Resolving sets for higher dimensional projective spaces
 György Kiss
 ELTE and University of Primorska

Let $R(n, q)$ be a resolving set for the point-hyperplane incidence graph of $\mathrm{PG}(n, q)$. In this talk estimates on the size of $R(n, q)$ are presented. We prove that if q is large enough then

$$
|R(n, q)| \geq 2 n q-2 \frac{n^{n-1}}{(n-2)!}
$$

This generalizes tha planar result of Héger and Takáts [2] stating that the metric dimension of the point-line incidence graph of a projective plane of order q is $4 q-4$.

Translating the result of Fancsali and Sziklai [1] about higgledy-piggledy lines to the language of resolving sets, we get that if $q=p^{r}, p>n$ and $q \geq 2 n-1$ then $|R(n, q)| \leq(4 n-2) q$. We improve their result and show that $|R(3, q)| \leq 8 q$ and $|R(4, q)| \leq 12 q$. In the cases $p<n$ and $q<2 n-1$ we prove that $|R(n, q)| \leq\left(n^{2}+n-6\right) q$.

Joint work with Daniele Bartoli, Stefano Marcugini and Fernanda Pambianco.

References

[1] Fancsali, Sz. and Sziklai, P., Lines in higgledy-piggledy arrangements, Electron. J. Combin., 21 (2014) no. 2, Paper 2.56, 15 pp.
[2] HÉger, T. and Takáts, M., Resolving sets and semi-resolving sets in finite projective planes, Electron. J. Combin., 19 (2012) no. 4, Paper 30, 21 pp .

