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Let 𝐺 be a permutation group on a finite set Ω. Denote the set of orbits of the componentwise action
of 𝐺 on Ω𝑘 by Orb(𝐺,Ω𝑘). Wielandt [1] defined the 𝑘-closure of 𝐺 to be the group

𝐺(𝑘) = Aut(Orb(𝐺,Ω𝑘)) = {𝑔 ∈ Sym(Ω) | 𝑂𝑔 = 𝑂 ∀𝑂 ∈ Orb(𝐺,Ω𝑘)}.

A permutation group is called 𝑘-closed if 𝐺 = 𝐺(𝑘). In this talk we discuss 𝑘-closures of nilpotent groups.

Theorem. If 𝐺 is a finite nilpotent permutation group, and 𝑘 ≥ 2, then 𝐺(𝑘) is the direct product of
𝑘-closures of Sylow subgroups of 𝐺.

This theorem generalizes results of [2,3] and provides a criterion of the 𝑘-closedness for finite nilpotent
permutation groups.
Corollary. For 𝑘 ≥ 2, a finite nilpotent permutation group 𝐺 is 𝑘-closed if and only if every Sylow
subgroup of 𝐺 is 𝑘-closed.
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