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k-closures of finite nilpotent permutation groups
LetG be a permutation group on a finite set Ω. Denote the set of orbits of the componentwise action ofG on
Ωk by Orb(G,Ωk). Wielandt [1] defined the k-closure of G to be the group

G(k) = Aut(Orb(G,Ωk)) = {g ∈ Sym(Ω) | Og = O ∀O ∈ Orb(G,Ωk)}.

A permutation group is called k-closed if G = G(k). In this talk we discuss k-closures of nilpotent groups.

Theorem. IfG is a finite nilpotent permutation group, and k ≥ 2, thenG(k) is the direct product of k-closures
of Sylow subgroups of G.

This theorem generalizes results of [2,3] and provides a criterion of the k-closedness for finite nilpotent per-
mutation groups.

Corollary. For k ≥ 2, a finite nilpotent permutation groupG is k-closed if and only if every Sylow subgroup
of G is k-closed.
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