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On Cayley isomorphism property for abelian groups
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A finite group 𝐺 is called a DCI-group if every two isomorphic Cayley digraphs over 𝐺 are Cayley
isomorphic, i.e. there exists an isomorphism between these digraphs that is also an automorphism of 𝐺.
One of the motivations to study DCI-groups comes from the Cayley graph isomorphism problem. Suppose
that 𝐺 is a DCI-group. Then to determine whether two Cayley digraphs Cay(𝐺,𝑆) and Cay(𝐺,𝑇 ) are
isomorphic, we only need to check the existence of 𝜙 ∈ Aut(𝐺) with 𝑆𝜙 = 𝑇 . The latter, usually, is much
easier.

The definition of a DCI-group goes back to Ádám who conjectured [1], in our terms, that every cyclic
group is DCI. This conjecture was proved to be false. The problem of determining all finite DCI-groups
was raised by Babai and Frankl [2]. One of the crucial steps towards the classification of all DCI-groups
is to determine abelian DCI-groups. It was proved that every abelian DCI-group is the direct product of
groups of coprime orders each of which is elementary abelian or isomorphic to Z4 (see [3, Theorem 8.8]).
However, the classification of abelian DCI-groups is far from complete. In the talk we discuss on new
infinite families of abelian DCI-groups and approaches to determining whether a given group is DCI.
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