? 

Sylvester:  
this graph has  

no 1-factor 

K5 has a ‘2-factorization’,  
as does every regular graph of even degree 

The Petersen graph 
splits into  

a 2-factor and  
a 1-factor, but  

not three 1-factors 



B  1892: W. W. Rouse Ball 
Mathematical Recreations and Problems 

Solving the Königsberg 
bridges problem corresponds  

to drawing the right-hand picture 
without repeating any line  

or lifting your pen from the paper 

Euler did NOT draw  
such a picture 



C  1895: Gaston Tarry 
Le problème des labyrinthes 

Tarry’s rule: don’t return along a passage which led to a 
junction for the first time unless you can’t do otherwise. 

He also gave a practical method for carrying this out.  



A  1904: Paul Wernicke 
Über den kartographischen Vierfarbensatz 

Kempe: Every cubic map on the plane contains  
a digon, triangle, square or pentagon  

Wernicke: Every cubic map on the plane contains  
at least one of the following configurations: 

They form an unavoidable set:  
every map must contain at least one of them 



B  1907: M. Dehn & P. Heegaard 
Analysis situs 

Encyklopädie der Mathematische Wissenschaften 

First comprehensive study of complexes,  
following on from ideas of Kirchhoff,  

Listing and Poincaré 
Their opening section was on Liniensysteme 

(graphs) constructed from 0-cells (vertices) and 1-
cells (edges) 

 

This work was later continued by Oswald Veblen  
in a paper on Linear graphs (1912)  

and in an American Mathematical Society 
Colloquium Lecture series in 1916 



A  1910: Heinrich Tietze 
Einige Bemerkungen über das Problem  

des Kartenfärbens auf einseitigen Flächen 

One-sided surfaces: on a Möbius band or projective plane,  
every map can be coloured with 6 colours 

so at most 6 neighbouring regions can be drawn 
Klein bottle: 7 colours are needed (Franklin, 1934) 

Tietze also obtained analogues of the formulas  
of Heawood and Heffter  



A  1912: G. D. Birkhoff 
A determinant formula  
for the number of ways  

of coloring a map 

The number of ways is always  
a polynomial in the number of colours, 
now called the chromatic polynomial  

Related work by Birkhoff (1930), Whitney (1932),  
and in a major paper by Birkhoff and D. C. Lewis (1944) 

The degree is the number of countries and the coefficients 
alternate in sign: Birkhoff obtained a formula for them 



A  1913: G. D. Birkhoff 
The reducibility of maps 

A configuration of countries in a map 
is reducible if any 4-colouring of the 
rest of the map can be extended to 

the configuration 
 

So irreducible configurations  
can’t appear in minimal counter-

examples to the 4-colour theorem 
 

Kempe:  digons, triangles  
and squares are reducible 

Birkhoff:  so is the ‘Birkhoff diamond’ 



B  1916:  Dénes König 
Über Graphen  

und ihre Anwendung  
auf Determinantentheorie  

und Mengenlehre  
[also in Hungarian and French] 

A graph is bipartite ↔ every cycle has even length 
 

Every k-regular bipartite graph splits into k 1-factors 
(proved earlier by E. Steinitz for configurations) 
Interpretation for matching/marriage  

 

So if each vertex of a bipartite graph has  
degree ≤ k, then its edges can be coloured with k colours 



B  1918: Heinz Prüfer 
Neuer Beweis eines Satzes 

über Permutationen  

First correct proof  
of Cayley’s 1889 result:  

 

There are nn−2 labelled trees  
on n vertices  

or  
Kn has nn−2 spanning trees 

It uses the idea of associating a Prüfer 
sequence  (a1, a2, . . . , an–2)  with each tree. 



A  1922: Philip Franklin 
The four color problem 

Every cubic map with no digons, triangles  
or squares has at least 12 pentagons. 

A new unavoidable set: 

Any counter-example has at least 25 countries  

Further unavoidable sets were found by Henri Lebesgue (1940) 



   C   1924: Otakar Borůvka 
[On a certain minimal problem] 

Minimum connector problem:  In a weighted graph,  
find the spanning tree of shortest length. 

Cayley: if there are n vertices, there are nn−2 spanning trees. 

Also solved by V. Jarnik (1930), and by J. B. Kruskal (1954) and R. C. Prim (1957). 



B   1927: Karl Menger 
Zur allgemeinen Kurventheorie 

On  a problem in analytic topology:  
in graph theory terms  

it’s a minimax connectivity theorem:  
the max number of disjoint paths between  
two vertices = the min number of vertices / 

edges we must remove to separate the graph 
  
 
 

— equivalent to König’s theorem (1916)  
and Hall’s ‘marriage’ theorem (1935)  



B   1927: J. Howard Redfield 
The theory of group-reduced distributions 

Counting under symmetry, 
counting simple graphs 

(symmetrical aliorative dyadic relation-numbers) 



B  1930: F. P. Ramsey 
On a problem in formal logic 

Example: Six people at a party 
Among any six people, there must be  

three friends or three non-friends.   

18 people needed for four friends/non-friends. 
How many are needed for five? 

So every red/blue colouring of the edges of K6  
gives us either a red triangle or a blue triangle. 

With k colours, how many vertices do we need 
to guarantee a given graph of one colour? 

‘Ramsey’s theorem’ for sets 
→ ‘Ramsey graph theory’ 

[Erdős, Harary, Bollobás, etc.] 



1930: Kasimierz Kuratowski 
Sur le problème des courbes 

gauches en topologie 

A graph is planar if and only if  
it doesn’t contain K5 or K3,3 

The utilities puzzle 
of Sam Loyd 

Proved independently  
by O. Frink & P. A. Smith 



B  1931–1935:  
Hassler Whitney 

1931:  Non-separable and planar graphs 
1931:  The coloring of graphs 
 

1932:  A logical expansion in mathematics 
1932:  Congruent graphs and the connectivity of graphs 
 

1933:  A set of topological invariants for graphs 
1933:  2-isomorphic graphs 
1933:  On the classification of graphs 
 

1935:  On the abstract properties of linear dependence    
 (on ‘matroids’) 



B  1935–37: Georg Pólya 
Kombinatorische 

Anzahlbestimmungen  
für Gruppen, Graphen,  

und chemische Verbindungen 

On enumerating graphs and  
chemical molecules (the orbits  
under a group of symmetries)  

using the cycle structure of the group 

Later work on graph enumeration by Otter, 
de Bruijn, Harary, Read, Robinson, etc.   



D   1936: Dénes König 
Theorie der endlichen  

und unendlichen Graphen 

The ‘first textbook on graph theory’ 



B   1937/1948   K. Wagner / I. Fáry 
Über eine Eigenschaft der ebenen Komplexe 

On straight line representation of planar graphs 

Every simple planar graph can be drawn  
in the plane using only straight lines 



B   1940: P. Turán 
Eine Extremalaufgabe  

aus der Graphentheorie 

Extremal graph theory 
A graph with n vertices  

and no triangles 
has ≤ [n2/4] edges 

 

[proved earlier by W. Mantel (1907)] 

[Turán also studied the ‘brick factory  
problem’ on crossing numbers  

of bipartite graphs] 



A   1941:   R. L. Brooks 
On colouring the nodes  

of a network 
Vertex-colourings: 

If G is a connected graph with maximum degree k, then 
its vertices can be coloured with at most k + 1 colours, 
with equality for odd complete graphs and odd cycles 

Brooks was one of the team of  
Brooks, Stone, Smith and Tutte  

who used directed graphs to  
‘square the square’ in 1940 



B   1943: Hugo Hadwiger 
Über eine Klassifikation der 

Streckencomplexe 

Hadwiger’s conjecture 
Every connected graph  

with chromatic number k  
can be contracted to Kk 

Hadwiger: conjecture true for k ≤ 4 
Wagner (1937): true for k = 5 ↔ four-colour theorem 
Robertson, Seymour and Thomas (1993): true for k = 6 

(also uses four-colour theorem) 
Still unproved in general 



B  1946: W. T. Tutte 
On Hamilton circuits 

Tait’s conjecture (1880):  
Every cubic polyhedral graph 

has a Hamiltonian cycle 
‘It mocks alike at doubt and proof’ 

 
 

False: Tutte produced an  
example with 46 vertices 

In 1947 Tutte found a condition  
for a graph to have a 1-factor  

(extended to r-factors in 1952) 



A   1949:  Claude E. Shannon 
A theorem on coloring  
the lines of a network 

On a problem arising from the colour-coding of wires  
in an electrical unit, such as relay panels, where the 

emerging wires at each point must be coloured differently. 

Theorem:  The lines of any network can be properly 
coloured with at most [3m/2] colours,  

where m = max number of lines at a junction.   
This number is necessary for some networks. 



B   1952: Gabriel Dirac 
Some theorems on abstract graphs 

Sufficient conditions for a graph G to be Hamiltonian 
 

Dirac (1952):  If G has n vertices, and if the degree  
of each vertex is at least 1/2n, then G is Hamiltonian 

 

Ore (1960):  If deg(v) + deg(w) ≥ n for all non-adjacent 
vertices v and w, then G is Hamiltonian 

 

Dirac also wrote on ‘critical graphs’ 
 

[Later Hamiltonian results by Pósa, Chvátal, Bondy, etc.] 
 



C   Algorithms from the 1950s/1960s 

Assignment problem  
H. Kuhn (1955) 

 

Network flow problems  
L. R. Ford & D. R. Fulkerson (1956) 

 

Minimum connector problem  
J. B. Kruskal (1956) and R. E. Prim (1957)  

 

Shortest path problem  
E. W. Dijkstra (1959) 

 

‘Chinese postman problem’  
Kwan Mei-Ko (= Meigu Guan) (1962) 



B   1959: P. Erdős & A. Rényi 
On random graphs I 

Probabilistic graph theory 
 

G(n, m) model (Erdős–Rényi) 
Take a random graph with n vertices and m edges. 

How many components does it have? 
How big is its largest component?  

What is the probability that it is connected?  
 

G(n, p) model (E. N. Gilbert) 
Take n vertices and add edges at random  

with probability p.  
How big is its largest component? 

When does the graph become connected? 



1960:  A. J. Hoffman and R. R. Singleton 
On Moore graphs with diameters 2 and 3 

Let G be regular of degree d and have n vertices.  
Then   n ≤ 1 + d ∑ (d − 1)i−1. 

If equality holds, G is a Moore graph.  

For diameter 2,  
d = 2, 3, 7, and possibly 57  



D   Graph theory texts 

                   Claude Berge: Theorie des Graphes  
et ses Applications (1958)  

 

                   Oystein Ore: Theory of Graphs (1962)   
 

 R. G. Busacker & T. L. Saaty: Finite graphs and networks (1965) 
 

Frank Harary: Graph Theory (1969) 
 

Robin Wilson: Introduction to Graph Theory (1972) 



A    1964: V. G. Vizing 
On an estimate of the 

chromatic class of a p-graph  
(in Russian) 

If G is a graph with maximum 
degree Δ and at most p parallel 

edges, then  its edges can be 
coloured with Δ + p colours.  

Corollary:  If G is simple, then  its  
edges need either Δ or Δ + 1 colours. 



A   1968: G. Ringel & J. W. T. Youngs 
Solution of the Heawood  

map-coloring problem 
Ringel and Youngs reduced the drawing of Kn  
on a sphere with  {1/12(n – 3)(n – 4)}  handles 

to twelve cases which they dealt with individually.  
(The non-orientable case had been completed by Ringel in 1952.) 



B   1968: Lowell Beineke 
Derived graphs and digraphs 

The nine forbidden 
subgraphs  

for line graphs 



C   1970s: computational complexity 

Efficiency of algorithms 
P: ‘easy’ problems, solved in polynomial time 

planarity algorithms (n),  minimum connector problem (n2)  

NP: ‘non-deterministic polynomial-time problems’:  
any proposed solution can be checked in polynomial time 

 

 Clay millennium question: is P = NP? 

S. Cook (1971): The complexity of  
           theorem-proving procedures   

      

Every NP problem can be polynomially 
reduced  to a single NP problem  

(the ‘satisfiability problem’)  



B   1972: Laszló Lovász  
A characterization of perfect graphs 

A graph G is perfect if, for each induced subgraph,  
the chromatic number = the size of the largest clique 

 

Berge graph (1963): neither G nor its complement  
has an induced odd cycle of length ≥ 5 

 

Lovász (1972): Perfect graph theorem:  
A graph is perfect if and only if its complement is perfect 

 

M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas (2006):  

Strong perfect graph theorem:  
Perfect graphs = Berge graphs 



1976: K. Appel & W. Haken 
Every planar map is four-colorable 

H. Heesch: find an unavoidable set of reducible configurations 
 

Using a computer Appel and Haken (and J. Koch) found  
an unavoidable set of 1936 reducible configurations  

(later 1482) 



B  1978: Endre Szemerédi 
Regular partitions of graphs 

Szemerédi’s regularity lemma:  
Every large enough graph can be divided into subsets  

of around the same size so that the edges  
between different subsets behave almost randomly.  

In other words:  all graphs can be approximated  
by ‘random-looking’ graphs 

1975: weaker version  for bipartite graphs, relating to sets  
of integers with no k of them in arithmetic progression. 
 

          Generalised by Tim Gowers and others. 
      Szemerédi was awarded the 2012 Abel Prize. 



B  1979: H. Glover & J. P. Huneke 
The set of irreducible graphs  

for the projective plane is finite 

How many ‘forbidden subgraphs’ are there for a surface? 
 

Kuratowski (1930): for the sphere, just K5 and K3,3 
 

Glover & Huneke (1979) (with D. Archdeacon & C. Wang):  
for the projective plane the number is 103 

 

For the torus the number is unknown, but is ≥ 800 
 

 

Robertson and Seymour (1984):  The graph minor theorem  
For every surface the number is finite 



1994: Carsten Thomassen 
Every planar graph is 5-choosable 

       Vizing (1975) and Erdős, Rubin and Taylor (1979)  
                 introduced the idea of a list-colouring.  

Assign a list L(v) of colours to each vertex v of a graph G.  
A list-colouring of G is a colouring in which each vertex is assigned 

a colour from its list. If G has a list-colouring for every L with  
L(v)| = k for all v, then G is k-list-colourable or k-choosable. 

 

Thomassen proved the above list version of Heawood’s five-colour 
theorem, thereby answering a conjecture of Erdős, Rubin and 

Taylor and giving a good algorithm for the five-colour theorem.  
 

Thomassen has settled many conjectures in graph theory, 
including a proof of Tutte’s ‘weak 3-flow conjecture’.    



B 1983–2004: N. Robertson & P. Seymour 
with co-workers R. Thomas, M. Chudnovsky, . . . 

A succession of fundamental results  
that changed the face of graph theory: 

 

• The graph minor theorem 
 

• An improved proof of the 4-colour theorem 
 

• The strong perfect graph conjecture 
 

• Proof of the Hadwiger conjecture for K6 
 

• Every snark contains the Petersen graph 
 
 

and many more . . .  








