3. Euler’s Combinatorics
Robin Wilson




Some of
Euler’s
interests

Theory of numbers
Geometry of a triangle
Musical harmony
Infinite series
Logarithms

Calculus

Mechanics

Complex numbers
Optics

Astronomy

Motion of the moon
Wave motion

Stability of sailing ships. ..



Summary of Euler’s life

1707: Born in Basel (15 April)
1721: University of Basel

1727: St Petersburg Academy
1733: Chair of Mathematics

1741: Berlin Academy of Sciences

1766: returned to St Petersburg
1783: died in St Petersburg




The Bernoulli

family

Nicolaus
1623 - 1708
|
I | |
Jacob Nicolaus Johann
1654 - 1705 1662 - 1716 1667 - 1748
Nicolaus (1)
1687 - 1759
[ 1
Nicolaus (il) Daniel Johann ()
1695 - 1726 1700 - 1782 1710 - 1746
[ [
Johann (lll) Daniel (ll) Jacob (li)
1744 - 1807 1751 - 1834 1759 - 1789




Euler’s combinatorics

1735:
1741-68:
1750s:
1751.:

1753, 1779:
1759:

1771.:
[1776:
[1776-82:

Konigsberg bridges problem
Partitions

Polyhedron formula

Dividing polygons

Derangements

Knight’s-tour problem

Josephus problem

Binomial coefficients]

Magic squares and Latin squares]



The 1730s in St Petersburg

1732: 232 + 1 is divisible by 641
1735: 1+, +1/,+Y/ . +...=m?%/6

1735: Konigsberg bridges ;. ¢, culus of variations

» Analytic number theory

1736: Mechanica > Continued fractions
» Musical theory of
1737: e is irrational harmony

» Cartography



Konigsberg bridges problem (1735)
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Can you cross each of the seven bridges exactly once?



Euler and the Konigsberg bridges
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the art of counting was sufficient to solve it.

In view of this, it occurred to me to wonder

whether it belonged to the geometry of position,
~ which Leibniz had once so much longed for.

Letter dated 13 March 1736 to Giovanni Marinoni,
Court Astronomer to Kaiser Leopold in Vienna,
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regulae:

20. Casu ergo quocunque proposito statim facillime poterit cognosci,
utrum transitus per omnes pontes semel institui queat an non, ope huius

’ .
E u Ie r S e S fuerint plures duabus regiones, ad quas ducentium pontium numerus est

wmpar, tum certo affirmart potest talem transitum non dari.

< e S qutem ad duas tantum regiones -ducentium pontium nwmerus est impar,
SO u Io n tunc tramsitus fieri poterit, si modo cursus in altera harum regionum incipiatur,

wnatium ponatur.

e S; denique nulla ommino fuerit regio, ad quam pontes numero impares condu-
cant, tum tramsitus desiderato modo institui poterit, in quacunque regione ambulandi

Hac igitur data regula problemati proposito plenissime satisfit.

If there are more than two areas
to which an odd number of bridges lead,

then such a journey is impossible.

If, however, the number of bridges is odd
for exactly two areas, then the journey is possible

if it starts in either of these two areas.

If, finally, there are no areas to which an odd number
of bridges lead, then the required journey can be

accomplished starting from any area.

So the Konigsberg
bridges problem
has no solution.

But Euler did not
prove the sufficiency:
this was first proved
by C. Hierholzer, 1871




The modern

approach
(using graphs)

Can you draw A NOT
this picture in one DRAWN
continuous stroke? o

) _ B D  EULER:
Yes, if and only if the First
number of vertices of appearance

odd degreeisOor2. ¢ in 1892



1744:
1748:

1749:

1741-1766 in Berlin

Calculus of variations

Introductio in Analysin Infinitorum
e = cosx+isinx Functions
Conics & quadrics Partitions
Theory of tides

Motion of the moon

1749/50: Vibrating strings

1750:
1755:
1759:

1760:

Differential equations Waves
Polyhedron formula

Calculi Differentialis

Knight’s tour problem
Differential geometry



Euler’s
Introductio
in Analysin
Infinitorum

(1748)

INTRODUCTIO

IN ANALALISIN

INFINITORUM.

AUCTORE

LEONHARDO EULERO,
Profeffore Regio BEROLINENSL, €5 Academiz Im-

perialis Scientiarum PETROPOLITANE
Socio.

TOMUS PRIMUS

LAUSANNZE,

Apud MARCUM-MICHAELEM BousQuET & Socios,

MDCCXLVIIL (1988)
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Partitions of numbers

Leibniz introduced these ‘divulsions of integers’
in a letter to Johann Bernoulli

Split a number into smaller ones
1=1(1way) 2=2 or 1+1 (2ways)
3=3 or2+1or 1+1+1 (3ways)
4 =4 or 3+1 or 2+2 or 2+1+1 or 1+1+1+1 (5 ways)
5 =5 or 4+1 or 3+2 or 3+1+1 or 2+2+1 or ... or ... (7 ways)

p(1) =1, p(2) = 2, p(3) =3, p(4) =5, p(5) =7, p(6) = 11,
p(10) = 42, p(20) = 627, p(30) = 5604, p(40) = 37338, ...,
p(200) = 3,972,999,029,388



Euler’s Pentagonal Number Theorem

Look at the generating function (or ‘washing line’):
F(x)=1+p(1)x+p(2)x%2+p(3)x3 +p(4)x* +...
=1+Xx+2x2+3x3+5x*+7x° + 11x° + . ..

In the Introductio Euler proved that
F(x)=(1-x)"1x(1-x*)1x(1-x3)1x(1-x%)1x...
=1/{(1-x)(1-x*)(1-x3)(1-x%...}
and later that
(1-Xx)x(1-x3)x(1-x3)x(1-x¥x...
=1-Xx—-x2+x+x —x12—xLP+...

(The exponents k(3k £ 1)/2 are the ‘pentagonal numbers’)



Euler’s Partition Formula

Multiplying these expressions together we get:
{1+p(1)x+p(2)x%+p(3)x3+p(4)x®+...}
Xx{l-x-)2+x>+x7-x2-x¥*>+...} =1.

Isolating the term in x" and rearranging the result, we get:

p(n) = p(n-1) + p(n - 2) - p(n - 5) - p(n - 7)
+p(n-12)+p(n-15)-....

So each successive partition number p(n)
can be calculated from the previous ones.

So p(11) = p(10) + p(9) — p(6) — p(4) =42 + 30 - 11 - 5 = 56.
Euler calculated p(n) up to p(65) = 2012558.

This is still the most efficient way to calculate partition numbers.



Philip Naude’s problems

In how many ways can 50 be written
as the sum of seven distinct integers?
Euler: Consider (1 +xz) x (1 +x2z) x (1 +x3z) x (1 +x%)x ...
=1+z(x+x2+x3+x%*+...)
+ 2203 +x*+2x° +2x5+3x7 +...)
+230C+x"+2x8+3x%+4x10+ ... )+ ...

Answer = coefficient of x°% in therow z’ (... ) = 522.

What is the corresponding answer
if the seven integers are not distinct?

Euler: Consider (1 -xz)1x(1-x%z)"! x(1-x3z)"1x(1-x%)1x...

=(1+xz2+x222+x323+...)x(1+x%2Z2+x%22+...)%x ...

Answer (after some calculation) = 8496.



Odd and distinct partitions

In odd partitions all the parts are odd

There are eight odd partitions of 9:
9, 7+1+1, 5+3+1, 5+1+1+1+1, 3+3+3, 3+3+1+1+1,
3+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1

In distinct partitions all the parts are distinct

There are eight distinct partitions of 9:
9, 8+1, 7+2, 6+3, 6+2+1, 5+4, 5+3+1, 4+3+2

Euler found the following generating functions:
odd partitions: (1 =x)1x (1-x3)"1 x(1-x°)"1x(1-x")1x...
distinct partitions: (1+x)x (1 +x*) x(1+x3)x(1+x%) x ...
and showed that they are equal:
For any positive integer, the number of odd partitions

always equals the number of distinct partitions.



Partition

numbers

up to p(200),
calculated by Percy
MacMahon

1 51
2 52...
3 53...

5 54.

7 55.

11 56.

15 57.

22 58.

30 59.

42 60..

56 61..

77 62..

101 63..
135 64...
176 65...
231 66...
297 67...
385 68...
490 69...
627 70...

792 71..
1002 72...
1255 78..
1575 74...
1958 5.
2436 76...
3010 T
3718 78...
4565 79...
5604 80...
6842 8l...
. 8349 82...
. 10143 83...
.. 12310 84...
. 14883 85...
. 17977 86...
. 21637 87...
.. 26015 88...
. 31185 89..
. 37338 90...
. 44583 9l...
... 53174 92...
.. 63261 93..
.. 75175~ 94...
.. 89134"°, "95..
...105558 96..
...124754 97...
...147273 98...
...173525 ¥ 99...
..2049226  100...

TaBLE IV*: p (n).

239943
281589
329931
386155
451276
526823
614154
715220
831820
966467
1121505
1300156
1505499
1741630
2012558
2323520
2679689
3087735
3554345
4087968
4697205
5392783
6185689
7089500
8118264
9289091
10619863
12132164
13848650
15796476
18004327
205062565
23338469
26543660
30167357
34262962
38887673
44108109
49995925
56634173
64112359
72533807

. 82010177

92669720

.104651419
.118114304

133230930
150198136
169229875
190569292

101...
102...
103...
104...
105...
106...
107...
108...
109...
110...
111...
113...
113...
114...
115...
116...
117...
118...
119...
1203
121...
122...
123...
124...
125...
126...
127...
128...
129...
130...
131...
132...
133...
134...
135...
136...
137...
138..
139...
140..

141.

142...
143..
144...
145...
146..
147...
..33549419497
37027355200
.40853235213

148.

149..
150..

214481126
241265379
271248950
304801365
342325709
384276336
431149389
483502844
541946240
607163746
679903203
761002156
851376628
952050665
1064144451
1188908248
1327710076
1482074143
1653668665
1844349560
2056148051
2291320912
2552338241
2841940500
3163127352
3519222692
3913864295
4351078600
4835271870
5371315400
5964539504
6620830889
7346629512
8149040695
9035836076
10015581680
11097645016

12292341831

13610949895

.15065878135
..16670689208

18440293320

20390982757

22540654445
24908858009

27517052599

30388671978

151...
152...
153...
154..
155...
156...
157...
158...
159.

160

161...
162...
163...
164...
165...
166...
167...
168...
169...
170...
ATL.
172...
173...
174...
175...
176...
177...
178...
179...
180...
181...
182...
183...
184...
185...
186...
187...
188...
189...
190...
191...
192...
193..
194...
195..
196..
197..
198..
199..

45060624582
49686288421
54770336324
60356673280
66493182097
73232243759
80630964769
88751778802
97662728555

. 107438159466

118159068427
129913904637
142798995930
156919475295
172389800255
189334822579
207890420102
298204732751
9250438925115
274768617130
301384802048
330495499613
362326859895
397125074750
435157697830
476715857290
522115831195
571701605655
625846753120
684957390936
749474411781
819876908323
896684817527
980462880430
1071823774337
1171432692373
1280011042268
1398341745571
1527273599625
1667727404093
1820701100652
1987276856363

2168627105469

2366022741845

.2580840212973
.2814570987591
3068829878530
3345365983698
3646072432125
..3972999029388




Hardy & Ramanujan on partitions

Statement of the main theorem.
THEOREM. Suppose that
vg d

€
(x71) bem=52 2 (5.
where C and M\, are defined by the equations (1'53), for all positive integral
vakues of q; thai p is a positive integer less than and prime to q; that w4 s
a 24g-th Toot of unity, defined when p is odd by the formula
(1721) -

ane=() xp[- {t@-pa-p)+ 0 (- 3) p-p + 291} i),
and when q is odd by the formula
(1722). i
ona=(Z2)esp [~ {1 @- D42 (2-3) @p-p + 20} i),
where (afb) is the symbol of Legendre and Jacobit, and p’ is any positive
integer such that 1+ pp’ is divisible by q; that
(173) Ay (1) = 3 ap e~

and that a is any positive constant, and v the integral part of a/n.

Then
(174) p(n)= % A,¢,+0 (n ),

so0 that p (n) 1s, for all sufficiently large values of n, the integer nearest to

(175) % Ay,




, cube
Euler’s 6 faces, 8 vertices,
polyhedron 12 edges
formula: neprEsi

F+V=E+2 dodecahedron

12 faces, 20 vertices,
30 edges
and12+20=30+2

great rhombicosidodecahedron
62 faces, 120 vertices, 180 edges
and 62 + 120 =180 + 2




Euler’s letter to C. Goldbach (1750)
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Euler’s 1750 letter

6. In every solid enclosed by plane faces, the aggregate
of the number of faces and the number of solid angles

exceeds by 2 the number of edges, orH+S=A + 2.
H = hedrae (faces); S = angulae solidae (solid angles = vertices),
A = acies (edges) — a term due to Euler

11. The sum of all the plane angles is equal to four times

as many right angles as there are solid angles, less 8
—that is, = 4S — 8 right angles.

| find it surprising that these general results in solid
geometry have not previously been noticed by anyone,
as far as | am aware; and furthermore, that the important
ones, Theorems 6 and 11, are so difficult that | have not
yet been able to prove them in a satisfactory way.



Proving the polyhedron formula

In 1752 Euler tried to prove the polyhedron formula
by slicing corners off the polyhedron in such a way that
S — A + H remains unchanged at each stage, until a
tetrahedron was reached (withS—-A+H=4-6+4=2),
but his proof was deficient.

The first correct proof was a metrical one given by
A.-M. Legendre in 1794

Later proofs were given in the 1810s by A.-L. Cauchy
and S.-A.-J. L'huilier.



Dividing polygons (1751)

In how many ways can a regular n-sided
polygon be divided into triangles? @

For n = 6 there are 14 ways (shown),

and for n = 10 there are 1430 ways.

&
Euler proved that the number of ways is <E §>
2x6x10%...x(4n—=10)/ (n-1)! <> @

(so, forn =6, we have 2 x 6 x 10 x 14 / 120 = 14)

and that the generating function is @i ;
X3+ 2x4 +5x° +14x° +42x7 + 132x8 +. ..
=x{1-2x-V(1-4x)}/ 2.

These numbers were later called Catalan numbers,
after Eugene Catalan, who wrote about them in 1838.




Derangement problem (1753)

Two players turn over identical packs of cards, one card
at a time. The first player wins if there’s a ‘match’.
What is the probability that no match occurs?

In how many ways (D_) can n given letters
be arranged so that none is in its original position?

For example, if n = 4, there are 9 (out of 24) possible ways:
badc, bcda, bdac, cadb, cdab, cdba, dabc, dcab, dcba.

n 1 2 3 = 5 6 7 8

n! 1 2 6 24 120 720 5040 40320 ...

2, 0 1 2 9 44 265 1854 14833 ...
D,/nt 0 0.5 03333 0375 0.3667 0.3681 03678 0.3679 ...




Solving the derangement problem

In how many ways (D,) can n given letters
be arranged so that none is in its original position?

Around 1710 the derangement problem had been solved by
De Moivre and de Montmort. Euler revisited the problem:

Euler : ‘D” - ('\-ﬁb.-z"' (n=1) Dn-y

In fact, D, is always the nearest integer to n!/e.
For example, if n =8, D, = 14833 and n!/e = 14832.9.

So in the card problem, the probability of no match =1/e = 0.368.



B Knight’s-tour
- B 4 problem (1759)

Can a knight visit
all the squares .
of a chessbhoard

by knight’s moves |

and return to
its starting point?




Knight’s-tour problem

Euler gave the first systematic
treatment of the problem,
exhibiting several solutions

with various degrees

40 27 60 9 38 25 54

1 64 19 32 3 50 21 34

of symmetry.

30

Ll

+6

37

32

53

60

o7

72

55

47

26

31

4o

45

68

73

54

61

As he observed, there is

2.

29

38

33

50

59

52

63

56

71

no knight’s touronann xn
chessboard when n is odd

35

L8

27

Lol

39
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28

43

3L

49

26

51

6l

15

70

57

(since a knight must

20

a5

e

76

99

38

a3

18

‘alternate colours’),
and he gave several examples
when n =6, 8 and 10.
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1766-1783 in St Petersburg

1767: Euler line of a triangle

1768/74: Letters to a German Princess

1768-70: Calculi Integralis (3 volumes)

1770:  Algebra / number theory

1771: Dioptrica (optics)

1773:  Sailing of ships

1774:  Astronomy book

1776: Motion of rigid bodies

1776:  775-page treatise on the motion of the moon
1782: Magic and Latin squares / 36 Officers problem
1783: Died 7/18 September



The Josephus problem (1771)

Suppose that n people
stand in a circle.
Moving clockwise, we
eliminate every kth person.
How do you ensure that
you are the last to go?

Named after Flavius Josephus,

who was imprisoned by the Japanese print from 1797
Romans in the 1st century. Euler developed a
For example, with n = 15 procedure for solving this
and k = 4, we eliminate problem, showing that,
4,8,12,1,6,11,2,9, when n=5000and k=9,

15, 10, 5, 3, 7, 14, 13. the survivor is 4897.



On the 7th of September 1783, after Th e d e at h of

amusing himself with calculating on a
slate the laws of the ascendihg motion E u Ie r ( 1 783)
of air balloons, the recent discovery of
which was then making a noise all
over Europe, he dined with Mr Lexell
and his family, talked of Herschel’s
planet (Uranus), and of the
calculations which deterriine its orbit.

A little after, he called his
grandchild, and fell a playing with him
as he drank tea, when suddenly the
pipe, which he held in his hand,
dropped from it, and he ceased to
calculate and to breathe.




