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Some of 
Euler’s  

interests 

Theory of numbers  
Geometry of a triangle 
Musical harmony  
Infinite series 
Logarithms   
Calculus    
Mechanics 
Complex numbers 
Optics    
Astronomy 
Motion of the moon 
Wave motion   
Stability of sailing ships . . . 



Summary of Euler’s life 

1707:  Born in Basel (15 April) 
1721: University of Basel 
 
1727: St Petersburg Academy 
1733: Chair of Mathematics 
 
1741: Berlin Academy of Sciences 
 
1766: returned to St Petersburg 
1783: died in St Petersburg 



The Bernoulli 
family 



Euler’s combinatorics 

1735: Königsberg bridges problem 
1741-68: Partitions 
1750s: Polyhedron formula 
1751: Dividing polygons 
1753, 1779: Derangements 
1759: Knight’s-tour problem 
1771: Josephus problem 
[1776: Binomial coefficients] 
[1776-82: Magic squares and Latin squares]  



The 1730s in St Petersburg 

Calculus of variations 
Analytic number theory 
Continued fractions 
Musical theory of 

harmony 
Cartography 

1732:  232 + 1 is divisible by 641 
 
1735:  1 + 1/4  + 1/9 + 1/16 + . . . = π2/6 
 
1735: Königsberg bridges 
 
1736: Mechanica 
 
1737: e is irrational  



Königsberg bridges problem (1735) 

Can you cross each of the seven bridges exactly once? 



Euler and the Königsberg bridges 

Letter dated 13 March 1736 to Giovanni Marinoni, 
Court Astronomer to Kaiser Leopold in Vienna,  



Solving the 
Königsberg  

bridges 
problem 



Euler’s 
solution 

So the Königsberg  
bridges problem 
has no solution. 

 

But Euler did not 
prove the sufficiency: 
this was first proved  

by C. Hierholzer, 1871 



The modern 
approach 

(using graphs) 

Can you draw  
this picture in one 
continuous stroke? 

Yes, if and only if the 
number of vertices of 
odd degree is 0 or 2. 

 

NOT 
DRAWN  

BY 
EULER: 

First 
appearance   

in 1892 



1741–1766 in Berlin 

1744:    Calculus of variations 
1748:    Introductio in Analysin  Infinitorum 
   eix  =  cos x + i sin x     Functions 
   Conics & quadrics       Partitions 
1749:    Theory of tides  
   Motion of the moon 
1749/50: Vibrating strings 
   Differential equations  Waves 
1750:    Polyhedron formula 
1755:   Calculi Differentialis 
1759:   Knight’s tour problem 
1760:    Differential geometry 



Euler’s 
Introductio 
in Analysin 
Infinitorum 

(1748) 



Partitions of numbers 
Leibniz introduced these ‘divulsions of integers’ 

in a letter to Johann Bernoulli 

Split a number into smaller ones 

1 = 1  (1 way)      2 = 2  or  1 + 1  (2 ways) 

3 = 3  or  2 + 1  or  1 + 1 + 1  (3 ways) 

4 = 4 or 3+1 or 2+2 or 2+1+1 or 1+1+1+1  (5 ways) 

5 = 5 or 4+1 or 3+2 or 3+1+1 or 2+2+1 or … or …  (7 ways) 

. . . 

p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, p(6) = 11,  

p(10) = 42, p(20) = 627, p(30) = 5604, p(40) = 37338, . . . , 

p(200) = 3,972,999,029,388   



Euler’s Pentagonal Number Theorem 

Look at the generating function (or ‘washing line’): 

F(x) = 1 + p(1)x + p(2)x2 + p(3)x3 + p(4)x4 + . . . 

        = 1 + x + 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + . . . 

In the Introductio Euler proved that 

F(x) = (1 − x)−1 × (1 − x2)−1 × (1 − x3)−1 × (1 − x4)−1 × . . . 

= 1 / {(1 − x) (1 − x2) (1 − x3) (1 − x4) . . .} 

and later that 

(1 − x) × (1 − x2) × (1 − x3) × (1 − x4) × . . . 

= 1 – x – x2 + x5 + x7 – x12 – x15 + . . .  

(The exponents k(3k ± 1)/2 are the ‘pentagonal numbers’) 



Euler’s Partition Formula 
Multiplying these expressions together we get: 

{1 + p(1)x + p(2)x2 + p(3)x3 + p(4)x4 + . . . } 
× {1 − x − x2 + x5 + x7 − x12 − x15 + . . . }  = 1. 

 

Isolating the term in xn and rearranging the result, we get: 
p(n) = p(n − 1) + p(n − 2) − p(n − 5) − p(n − 7)  

+ p(n − 12) + p(n − 15 ) − . . .  . 

So each successive partition number p(n)  
can be calculated from the previous ones. 

So p(11) = p(10) + p(9) – p(6) – p(4) = 42 + 30 − 11 − 5 = 56. 

  Euler calculated p(n) up to p(65) = 2012558. 

This is still the most efficient way to calculate partition numbers.  



Philip Naude’s problems 

In how many ways can 50 be written  
as the sum of seven distinct integers? 

Euler:   Consider  (1 + xz) × (1 + x2z) × (1 + x3z) × (1 + x4z) ×  . . .  
 = 1 + z (x + x2 + x3 + x4 + . . . )  
  + z2 (x3 + x4 + 2x5 + 2x6 + 3x7 + . . .) 
  + z3 (x6 + x7 + 2x8 + 3x9 + 4x10 + . . . ) +  . . .  

Answer = coefficient of x50 in the row z7 ( . . . ) = 522. 

What is the corresponding answer  
if the seven integers are not distinct? 

Euler:   Consider (1 – xz)–1 × (1 – x2z) –1  × (1 – x3z) –1 × (1 – x4z) –1 × . . .  
 = (1 + xz + x2z2 + x3z3 + . . . ) × (1 + x2z + x4z2 + . . .) ×  . . . 

Answer (after some calculation) = 8496. 



Odd and distinct partitions 
In odd partitions all the parts are odd 

There are eight odd partitions of 9: 
9,  7+1+1,  5+3+1,  5+1+1+1+1,  3+3+3,  3+3+1+1+1, 

3+1+1+1+1+1+1,  1+1+1+1+1+1+1+1+1   

In distinct partitions all the parts are distinct 
There are eight distinct partitions of 9: 

9,  8+1,  7+2,  6+3,  6+2+1,  5+4,  5+3+1,  4+3+2 
 

Euler found the following generating functions: 
odd partitions: (1 – x)–1 × (1 – x3) –1  × (1 – x5) –1 × (1 – x7) –1 × . . . 

distinct partitions:  (1 + x) × (1 + x2) × (1 + x3) × (1 + x4) ×  . . . 
 and showed that they are equal: 

For any positive integer, the number of odd partitions  
always equals the number of distinct partitions.  



Partition 
numbers  

up to p(200), 
calculated by Percy 

MacMahon 



Hardy & Ramanujan on partitions 



Euler’s 
polyhedron 

formula:  
F + V = E + 2 

great rhombicosidodecahedron 
62 faces, 120 vertices, 180 edges 

and 62 + 120 = 180 + 2 

cube 
6 faces, 8 vertices, 

12 edges 
and 6 + 8 = 12 + 2 

dodecahedron 
12 faces, 20 vertices, 

30 edges 
and 12 + 20 = 30 + 2 



Euler’s letter to C. Goldbach (1750) 



Euler’s 1750 letter 
6. In every solid enclosed by plane faces, the aggregate 

of the number of faces and the number of solid angles  
 exceeds by 2 the number of edges,  or H + S = A + 2. 

H = hedrae (faces);  S = angulae solidae (solid angles = vertices), 
A = acies (edges) – a term due to Euler 

11. The sum of all the plane angles is equal to four times  
 as many right angles as there are solid angles, less 8  
 – that is, = 4S – 8 right angles. 
 

I find it surprising that these general results in solid 
geometry have not previously been noticed by anyone,  

as far as I am aware; and furthermore, that the important 
ones, Theorems 6 and 11, are so difficult that I have not 

yet been able to prove them in a satisfactory way. 



Proving the polyhedron formula 

In 1752 Euler tried to prove the polyhedron formula  
by slicing corners off the polyhedron in such a way that 

S – A + H remains unchanged at each stage, until a 
tetrahedron was reached (with S – A + H = 4 – 6 + 4 = 2),  

but his proof was deficient. 
 

The first correct proof was a metrical one given by  
A.-M. Legendre in 1794 

 

Later proofs were given in the 1810s by A.-L. Cauchy 
and S.-A.-J. L’huilier. 



Dividing polygons (1751) 

In how many ways can a regular n-sided 
polygon be divided into triangles?  

For n = 6 there are 14 ways (shown),  
and for n = 10 there are 1430 ways.  

Euler proved that the number of ways is 

 2 × 6 × 10 × . . . × (4n – 10) / (n – 1)! 
(so, for n = 6, we have 2 × 6 × 10 × 14 / 120 = 14) 

and that the generating function is 

x3 + 2x4 + 5x5 + 14x6 + 42x7 + 132x8 + . . .  
= x {1 – 2x – √(1 – 4x)} / 2. 

These numbers were later called Catalan numbers,  
after Eugène Catalan, who wrote about them in 1838. 



Derangement problem (1753) 

Two players turn over identical packs of cards, one card 
at a time.  The first player wins if there’s a ‘match’.  

What is the probability that no match occurs? 

In how many ways (Dn) can n given letters 
be arranged so that none is in its original position? 

For example, if n = 4, there are 9 (out of 24) possible ways: 

badc,  bcda,  bdac,  cadb,  cdab,  cdba,  dabc,  dcab,  dcba. 



Solving the derangement problem 
In how many ways (Dn) can n given letters 

be arranged so that none is in its original position? 

Around 1710 the derangement problem had been solved by 
De Moivre and de Montmort.  Euler revisited the problem: 

In fact, Dn is always the nearest integer to n!/e. 
For example, if n = 8,  Dn = 14833 and n!/e ≈ 14832.9. 

So in the card problem, the probability of no match  = 1/e ≈ 0.368.   



Knight’s-tour 
problem (1759) 

Can a knight visit  
all the squares  

of a chessboard  
by knight’s moves  

and return to  
its starting point? 



Knight’s-tour problem 

Euler gave the first systematic 
treatment of the problem,  
exhibiting several solutions 

with various degrees  
of symmetry. 

 

As he observed, there is  
no knight’s tour on an n × n 
chessboard when n is odd 

(since a knight must 
‘alternate colours’),  

and he gave several examples 
when n = 6, 8 and 10.   



1766–1783 in St Petersburg  
1767:       Euler line of a triangle 

1768/74: Letters to a German Princess 

1768–70: Calculi Integralis (3 volumes) 

1770:       Algebra / number theory 

1771:       Dioptrica (optics)   

1773:       Sailing of ships 

1774:       Astronomy book 

1776:       Motion of rigid bodies 

1776:       775-page treatise on the motion of the moon 

1782:       Magic and Latin squares / 36 Officers problem 

1783:        Died 7/18 September 



The Josephus problem (1771) 
Suppose that n people 

stand in a circle.  
Moving clockwise, we 

eliminate every kth person.   
How do you ensure that 
you are the last to go? 

Named after Flavius Josephus,  
who was imprisoned by the 
Romans in the 1st century. 

Japanese print from 1797 

For example, with n = 15 
and k = 4, we eliminate  
4, 8, 12, 1, 6, 11, 2, 9, 
15, 10, 5, 3, 7, 14, 13. 

Euler developed a 
procedure for solving this 
problem, showing that,  

when  n = 5000 and k = 9,  
the survivor is 4897. 



The death of 
Euler (1783) 


