The volume of a general type hyperbolic tetrahedron in terms of its edge matrix

Nikolay Abrosimov
Novosibirsk State University, Novosibirsk, Russia
Sobolev Institute of Mathematics, Novosibirsk, Russia
abrosimov(at)math.nsc.ru

This is joint work with Bao Vuong

A compact hyperbolic tetrahedron T is a convex hull of four points in the hyperbolic space \uplus^{3}. Let us denote the vertices of T by numbers $1,2,3$ and 4 . Then denote by $\ell_{i j}$ the length of the edge connecting i-th and j-th vertices. We put $\theta_{i j}$ for the dihedral angle along the corresponding edge. It is well known that T is uniquely defined up to isometry either by the set of its dihedral angles or the set of its edge lengths. A Gram matrix $G(T)$ of tetrahedron T is defined as $G(T)=\left\langle-\cos \theta_{i j}\right\rangle_{i, j=1,2,3,4}$, we assume here that $-\cos \theta_{i i}=1$. An edge matrix $E(T)$ of hyperbolic tetrahedron T is defined as $E(T)=\left\langle\cosh \ell_{i j}\right\rangle_{i, j=1,2,3,4}$, where $\ell_{i i}=0$.

In 1907 G. Sforza found the volume of a hyperbolic tetrahedron T in terms of its Gram matrix (see [1]). The new proof of the Sforza's formula was recently given in [2]. In the present work we present an exact formula for the volume of a hyperbolic tetrahedron T in terms of its edge matrix.
Theorem 1. Let T be a compact hyperbolic tetrahedron given by its edge matrix $E=E(T)$ and $c_{i j}=$ $(-1)^{i+j} E_{i j}$ is ij-cofactor of E. We assume that all the edge lengths are fixed exept ℓ_{34} which is formal variable. Then the volume $V=V(T)$ is given by the formula

$$
\begin{aligned}
V= & \frac{1}{2} \int_{f_{1}}^{\ell_{34}}\left[\frac{t}{(-\operatorname{det} E)^{3 / 2}}\left(\frac{c_{14}\left(c_{11} c_{23}-c_{12} c_{13}\right)}{c_{11}}+\frac{c_{24}\left(c_{13} c_{22}-c_{12} c_{23}\right)}{c_{22}}\right)-\right. \\
& \left.\frac{\sinh t}{(-\operatorname{det} E)^{1 / 2}}\left(\frac{c_{14} \ell_{24} \sinh \ell_{24}+c_{13} \ell_{14} \sinh \ell_{23}}{c_{11}}+\frac{c_{23} \ell_{13} \sinh \ell_{13}+c_{24} \ell_{23} \sinh \ell_{14}}{c_{22}}+\ell_{12} \sinh \ell_{12}\right)\right] d t
\end{aligned}
$$

$$
\begin{gathered}
\cosh f_{1}=\cosh \ell_{13} \cosh \ell_{14}-\left(\cosh \ell_{13} \cosh \ell_{12}-\cosh \ell_{23}\right)\left(\cosh \ell_{14} \cosh \ell_{12}-\cosh \ell_{24}\right) \operatorname{csch}^{2} \ell_{12}- \\
\sqrt{\left(\cosh \ell_{23}-\cosh \left(\ell_{13}+\ell_{12}\right)\right)\left(\cosh \ell_{23}-\cosh \left(\ell_{13}-\ell_{12}\right)\right)} \times \\
\sqrt{\left(\cosh \ell_{24}-\cosh \left(\ell_{14}+\ell_{12}\right)\right)\left(\cosh \ell_{24}-\cosh \left(\ell_{14}-\ell_{12}\right)\right)}
\end{gathered}
$$

If we put every edge length to be equal $\ell_{i j}=a$ then we get a particular case of a regular hyperbolic tetrahedron.
Corollary 2. Let $T=T(a)$ be a regular hyperbolic tetrahedron and all of its edge lengths are equal to $a, a \geq 0$. Then the volume $V=V(T)$ is given by the formula

$$
V=\int_{0}^{a} \frac{3 t \sinh t d t}{(1+2 \cosh t) \sqrt{(\cosh t+1)(3 \cosh t+1)}}
$$

A regular case was done before in several works (see, e.g., formula (2.5) in 3). Corollary 2 completely coincides with them.

Acknowledgments. The work has been supported by RFBR project 19-01-00569.

References

[1] G. Sforza, Spazi metrico-proiettivi. Ricerche di Estensionimetria Integrale, Ser. III, VIII (Appendice) (1907) 41-66.
[2] N. V. Abrosimov, A. D. Mednykh, Volumes of polytopes in constant curvature spaces. Fields Institute Communications 70 (2014) 1-26.
[3] N. V. Abrosimov, B. Vuong, The volume of a hyperbolic tetrahedron with symmetry group S_{4}. Proceedings of Krasovskii Institute of Mathematics and Mechanics UB RAS 23:4 (2017) 7-17.

