1. Early

combinatorics

Robin Wilson

1. Early combinatorics
2. European combinatorics:

Middle Ages to Renaissance
3. Euler's combinatorics
4.

Magic squares, Latin squares
\& triple systems
5. The 19th century
6. Colouring maps

7/8. A century of graph theory

COMBINATORICS:

 ANCIENT \& MODERN

EDITED BY
ROBIN WILSON \& JOHN J. WATKINS OXFORD

N. L. Biggs, E. K. Lloyd, R. J. Wilson

Early mathematics time-line

-2700-1600BC: Egypt

- 2000-1600-BC : Mesopotamia('Babylonian')
- 1100 BC - AD 1400 : China
- 600 BC - AD 500 : Greece (three periods)
- 600 BC - AD 1200 : India
--AD-500-1000: Mayan
- AD 750-1400 : Islamic / Arabic
- AD 1000 - . . . : Europe

I Ching (yijing) (c. 1100 BC)

The Lo－shu diagram

圖室九堂明

Greek mathematics: three periods

Map of
 Greece (300 BC)

Pythagorean figurate numbers

triangular numbers
$\mathrm{n}(\mathrm{n}+1) / 2$
1, 3, 6, 10, 15, 21,

- - -

square numbers
n^{2}
1, 4, 9, 16, 25, 36

$15=1+2+3+4+5$

$16=1+3+5+7$

Any square number is the sum of two consecutive triangular numbers

Plato's Academy

 (387 BC)
Raphael's 'School of Athens'

Plato's Timaeus:

The five regular polyhedra ('Platonic solids')

tetrahedron

cube

octahedron
tetrahedron
= fire
cube
= earth
octahedron
= air
icosahedron
= water
dodecahedron
= cosmos

Polyhedral dice (astragali)

Archimedes

(c.287-212 BC)

- On floating bodies
- On the equilibrium of planes
- On the measurement of a circle
- The Method
- On Spirals

- On the sphere and cylinder I, II
- Quadrature of the parabola
- On conoids and spheroids
- The sand reckoner
- Semi-regular polyhedra

Archimedean (semi-regular) solids

Pappus: 'On the sagacity of bees' (regular tilings)
 (early 4th century AD)

triangles

squares

hexagons d

Semi-regular (Archimedean) tilings

Susruta's treatise (6th century BC)

Medicines can be sweet, sour, salty, pungent, bitter, or astringent.

Susruta listed:

6 combinations when taken 1 at a time 15 combinations when taken 2 at a time 20 combinations when taken 3 at a time 15 combinations when taken 4 at a time 6 combinations when taken 5 at a time
1 combination when taken 6 at a time
Thus: $C(6,1)=6 ; C(6,2)=15 ; C(6,3)=20 ;$

$$
C(6,4)=15 ; \quad C(6,5)=6 ; \quad C(6,6)=1
$$

Indian combinatorics

c. 300 BC: Jainas (Bhagabatisutra): combinations of five senses, or of men, women and eunuchs

c. 200 BC: Pingala (Chandrasutra): combinations of short/long sounds in a metrical poem ($-\cup \cup-U$, etc.)

c. AD 550: Varahamihira's Brhatsamhita

 on perfumes: choose 4 ingredients from 16| 16 | $C(16,1)$ | | | | | | |
| ---: | ---: | ---: | ---: | ---: | :--- | ---: | ---: |
| 15 | $C(15,1)$ | 120 | $C(16,2)$ | | | | |
| 14 | $C(14,1)$ | 105 | $C(15,2)$ | 560 | $C(16,3)$ | | |
| 13 | $C(13,1)$ | 91 | $C(14,2)$ | 455 | $C(15,3)$ | 1820 | $C(16,4)$ |
| 12 | $C(12,1)$ | 78 | $C(13,2)$ | 364 | $C(14,3)$ | 1365 | $C(15,4)$ |
| 11 | $C(11,1)$ | 66 | $C(12,2)$ | 286 | $C(13,3)$ | 1001 | $C(14,4)$ |
| 10 | $C(10,1)$ | 55 | $C(11,2)$ | 220 | $C(12,3)$ | 715 | $C(13,4)$ |
| 9 | $C(9,1)$ | 45 | $C(10,2)$ | 165 | $C(11,3)$ | 495 | $C(12,4)$ |
| 8 | $C(8,1)$ | 36 | $C(9,2)$ | 120 | $C(10,3)$ | 330 | $C(11,4)$ |
| 7 | $C(7,1)$ | 28 | $C(8,2)$ | 84 | $C(9,3)$ | 210 | $C(10,4)$ |
| 6 | $C(6,1)$ | 21 | $C(7,2)$ | 56 | $C(8,3)$ | 126 | $C(9,4)$ |
| 5 | $C(5,1)$ | 15 | $C(6,2)$ | 35 | $C(7,3)$ | 70 | $C(8,4)$ |
| 4 | $C(4,1)$ | 10 | $C(5,2)$ | 20 | $C(6,3)$ | 35 | $C(7,4)$ |
| 3 | $C(3,1)$ | 6 | $C(4,2)$ | 10 | $C(5,3)$ | 15 | $C(6,4)$ |
| 2 | $C(2,1)$ | 3 | $C(3,2)$ | 4 | $C(4,3)$ | 5 | $C(5,4)$ |
| 1 | $C(1,1)$ | 1 | $C(2,2)$ | 1 | $C(3,3)$ | 1 | $C(4,4)$ |

Number of combinations $=C(16,4)=1820$

Arrangements: Vishnu

 (from Bhaskara's Lilavati, AD 1150)Vishnu holds in his four hands a discus, a conch, a lotus,

and a mace:

the number of arrangements is

$$
4 \times 3 \times 2 \times 1=24=4!
$$

Bhaskara gave general rules for $n!, C(n, k)$, etc: The number of combinations
of \boldsymbol{k} objects selected from

$$
\frac{n \times(n-1) \times \cdots \times(n-k+1)}{k \times(k-1) \times \cdots \times 1}
$$ a set of n objects is

Bhaskara's permutations: Sambhu

How many are the variations of form of the god Sambhu by the exchange of his ten attributes held in his ten hands:
the rope, the elephant's hook, the serpent, the tabor, the skull, the trident, the bedstead, the dagger, the arrow and the bow?

Statement: number of places: 10 The variations of form are found to be
(10! =) 3,628,800

Permutations and combinations

Four types of selection problem: choose r objects from \mathbf{n} objects:

1. Selections ordered, repetition allowed: number of ways is $n \times n \times \ldots \times n=n^{r}$
2. Selections ordered, no repetition allowed (permutation): number of ways is

$$
P(n, r)=n \times(n-1) \times \ldots \times(n-r+1)=n!/(n-r)!
$$

3. Selections unordered, no repetition allowed (combination): number of ways is $C(n, r)=P(n, r) / r!=n!/ r!(n-r)$!
4. Selections unordered, repetition allowed: number of ways is $C(n+r-1, r)=(n+r-1)!/(n-1)!r!$

The Hindu - Arabic numerals

Influences on Baghdad

Baghdad was on the trade routes between the West (the Greek world) and the East (India)

Al-Khwarizmi (c.783-c.850)

- Arithmetic text

- Algorithmi de numero Indorum
'Dixit Algorismi'
- Algebra text

Kitab al-jabr w’al-muqabalah
Ludus algebrae
et almucgrabalaeque

, لكنّ ذلك لا يصحّ في أكثر الصنوف وكانّنهُ وقع فـ النسخة فـاد	
$1<$	6
$<$,
¢ <	
$<$	
- $1<$	-
, $1<$	
j 11	
τ	
, و ربّا زيد فـ الوسط رجل	
آخر الرجل الؤولا و الثانية حرنا	
(1)	
الرجل	

Al-Biruni on the

 combinatorics of Sanskrit metres (11th century)There are 8 possible three-syllable metres, where each symbol is either heavy (<) or light (|)

Arithmetical triangles of Al-Karaji (1007) and Nasir ad-Din at-Tusi (c.1240)

Arithmetical triangle of Ibn Munim
(c. AD 1200)

Zhu Shijie (1303):

Sijuan yujian
(Precious mirror
of the four elements)

From Baghdad to Europe

Southern

Spain (Córdoba)

Arabic tiling (Alhambra)

Wallpaper patterns (17 in all)

Jewish combinatorics:

Sefer Yetsirah
 (Book of Creation)

(2nd-8th century)

Sefer Yetsirah

Number of permutations of five letters

$$
=5!=120
$$

Sefer Yetsirah (2nd-8th century)

Suitable combinations of letters had power over Nature:

God drew them, combined them, weighed them, interchanged them, and through them produced the whole creation and everything that is destined to be created.

For two letters, he combined the aleph with all the other letters in succession, and all the other letters again with aleph; bet with all, and all again with bet; and so the whole series of letters.
Thus, there are $(22 \times 21) / 2=231$ formations in total.

Saadia Gaon (AD 892-942)

[After calculating $n!$ up to $7!=5040$, and using $n!=(n-1)!\times n$]
If you want to know the number of permutations of 8 letters, multiply the 5040 that you got from 7 by 8 and you will get 40,320
words; and if you search for the number of permutations of 9 letters, multiply 40,320 by 9 and you will get 362,880; and if you search for the number of permutations of 10 letters, multiply 362,880 by 10 and you will get $3,628,800$ words; and if you search for the number of permutations of 11, multiply these $3,628,800$ by 11 and you will get 39,916,800 words.

And if you want to know still larger numbers, you may operate according to the same method. We, however, stopped at the number of 11 letters, for the longest word to be found in the Bible [with no letter repeated] contains 11 letters.

Rabbi ibn Ezra (1090-1167)

Possible conjunctions of 7 'planets': $\mathbf{C (7 , k)}$ for $k=2,3, \ldots, 7$. It is known that there are seven planets. Now Jupiter has six conjunctions with the other planets. Let us multiply then 6 by its half and by half of unity. The result is 21 , and this is the number of binary conjunctions (that is, $\mathrm{C}(7,2)=21$.) For $k=3$, the answer is $C(7,3)=35$.

$k=3:$	567	467	367	267	167
		$\begin{aligned} & 456 \\ & 459 \end{aligned}$	356	256	189
			$\begin{aligned} & 348 \\ & 346 \\ & 347 \end{aligned}$	$\begin{aligned} & 248 \\ & 366 \\ & 249 \end{aligned}$	$\begin{aligned} & 14 \% \\ & 168 \\ & 168 \end{aligned}$
				236 236 236 237	134 $!36$ $i 36$ 838
$1+3+6+10+15=35$					123 124 126 $i 26$ $i 26$ 126

ben Gerson’s Maasei Hoshev (1321)

> Proposition 63:

If the number of permutations of a given number of different elements is equal to a given number, then the number of permutations of a set of different elements containing one more number equals the product of the former number of permutations and the given next number.

$$
\begin{gathered}
P(n+1)=(n+1) \times P(n) \\
(n+1)!=(n+1) \times n!
\end{gathered}
$$

