Graphs and Groups, Geometries and GAP (G2G2) Summer School - External Satellite Conference of 8ECM

Contribution ID: 16

Type: not specified

Rigidity of v_3 **-configurations**

A framework of a graph is rigid if no motion of the graph, preserving edge lengths, changes the distance between two vertices. Equivalently, a graph is rigid if it can only move by translation and rotation. A graph that is not rigid is flexible. Under certain conditions on the coordinates of the vertices, we can determine whether or not a planar framework of a graph is rigid by looking at the underlying graph.

A geometric v_k -configuration is a collection of v straight lines and v points in the plane such that there are k points on each line and k lines through each points. A geometric v_2 -configuration is a framework of a graph, so geometric v_k -configurations generalise frameworks of graphs.

In this talk we will consider the rigidity properties of v_k -configurations. A geometric v_k -configuration is rigid if the only motions of it, preserving point-line incidences and distances between collinear points, are translation and rotation. A geometric v_k -configuration that is not rigid is flexible.

 Primary author:
 LUNDQVIST, Signe

 Presenter:
 LUNDQVIST, Signe

Track Classification: Oral presentation