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A compact hyperbolic tetrahedron 𝑇 is a convex hull of four points in the hyperbolic space H3. Let us
denote the vertices of 𝑇 by numbers 1, 2, 3 and 4. Then denote by ℓ𝑖𝑗 the length of the edge connecting 𝑖-th
and 𝑗-th vertices. We put 𝜃𝑖𝑗 for the dihedral angle along the corresponding edge. It is well known that
𝑇 is uniquely defined up to isometry either by the set of its dihedral angles or the set of its edge lengths.
A Gram matrix 𝐺(𝑇 ) of tetrahedron 𝑇 is defined as 𝐺(𝑇 ) = ⟨− cos 𝜃𝑖𝑗⟩𝑖,𝑗=1,2,3,4, we assume here that
− cos 𝜃𝑖𝑖 = 1. An edge matrix 𝐸(𝑇 ) of hyperbolic tetrahedron 𝑇 is defined as 𝐸(𝑇 ) = ⟨cosh ℓ𝑖𝑗⟩𝑖,𝑗=1,2,3,4,
where ℓ𝑖𝑖 = 0.

In 1907 G. Sforza found the volume of a hyperbolic tetrahedron 𝑇 in terms of its Gram matrix (see [1]).
The new proof of the Sforza’s formula was recently given in [2]. In the present work we present an exact
formula for the volume of a hyperbolic tetrahedron 𝑇 in terms of its edge matrix.

Theorem 1. Let 𝑇 be a compact hyperbolic tetrahedron given by its edge matrix 𝐸 = 𝐸(𝑇 ) and 𝑐𝑖𝑗 =
(−1)𝑖+𝑗𝐸𝑖𝑗 is 𝑖𝑗-cofactor of 𝐸. We assume that all the edge lengths are fixed exept ℓ34 which is formal
variable. Then the volume 𝑉 = 𝑉 (𝑇 ) is given by the formula

𝑉 =
1

2

ℓ34∫︁
𝑓1

[︂
𝑡

(−det𝐸)3/2

(︂
𝑐14(𝑐11𝑐23 − 𝑐12𝑐13)

𝑐11
+

𝑐24(𝑐13𝑐22 − 𝑐12𝑐23)

𝑐22

)︂
−

sinh 𝑡

(−det𝐸)1/2

(︂
𝑐14ℓ24 sinh ℓ24 + 𝑐13ℓ14 sinh ℓ23

𝑐11
+

𝑐23ℓ13 sinh ℓ13 + 𝑐24ℓ23 sinh ℓ14
𝑐22

+ ℓ12 sinh ℓ12

)︂]︂
𝑑𝑡,

cosh 𝑓1 = cosh ℓ13 cosh ℓ14 − (cosh ℓ13 cosh ℓ12 − cosh ℓ23)(cosh ℓ14 cosh ℓ12 − cosh ℓ24) csch2ℓ12 −√︀
(cosh ℓ23 − cosh(ℓ13 + ℓ12))(cosh ℓ23 − cosh(ℓ13 − ℓ12))×√︀

(cosh ℓ24 − cosh(ℓ14 + ℓ12))(cosh ℓ24 − cosh(ℓ14 − ℓ12))

If we put every edge length to be equal ℓ𝑖𝑗 = 𝑎 then we get a particular case of a regular hyperbolic
tetrahedron.

Corollary 2. Let 𝑇 = 𝑇 (𝑎) be a regular hyperbolic tetrahedron and all of its edge lengths are equal to
𝑎, 𝑎 ≥ 0. Then the volume 𝑉 = 𝑉 (𝑇 ) is given by the formula

𝑉 =

𝑎∫︁
0

3 𝑡 sinh 𝑡 𝑑𝑡

(1 + 2 cosh 𝑡)
√︀

(cosh 𝑡+ 1)(3 cosh 𝑡+ 1)
.

A regular case was done before in several works (see, e.g., formula (2.5) in [3]). Corollary 2 completely
coincides with them.
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