

Robin Wilson

Carl Friedrich Hindenburg（1796）

Det

Neubentbeitet and dargefefte

Zetens，ふliget，ふramp，ञfafi uno Selmoenburg．

> 3um \quad Druct beforocte $\cdots \quad$ und mit

2frmertungen，audd einem Entreen 2forife det combinaterifigen Wietjode uno ineer znmendoung arf die zenalyfis

> verfeben
von
（sart Friebridf §eindenburg．

Reiptig

bei ferfard gleifacr Dem Jufgern
$\times 796$.

＇Hindenburg

 and his school ［in Leipzig］ attempted through systematic development of combinatorials， to give it a key position within the various mathematical disciplines．＇

Die ©cale if bier q［ $\alpha, \beta, \gamma, \delta \ldots]$ ，d．i．in bem Rus． Drucfe fuit x^{5} fann fatt q jebe §rifie gebraud）t werben， welde 1）bie（Soefficienten $\alpha, \beta, \gamma, \delta \ldots$ bat，und 2）Des ren（xpponenten ber veránberlichen（Srofe in aritl）metifure §rogrefion fortgefen；auf sic weranberlidye Girofe felfot aber，tut wic Die §jrogreffion anfangt und fortgebt－ Darauf fommt bier gar nidfts an．Umalfo nidft gu beo fayranfen，was in ber Sadje felfft nid）t befdranft ift，bat
 （Rothe 1．c．p．I ；meine Paralip．ad Ser．Reverf．p．lV．Rote ＇o und p．XVIII．शide i）．

5）Das alfgemeine（flics nad）effienbad）（3）if

6）Cine won mit worgctommene Berwandung bcfs felfen，giebt verturgt und gans batmonifá

7）Datate，fo wic ate bir Formel（4）folgt

$$
x^{s} 7(n+1)=\frac{s}{s+n d} q q^{-\frac{s \mp n d}{r}} x(n+1) \cdot y^{\frac{(s \mp n d) 1}{r}}
$$

Dic 3eiger fúr $(5,6)$ und bic Scale fuir（7）find 万ieer wie bey（3 uno 4）；aud）find in（7）fuir $\mathrm{o}_{\mathrm{m},}{ }^{1} \mathrm{~m},{ }^{2} \mathrm{~m}$, ．．${ }^{\mathrm{n}} \mathrm{m}$ igre Nerthe（aus 3）gefot worden．

Dos alfgemeine ciflice（in 7）entraift die fotr widh．

Peter Nicholson (1818)

Scottish practical builder and mathematician

BSEATS

ON THE

COMBINATORIAL ANALYSIS;

SHEWING its APPLICATION

- to some of the most useful and interestinc

parobicmg of algebra;

such as
The Expansion of a Multinomial according to any given Exponent,
THE PRODUCT OF TWO OR MORE MULTINOMIALS,
the quotient arising by divining one multinomial by ANOTHER,
The Reversion and Conversion of Series, - \quad the theory of indeterminate equations, \&c. \&c. And clearly indicating
THE LAW OF EXPANSION, AND THE
Simple and almost meckunical Processes from which the resulting Series may be obtained by finding any one Term independently of the Rest.

By P. NICHOLSON, Private Tencher of the Mathematice.

まandan:

PRINTED FOR THE AUTHOR,
ADID PUBLISHED BY LONOMAN, HURST, REES, ORME, AND BROWK, PATERNOSTER ROW; AND BY THE AUTHOR, 18, LONDON STEEET, FITZROY SQUARE.

1818.

Louis Poinsot's diagramtracing puzzles (1809)

Given some points situated at random in space, it is required to arrange a single flexible thread uniting them two by two in all possible ways, so that finally the two ends of the thread join up, and so that the total length is equal to the sum of all the mutual distances. As we shall see, the solution is possible only for an odd number of points.

odd complete graphs,

$$
K_{5}, K_{7}, K_{9}, \ldots ;
$$

J. B. Listing's diagrams

 Vorstudien zur Topologie (1847)

Here there are 8 odd intersections, so we need 4 paths

This can be drawn in a single stroke, since it has only two points of odd type, both five-fold . . .

Tarry's rule: do not return along the passage which has led to a junction for the first time unless you cannot do otherwise.

Tarry also gave a practical method for carrying this out.

W. W. Rouse Ball (1892) Mathematical Recreations and Problems

Solving the Königsberg bridges problem corresponds to the solving the diagram-tracing puzzle on the right

In 1735 Euler did NOT draw such a picture

William Rowan Hamilton (1805-1865)

William Rowan Hamilton (1805-1865)

Can we visit each vertex just once and return to our starting point?

Hamilton investigates

icosian calculus:

$i^{2}=k^{3}=L^{5}=1$, where $l=i k$
Let $m=i k^{2}=l k$: then
$L^{3} m^{3} L m L_{m} l^{3} m^{3} l_{m} l m=1$
$L=$ right $m=$ left

Hamilton's quaternions':
$\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=-1$, $\mathrm{jjk}=-1$. So $i j=k, j i=-k$. etc.

Hamilton's

icosian
game
(1859)

THE ICOSIAN GAME.

Is this new Game (invented by Sir Mrimir Pomay Inamboy, Lid.D., 太c., of Dublin, and by him named Icosian, from a Greek word signifying "twenty") a playor is to place the whole or part of a set of twenty numbered picces or men upon the points or in the holes of a boarch, represented by the diagram above drawn in such a mannor as always to procesd along the lines of the figure, and also to fuinl cortain other conditions, which may in various ways be assigned by another player. Ingenuity and skill may thus be cevereised in proposing as well as in resolving problens of the eame. For esample, the first of the two players mar place the first fire pieces in any fire consecutive holes, and then require the seconel player to phace the remaining fifteen men consecutively in such a manner that the succession may be cyclicat, that is, so that To. 00 may be adjacent to No. 1 ; and it is alweys possible to answer any question of this kind. Thus, if BC'DFG be the five given initial points, it is allowed to complece the succession by folloming the alphabetical order of the twenty consonants, as suggested by the diagram itself; but after placine the picce Nu. 6 in the hole H, as befure, it is also allowed (by the supposerl conditions) to put No. \bar{i} in X instead of J, and then to conclude with the succession, W FUSTYKL II IPQZ. Other Examples of Icosian Problems, with solutions of some of them, will be found in the folluwing pare.

LONDON:
PUBLISHED AND SOLD WHOLESALE BY JOHN JAQUES AND SON, 102 HATTON GARDEN; and to be had at host of the leading fancy repositories THROUGHOUT THE KINGDDN.

Marketing the icosian game

Hamilton sold the icosian game to a games manufacturer for $£ 25$

- a wise move, as it didn't sell.

Kirkman's 'cell of a bee' (1856)

Kirkman investigated closed paths on 'polyedra'.
But if we cut in two the cell of a bee (giving the picture above), is there such a path?

Kirchhoff's electrical networks (1845/7)

Problem: Find all the currents and voltages (using Kirchhoff's laws)

Fundamental set of cycles for a spanning tree

Counting trees

The six trees with 6 vertices: how many trees have 100 vertices?

Alkanes $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$ have a tree structure: how many have n carbon atoms?

Good Will Hunting

Draw all the homeomorphically irreducible trees with 10 vertices

Cayley's trees (1857/9)

Arthur Cayley

ON THE ANALYTICAL FOPMIS CALLED TREES. SECOND PART.

[From the Philosophical Magazine, vol. xrmit. (1859), pp. 374-378. Continuation of 203.]
The following class of "trees" presented itself to me in sume researches relating to functional symbols; viz, atterding only to the terminal knots, the trees with one knot, two knots, three knots, and four knots respectively are shown in the figures 1, 2, 3 and 4 :

Fig. 1 Fig. 2.
Fig. 3.
Fig. 4.

aud similarly for any number of knots. The trees with four lnots are formed first from those of one knot by attaching thereto in every possible vay (oue way only)

Cayley's 1881 paper

To count rooted trees, Coyly used a generating function $1+A_{1} x+A_{2} x^{2}+\cdots$ where $A_{n} 8$ number of rooted trees with n branches:
 he obtained the
 equation

 $1+A_{1} x+A_{2} x^{2}+\cdots=(1-x)^{-1} \cdot\left(1-x^{2}\right)^{-A_{1}} \cdot\left(1-x^{3}\right)^{-A_{2}} \ldots$

To count unpooted trees, he started from the 'centre' of the tree and worked outwards.

On the Analytical Forms called Tires.
Re Professor Cayley.

In a tree of N knots, selecting any knot at pleasure as a root, the tree may be regarded as springing from this root, and it is then called a root-tree. The same tree thus presents itself in various forms as a root-tree ; and if we consider the different root-trees with N knots, these are not all of them distinct trees. We hare thus the two questions, to find the number of root-trees with N knots: and, to find the number of distinct trees with N knots.

I have in my paper "On the Theory of the Analytical Forms called Trees,": Phil. Mag., t. 13 (1857), pp. 172-176, given the solution of the first question; viz. if ϕ_{s} denotes the number of the root-trees with N knots, then the successive numbers $\dot{\varphi}_{1}, \dot{\varphi}_{2}, \dot{\varphi}_{3}$, etc., are given by the formula

$$
\dot{\phi}_{1}+x \phi_{2}+x^{2} \phi_{3}+\ldots=(1-x)^{-\phi_{1}}\left(1-x^{2}\right)^{-\phi_{2}}\left(1-x^{3}\right)^{-\phi_{3}} . .
$$

viz. we thus find

suffix of Φ													
$\Phi=1$	1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	2	4	9	20	48	115	286	719	1842	4766	12486	

And I hare, in the paper "On the Analytical Forms called Trees, with Apications to the Theory of Chemical Combinations," Brit. Assoc. Report, 1875, [1. $25 \uparrow-305$, also shown how by the consideration of the centre or bicentre "us length" we can obtain formulae for the number of central and bicential trees; that is for the number of distinct trees, with N knots : the numerical resit obtained for the total number of distinct trees with N knots is given as follow: : No. of Knots No. of Central Trees $\begin{array}{llllllllllllll} & 1 & 0 & 1 & 1 & 2 & 3 & 7 & 12 & 27 & 55 & 127 & 234 & \text { wis: }\end{array}$

| $\quad "$ Bicentral " | 0 | 1 | 0 | 1 | 1 | 3 | 4 | 11 | 20 | 51 | 108 | 207 | til" |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Total | | | | | | | | | | | | | |

Counting labelled trees

[From the Quarterly Journal of Pure and Applied Mathemutics, vol. xxiI. (1889), pp. 376-378.]

T'Ee number of trees which can be formed with $n+1$ given knots a, β, γ, \ldots is $=(n+1)^{n-1}$; for instance $n=3$, the number of trees with the 4 given knots a, β, γ, δ is $4^{2}=16$, for in the first form shown in the figure the $\alpha, \beta, \gamma, \delta$ may be arranged

$$
\int_{-\gamma}^{\delta} \underbrace{\delta}_{a}
$$

in 12 differont orlers ($a \beta \gamma \beta$ b being regarded as Envivalent to $\delta \gamma \beta a$), and in the seoond form any one of the 4 knots $\alpha, \beta, \gamma, \delta$ may be in the place occupied by the α : the whole number is thus $12+4,=16$.

Considering for greater clearness a larger value of n, say $n=j$, I state the particular case of the theorem as follows:
No. of trees $(a, \beta, \gamma, \delta, \epsilon, \zeta)=$ No. of terms of $(a+\beta+\gamma+\delta+\epsilon+\zeta)^{4} a \beta \gamma \delta \epsilon \zeta,=6^{4},=1296$, and it will be at mice seen that the proof given for this particular case is applicable for any value whatever of n.
' I use for any tree whatever the following notation: for instance, in the first of the forms shown in the figure, the branches are $\alpha \beta, \beta \gamma, \gamma \delta$; and the tree is said to be $a \beta^{2} \gamma^{2} \delta$ (viz. the knots a, δ occur each once, but β, γ each twice); similarly in the second of the same forms, the branches are $\alpha \beta$, $\alpha \gamma, a \delta$, and the tree is said

Arthur Cayley, 1889:

 The number of n-vertex labelled trees is $\mathrm{n}^{\mathrm{n}-2}$.
Chemical diagrams - 'graphic formulae'

By 1850 it was known that elements combined in fixed proportions to make compounds- formulas such as $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ were known - but how did elements combine?

In 1864 Alexander Crum Brown introduced his 'graphic formulae', which then appeared in a popular textbook by Edward Frankland.

Answer: VALENCY

Sulphuric acid	$\mathrm{SO}_{2} \mathrm{Ho}_{2}$.	
Carbonic anhydride	CO_{2}.	(1)=(C)=(0)
Potassic carbonate	COKo_{2}.	
Marsh-gas	CH_{4}.	
Ammonic carbonate	COAmO_{2}.	

J. J. Sylvester (Nature, 1878)

. . . I hardly ever take up Dr. Frankland's exceedingly valuable Notes for Chemical Students, which are drawn up exclusively on the basis of Kekule's exquisite concept of valence, without deriving suggestions for new researches in the theory of algebraical forms . . .

The analogy is between atoms and binary quantics exclusively. I compare every binary quantic with a chemical atom. The number of factors ... in a binary quantic is the analogue of the number of bonds, or the valence, ... of a chemical atom...
An invariant of a system of binary quantics of various degrees is the analogue of a chemical substance composed of atoms of corresponding valences... A co-variant is the analogue of an (organic or inorganic) compound radical...
radical. Every invariant and covariant thus becomes expressible by a graph precisely identical with a Kekuléan diagram or chemicograph...

Chemistry and algebra

American Journal of Mathematics, 1878

Chemistry has the same quickening and suggestive influence upon the algebraist as a visit to the Royal Academy, or the old masters may be supposed to have on a Browning or a Tennyson. Indeed it seems to me that an exact homology exists between painting and poetry on the one hand and modern chemistry and modern algebra on the other.

Sylvester's

 chemical trees (1878)

J. J. Sylvester and W. K. Clifford

atom \leftrightarrow binary quantic $\left(a x^{3}+3 b x^{2} y+3 c x y^{2}+d y^{3}\right)$ number of bonds \leftrightarrow number of factors chemical substance \leftrightarrow invariant (functions of a, b, c, . . .)
invariant/covariant \leftrightarrow graph

$$
\begin{aligned}
& \begin{array}{l|l}
H 234 z \\
f & 1234 \pi
\end{array}=\left\{\begin{array}{l}
i^{2} \mid 234 \\
1234 \%^{\circ}
\end{array}\right.
\end{aligned}
$$

Cayley and Sylvester's work on invariant theory was eventually supplanted by the more powerful methods of Gordan and Hilbert - the 'finite basis theorem'.

Euler diagrams (1761)

Venn diagrams (1881)

Venn diagrams for 2, 3, 4, 5 sets

Lewis Carroll's diagrams

 thing totally ofboio of interest.

The fremisses, separately.

The filcmisses, combinè.

dite Cenclusion.

Chat story of yours, about pour once meeting the sea=serpent, is totally deboír of interest.
A. W. F.

Edwards:
Cogwheels of the Mind

Euler's formula for plane graphs

(number of faces) + (number of vertices)

$$
\text { = (number of edges) + } 2
$$

$$
6+8=12+2
$$

Augustin-Louis Cauchy

Möbius's problem (c.1840)

A king lay on his death-bed:

'My five sons, divide my land among you, so that each part has a border with each of the others.'

Möbius's problem has no solution: five neighbouring regions cannot exist

Dual form:

Can you join five towns by non-crossing roads? no - so K_{5} is non-planar

The utilities problem (Sam Loyd, 1900)

Can we connect the three houses A, B, C to the three utilities gas, water, electricity without any of the connections crossing?
(Here, house B is not joined to water)

Solving the utilities problem

Is this graph $\mathrm{K}_{3,3}$ planar?

Look at the 6-cycle A-G-B-W-C-E-A, and try to add the connections A-W, G-C, and E-B . . .

