On finite non-solvable 4-primary groups without elements of order 6

Nikolai Minigulov Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia n.a.minigulov@imm.uran.ru

This is joint work with Anatoly Kondrat'ev

We use mainly standard notation and terminology (see [1]).

Let G be a finite group. Denote by $\pi(G)$ the set of all prime divisors of the order of G. If $|\pi(G)| = n$, then G is called *n*-primary. The Gruenberg–Kegel graph (prime graph) $\Gamma(G)$ of G is a graph with the vertex set $\pi(G)$, in which two distinct vertices p and q are adjacent if and only if there exists an element of order pq in G.

In 2012–2013, A.S. Kondrat'ev described finite groups having the same Gruenberg-Kegel graph as the groups $Aut(J_2)$ [2] and A_{10} [3], respectively. The Gruenberg-Kegel graphs of these groups are isomorphic as abstract graphs.

We establish a more general problem: to describe finite groups whose Gruenberg-Kegel graphs are isomorphic as abstract graphs to the graph $\Gamma(A_{10})$.

As a part of the solution of this problem, we proved in [4] that if G is a finite non-solvable group and the graph $\Gamma(G)$ as abstract graph is isomorphic to the graph $\Gamma(A_{10})$, then the quotient group G/S(G)(where S(G) is the solvable radical of G) is almost simple, and classified all finite almost simple groups whose the Gruenberg-Kegel graphs as abstract graphs are isomorphic to subgraphs of $\Gamma(A_{10})$.

Let G be a finite non-solvable group, and the graph $\Gamma(G)$ as abstract graph is isomorphic to the graph $\Gamma(A_{10})$. Then the graph $\Gamma(G)$ has the following form

where p, q, r, and s are pairwise distinct primes.

In [5], we described such finite non-solvable groups G when 3 does not divide |G|.

In this work, we prove the following theorem.

Theorem. Let G be a finite non-solvable group, $\overline{G} \cong G/S(G)$ and $\Gamma(G)$ as abstract graph is isomorphic to $\Gamma(A_{10})$. If 3 divides of |G| and G has no elements of order 6, then one of the following statements holds:

(1) $S = O_{2',2}(G)$, $O(G) = O_p(G)$, q = 2, S/O(G) is an elementary abelian 2-group, $\overline{G} \cong L_2(2^n)$ and one of the following statements holds:

(1a) n = 4, p = 17 and $\{r, s\} = \{3, 5\}$;

(1b) n is prime, $n \ge 5$, $p = 2^n - 1$, and $\{r, s\} = \{3, (2^n - 1)/3\}$, the group S/O(G) either is trivial or as \overline{G} -module is isomorphic to a direct sum of natural $GF(2^n)\overline{G}$ -modules;

(2) $S = O_p(G), q = 2, \overline{G} \cong L_2(p), p \ge 31, p \equiv \varepsilon 5 \pmod{12}, \varepsilon \in \{+, -\}, p - \varepsilon 1 = 2^k, and 3 \in \{r, s\} = \pi((t + \varepsilon 1)/2);$

(3) $S = O_p(G)$, q = 3, and one of the following statements holds:

(3a) $\overline{G} \cong PGL_2(9), p > 5, and \{r, s\} = \{2, 5\};$

(3b) $\overline{G} \cong L_2(81)$, $PGL_2(81)$ or $L_2(81).2_3$, p = 41, and $\{r, s\} = \{2, 5\}$;

(3c) $\overline{G} \cong L_2(3^n)$ or $PGL_2(3^n)$, *n* is an odd prime, $p = (3^n - 1)/2$, and $\{r, s\} = \pi(3^n + 1)$.

Each of the statements (1)–(3) of the theorem is realized.

In the proof of Theorem, we use the classification of the finite non-solvable groups without elements of order 6 from [6, Theorem 2].

Acknowledgments. The work is supported by Russian Science Foundation (project 19-71-10067).

References

- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford (1985).
- [2] A. S. Kondrat'ev, Finite groups with prime graph as in the group $Aut(J_2)$. Proc. Steklov Inst. Math. **283(1)** (2013), 78–85.
- [3] A. S. Kondrat'ev, Finite groups that have the same prime graph as the group A₁₀. Proc. Steklov Inst. Math. 285(1) (2014), 99–107.
- [4] A.S. Kondrat'ev, N.A Minigulov, Finite almost simple groups whose Gruenberg-Kegel graphs as abstract graphs are isomorphic to subgraphs of the Gruenberg-Kegel graph of the alternating group A₁₀. Siberian Electr. Math. Rep. 15 (2018), 1378–1382.
- [5] A. S. Kondrat'ev, N. A. Minigulov, On finite non-solvable 4-primary 3'-groups, in: Algebra, number theory and mathematical modeling of dynamical systems: abstracts of the international conference devoted to the 70th anniversary of A.Kh. Zhurtov, KBSU, Nal'chik, 2019, 56 (in Russian).
- [6] A. S. Kondrat'ev, N. A. Minigulov, Finite groups without elements of order six. Math. Notes 104:5 (2018), 696-701.